
U ' _ 811' cr,! +cr.L ( 3 . ')':' n 
th------ -K"K" -. 

€_ a - OJ.. 2 :2 (4) 

This relationship describes the jumps of Uth resulting 
from variation of n (with the exception of the B - A 
transition corresponding to complete untwisting of a 
CLQ into an NLQ). The dependence of Uth on L within 
one region can be explained simply by assuming that 
K:a and K;3 vary with L. Thus, the oscillatory nature 
of the dependences of Uth and A on L can be explained 
qualitatively. 

Experimental studies of the Freedericksz transition 
and untwisting of cholesteric helices is an electric field 
gave the values of K33 = 1. 0 x 10-6 dyn and K22 = O. 3 x 10-6 

dyn. Figures 1-3 include the dependences of Uth and 
A on L calculated on the basis of Eqs. (1) and (2) for the 
equilibrium value of the pitch. We can see that the 
Helfrich-Hurault theory (derived for L » Po) describes 
only qualitatively the average dependence of Uth and A 
onLforL-Po• 

The authors are grateful to M. I. Barnik for measure
ments of the anisotropy of the electrical conductivity 

and permittivity components, and for a discussion of 
the results. 

1>Mixture A consists of two parts of p-n-butyl-p'-methoxy
azoxybenzene and one part of p-n-butyl-p'-heptanoyloxy
azoxybenzene. 
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The nonlinear Raman interaction between first and second sounds in liquid helium II, i.e., the parametric 
excitation of second sound by first sound in a resonator, is considered. An expression is obtained for the 
threshold first-sound intensity. The intensities of the stationary waves are found. The deviation from exact 
synchronism of the interacting waves and the difference between the frequencies of these waves and the 
natural frequencies of the resonator are taken into account. The stability of the obtained solutions is 
investigated. 

PACS numbers: 67.40.Tr 

It is well known that liquid helium II begins to mani
fest nonlinear properties when sufficiently intense 
first- and second-sound waves propagate in it, Thus, 
Osborne[1J observed the formation of second-sound 
shock waves, the theory of which is given in Khalatni
kov's paper, [2J where first-sound shock waves are also 
considered. The formation of shock waves is, in es
sence, a self-action of waves, and is not connected with 
nonlinear mixing of waves of different nature. Another 
type of nonlinear interaction-the so-called nonlinear Ra
man interaction connected with the nonlinear intermixing 
of first- and second-sound waves-is also possible. In the 
present paper we consider one of the examples of the 
latter interaction, namely, the parametric excitation 
of second-sound waves at the expense of the exciting 
first-sound waves. This process is, in particular, of 
interest from the point of view of the generation of 
high-frequency second sound, Such an interaction was 
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considered in[3J for the case of traveling waves. How
ever, since the threshold first-sound intensity starting 
from which second-sound wave excitation becomes pos
sible essentially depends on the attenuation of the 
waves, [3J a more favorable case for the experimental 
observation of the process in question is the case of 
waves in a resonator, since losses in a resonator with 
a sufficiently high Q are less than in traveling waves. 
In view of this, in the present paper we consider the 
parametric excitation of second sound by first sound 
for the case of waves in a resonator. 

In solving the problem, we proceed from the non
linear equations of the hydrodynamics of a superfluid 
liquid~ Ul transformed into a form suitable for our prob
lem. [l These equations are coupled, nonlinear wave 
equations for pressure and temperature. Since we can 
assume the nonlinearity of the medium to be sufficiently 
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slight and the losses to be sufficiently small, we shall 
use the method of slowly varying amplitudes (see, for 
example, (5]) to solve the basic system of equations. 
We shall seek the solution in the form of a sum of three 
standing wavesl): the exciting first-sound wave 

'1.{P(t) exp i(kox-OOot)+P(t) exp [-i(kox+OOot) ]+c.e.} (1a) 

and two temperature waves (second-sound waves). 
'I.{T., ,(t) exp i(k" ,X-OO', ,I) +T., ,(t) exp [-i(k, 2x+oo,.,I)] +c.c.}, 

(1b) 
where the complex amplitudes P, TI , and Tz are slow
ly varying functions of the time. Substituting (la) and 
(1b) into the system of equations (1) from (3], we obtain 
the following system of the so-called truncated equa
tions for the amplitudes TI (t), Tz (t), and P(t): 

dT 1 e-"" - 1 
Tt+2(/i-i3oo)T.~ -i3kl iB,PT;, 

dT, 1 . e-"" - 1 
dt+2(1I-i3oo)T,~ -i3kl W,PT,', 

dP 1 e;'" - 1 
-+-a.P~---iBoT,L+J.. (2) 
dt 2 i3kl . 

Here 6 and Cl are the decay coefficients for the waves 

Pn and Ps are the normal and superfluid denSities, P is 
the density of the medium, S is the entropy, CI and Cz 

are the velocities of first and second sounds, and 

A~(1+2~)~-~~. 
P c, p" op 

In contrast to the case of running waves, (3) here we take 
into account the deviation of the frequencies WI and Wz 

of the temperature waves from the eigenfrequencies WIO 

and WZO of the resonator and the deviation of the wave 
numbers from synchronism: 

(3a) 
(3b) 

It is not difficult to show that the frequencies satisfy the 
relations 

where dWI = dWz = dw/2. For the collinear case under 
consideration by us the equality (3b) has the form 

The parameter ~ in (2) describes the effect of the sound 
source (the piezoelectric plate) concentrated in a plane 
perpendicular to the resonator axis. We have A = d pUo / 
l, where Uo is the amplitude of the velocity of the oscil
lations of the piezoelectric crystal. In the presence of 
a sound source on the right-hand side of the basic non
linear wave equation for the pressure «1) from (3]), 

there arises the additional term 

au 
c,'PTtIl(x) 

(see, for example, (6]), where u is the velocity of the 
oscillations of the piezoelectric: crystal (6(x) is the 6-
function); when we go over to the truncated equations 
(2), this term gets transformed into the parameter ~. 

We shall be interested in the steady states of the 
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system. Let us find them from the Eqs. (2), setting 
dT1,z/dt=dP/df=0. We obtain that two different steady
state regimes are possible in the system. The first 
of them is realized at a value of A less than some 
threshold value ~tbr; in this case only pressure, and 
not temperature, waves are excited: P= 2A/Cl; Tl = Tz 
= 0. The second steady-state regime is possible when 
A> Athr; in this case besides the pressure wave there 
also exist stationary second-sound oscillations (T1 

*0, Tz *0). The quantity ~tbr and the corresponding 
threshold pressure Ptbr then turn out to be equal to: 

IP I'~ /i'(1+,1') 
Ih' 4B,B,F(3kl) , 

FOkl)~ sin'(3kll2) . (4) 
(1,kll2), 

Notice that an analogous situation in nonlinear optics, 
but without allowance for the detunings dw and dk, is 
described in (7]. 

The minimum threshold value is naturally realized 
in the case when dw = dk = 0: 

Let us numerically estimate the threshold intensity J tbr 

of the sound at T= 1,5 OK. Let us assume that 

OOo~2·2:t·1O' sec", 00.""00,""000/2, 
c,~2.3·1O' em/sec c,~2·lOJ cm/sec 

p~O,14 g/cm3 p,~O.9p, p,,~O.lp, Q~ 10' 

(Q denotes the Q-factor of the resonator). 

Let us estimate the quantity aPn/ap, using the data 
on the pressure dependence of the quantities: the veloc
ity cz(a) and the entropy and specific heat. (9) We ob
tain 

The first-sound intensity J tbr necessary for the excita
tion of second sound in a resonator is an order-of
magnitude less than the intensity in the case of running 
waves. (3] 

Let us now find the steady-state values of the ampli
tudes of the interacting waves for A> Atbr' As A is in
creased above the threshold value, the amplitude of the 
pressure remains constant: IPI = IPthrl, since, as can 
be seen from the system (2), no steady-state solutions 
for Tl and Tz exist when IPI> IPthrl. Consequently, 
any increase (as a result of the increase of ~) in the 
energy entering into the resonator is wholly converted 
into parametrically excited second-sound waves T1 , 

T z • Thus, in the steady-state regime I PI = I P tbr I and 
the values of I Tl I and I Tzi depend on the value of A, 
Let us write them out explicitly, introducing the quanti
ties Jo, J 1 , and Jz , which have the meaning of energy 
dissipation per unit time in each of the three waves 
(Jo = EOCl, J loZ = E 1,2 6, where EO,l,Z is the energy densi
ty in the corresponding wave): 

IQ~ I P lb, l'a./4pc,', 

I •. ,~pp,s'l T,. ,I'/i/4p"c,'. 

From (2) we obtain 
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(5a) 
(5b) 
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FIG. 1. The wave energy multi
plied by the corresponding at
tenuation factor as a function of 
the power fed into the resonator. 
Jo=Eocx; JI,2=EI,20, where E O,I,2 
is the energy density in the wave. 

"'I., A 1 (V [ (i.thr)'] 2 i. tm ') 1Il1,' JI,,=--Jo-.-~ 1+ 1- -.- ,1 +-:-~- ---I" "'0 I. thr 1 , ~ I. I. "" 

(6) 

In order to understand the structure of the expression 
for J 1• 2 , let us find the total energy dissipation J per 
unit time (in all the three waves): 

. 1 I' J J A 1 ( V [ ( "'hr ) '] -, i. thr -.) .1= OT IT ,= 0-.-----, 1+ 1- -.- ~-+-.-:,>-, 
I.thr 1 +:'> I. I. 

(7) 

It can be seen from this that 

Jl,2=~J-~JO. 
Wo Wo 

(8) 

Consequently, for a given power input J the dependence 
of the obtainable power outputs J 1 and J2 on the detunings 
is determined by the second term in (8) (or (6)), where 
Jo is a known function of the detunings (see (4) and (5a))0 

Notice that in the expression (7) for J 

A [Pthr[u 
10 --=---, 

I.thr 2/ 

1 (V [ (Atm ),], Athr ") --, 1+ 1- -.- A-+-.-D. =coscp, 
l+A A I. 

(9) 

where cp is the phase shift between P and the velocity 
u of the piezoelectric crystal ((9) can be obtained from 
(2)). Consequently, as it should be, the quantity J is 
equal to the work done per unit time by the piezoelec
tric crystal against the pressure P for unit volume: 

J= [P'hr[U coom = Pu 
2/ • 't' /' 

The quantities J o, J 1 , and J2 as functions of the in
put energy are shown in Figo L 

The stability of the above-obtained steady-state solu
tions against infinitesimal perturbations of the ampli
tudes and phases was investigated, using the method 
expounded in[10 l • The analysis of the stability equa
tion in the complex perturbation-"frequency" plane 
yielded the following results (see Figo 2)0 There al
ways exists, when the pump slightly exceeds the thresh-

I 
'l. 

FIG. 2. The regions of 
stable and unstable 
(hatched) steady-state mo
tions in the system for 
(01/0> =2, as functions of 

-~J---~Z---~/-~o--7-~z-~J-'a ~. 
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FIG. 3. The regions of stable and unstable (hatched) values of 
0' /0, as functions of Z. 

old, a region of unstable motions with an upper bound
ary determined by the equation 

(~)' = Y1+2A'+1,+3A'. 
I. 'hr cr 2(1 +A') 

For pump values exceeding the critical value, i. e., 
for A/Athr> (A/A thr) or' the boundaries of the region of 
stable, steady-state motions may expand or contract, 
depending on the ratio a/o of the attenuation constants 
for the first and second sounds 0 Figure 3 shows the 
regions of stable and unstable values of the parameter 
a/o. Thus, by increasing the losses with respect to 
the first sound (or decreasing the losses with respect 
to the second sound), we expand the region of stable 
motions in the system. And, conversely, by decreasing 
the losses with respect to the first sound (or increasing 
the losses with respect to the second sound), we make 
the region of admissible stable motions shrink. The 
boundary of the stable region is determined by the 
equation 

a16=1'1 +2A'-1. 

The authors are Sincerely grateful to R. V. Khokhlov 
for proposing the problem and supervising the work. 

1)We consider the one-dimensional case. The pressure and 
temperature have antinodes at the resonator boundaries x = 0 
and x =l. The wave numbers ko 12 are equal to: k O,1,2 

= 7Tno, I, 2/1 (no,I,2 are whole numb~rs). 
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