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Plane electromagnetic waves in a nonrelativistic electron plasma (or semiconductor) located in an external 
homogeneous magnetic field H = Ho - HI cos P t possessing an alternating component parallel to the 
constant component Do are considered. Expressions for the natural waves are presented which are obtained 
by diagonalizing an infinite-dimensional matrix (without the application of perturbation theory in HI)' The 
passage of an initially monochromatic wave of frequency w (for (p/wrl2<l) through a layer of the given 
medium is considered. Expressions are obtained for the intensities of the transmitted wave of frequency w 
and waves with new frequencies w+ np (n = ±l, ±2 •... ). The dependence of these intensities on the 
amplitUde HI of the alternating component of the external magnetic field is investigated. The possibility is 
indicated of a significant reorganization of the modes of optical resonators when such media are used. 

PACS numbers: 52.40.Db. 72.30. + q 

Cyclotron resonance in an alternating magnetic 
field[l] has of late attracted attention as a method for 
investigating the structure of the conduction band of 
semiconductors, [2.3] as a method for measuring the 
amplitude of an alternating magnetic field in the micro­
wave range, [3] etc. The effect in question was first 
considered by the present author in[1J, where it was 
assumed that some volume of a nonrelativistic electron 
plasma or a semiconductor was located in a homoge­
neous magnetic field 1. = Ho - Hl cospt with the alternating 
component Hl parallel to the constant component Ho. 
The electrical conductivity tensor of the medium in 
question with respect to an auxiliary weak homogeneous 
electric field e 2 = e 20 coswt arbitrarily oriented with 
respect to the field H was computed, and it was estab­
lished on this basis that the absorption of the energy 
of the monochromatic electric field (of frequency w) is 
an oscillating function of the amplitude Hl of the alter­
nating component of the magnetic field. Similar oscil­
lations in the form of oscillations in the magnetoresis­
tance of a sample (at w = 0) have been experimentally 
observed by Katz and Shekhter. [3] 

In the present paper we consider the propagation of 
plane electromagnetic waves in a medium of the type 
indicated above (i. e., in a plasma located in a homo­
geneous magnetic field H = Ho - Hl cospt) under the con­
dition that 

(p/w) '1'~1, (1) 

where w is the "central" frequency of the propagating 
wave (with a total spectrum <lw«w). It is easy, under 
the condition (1), to satisfy the homogeneity require­
ment for the magnetic field H in intervals containing 
many wavelengths 21T/W. 

Below we give for the natural waves in the medium 
under consideration expressions obtained by diagonaliz­
ing an infinite-dimensional matrix without the use of 
perturbation theory in H l • By their structure, these 
waves are similar to Bloch functions in crystals, with 
the difference that it is necessary to exchange in the 
latter the roles of the space coordinate and the time and 
assign complex values to the energy. On the basis of 
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the expressions given below we investigate the passage 
of a weak monochromatic wave of frequency w through 
a layer of the medium under conSideration. Expres­
sions are found for the intenSities of waves with new 
frequencies w + np(n = ± 1, ± 2, ... ) arising in the course 
of such a passage, and the dependence of the intensities 
of these waves on the amplitude Hl of the alternating 
component of the magnetic field and on the thickness L 
of the layer of the medium is investigated. 

To solve the formulated problem, let us write down 
in its general form the electric field e 2 of the weak 
electromagnetic wave propagating from a monochro­
matic source of frequency w: 

e,(r. t)= Re 1:, E.(r)e-'(·+·p". (2) 

The expression for the density vector 12 of the current 
induced by this field has the same form: 

I, (r, t) = Re .~_i. (r) e-'(.+np ,', 

the values of jn and En being connected by the linear 
relation 

i. = 1:, ;;"'" (w)E •. . 

(3) 

(4) 

In a Cartesian coordinate system (~, 1/, t;) whose t; axis 
coincides with the direction of the external magnetic 
field H(Hc =Ho - Hl cospt) the nonzero components of 
the &(n •• ) tensors can be written in the form[l] (see 
also[2·4.51) 

n "(','1 i ( + D _) ai,' =i/2 (Dn,/+Dn"-)' 0tl1 =2 DAII. - nA , 

where 

iNe' 1 
--,--,..-,.-6nA, 

m w+np+iI't 
(5) 

iNe' ~ l._.(t.)l._.(l!.) 
DnA-=-- . • 

m .=.:: W-wH+sp+r/'t 

Wn=leIH,/mc, l!.=leIH,/mc; (6) 
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In(fl) is the Bessel function of order n; N is the elec­
tron density; c is the velocity of light in vacuo; e and 
m are the electron charge and mass; and T is the ef­
fective electron mean free time. 

The equality (4) is a material equation for the medium 
in question in a field e2 of the arbitrary form (2). Sup­
plemented by the Maxwell equations, it gives a closed 
system of equations describing stationary (in time) 
electromagnetic waves in the medium under considera­
tion. For the case of plane waves, we must set En 
= En(z) and j" = j"(z), after which the indicated system of 
equations can be written as: 

d'Ena 2 4ni ~ Jon .• ) --a:;z = -Xn Ena; - -e- 'Xn ~ all E",p, 

'.' 

E 4ni -,~ (n.') E 
n: = - --;- Xn l....J Oz~ 1r.1l- (7) 

'.' 
Here ">In = (1.<.1+ np)/c; a =x, Y; 13= x, y, Z; under (x, y, z) 
is meant an arbitrarily chosen Cartesian system of 
coordinates. Below we shall, for simplicity, consider 
the cases of longitudinal and transverse (with respect 
to the direction of the external magnetic field H) wave 
propagations, i. e., we shall set 1; = x, 1) = y, and b = Z 

in the first case; 1; = z, 1) = x, and b = y in the second. 

In the first case of longitudinal propagation, it is 
convenient to separate out in the system (7) the cir­
cularly polarized waves, i. e., to introduce the new 
variables 

En±=Eru:±iEnu! (8) 

in terms of which the system (7) breaks up into two in­
dependent systems of equations. These systems, in 
their turn, can be written in the compact matrix form 

(9) 

Here E+ is an infinite-dimensional column made up of 
the elements E~ (- 00 < n < 00), similarly EO is a column 
made up of the elements E~, 13 is a matrix made up of 
the elements i3nll= X"O"iI' and the matrix elements 11,;11 
are given by the equalities (6). 

As can be seen, the problem consists in the diago­
nalization of the Q' matrices. In accordance with (1), 
below we shall set i3nll = "KO"k(X = w/ c), after which the 
problem reduces to one of diagonalizing the D' matrices. 
It can be verified that these matrices can be reduced to 
the diagonal form by the change of variables1 ) 

q,+ = ~ 11-k (I!.) E.+, q,-= ~1._,(I!.)E.-. (10) 
A=_oo It=_co 

The Eqs. (9) can then be written in terms of the vari­
ables q~ as follows: 

(11) 

where the eigenvalues A~ of the Q' matrices are given 
by the expressions 

4nxNe' ( i )-' A,"'=-x' + --- ro±roH+lp + - . 
me '( 

(12) 

The relations (10)-(12) give the solution to the for-
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mulated problem in the considered case of longitudinal 
propagation. The corresponding expression for e2(z, t) 
can clearly be written as: 

M±= ~ C,± exp[-i(ro+lp)t'Fil!. sin pt+ (A,±)'''z], (13) 
1 __ 00 

where ~ are arbitrary constants and Re(A7)1/2 < O. 

According to (13), a plane wave in the medium under 
consideration is, in the general case, a superposition 
of an infinite number of natural waves defined by the 
functions of t and Z attached to the constants C:. As 
can be seen, these waves have, in contrast to the case 
of a stationary medium, a factor, exp(±ifl sinpt), that 
is a periodic function of time, the period of this func­
tion being determined by the period of the variation of 
the external magnetic field. From this point of view 
the natural waves under consideration are similar to 
Bloch waves (in crystals) having as a factor a periodic 
function of the coordinates with a period equal to that of 
the spatial variation of the potential. Such an analogy 
is, of course, valid if the roles of the space coordinate 
and the time in the Bloch functions are interchanged and 
complex values are formally assigned to the energy. 2) 

On the basis of (13), and taking (1) into account, we 
can easily obtain the Z dependence of the time-averaged 
intenSity of the electric-field oscillations 

in the propagating wave. For each of the circularly 
polarized waves this intensity is determined by the 
equality 

W±(z)= : ~ IC,±I'exp(2Re(A,'·)'I·z), 
, 

(14) 

which, in its turn, shows that as the wave propagates 
deep into the medium there occurs abSOrPtion of the 
energy of the natural waves at the individual character­
istic wavelengths z~ = [- 2 Re(A~)l 12rl. In this case 
amplification of the waves does not occur. 

The foregoing results allow us to consider the prob­
lem of the incidence of a plane monochromatic wave on 
the boundary of a semi-infinite medium of the type under 
consideration here, or to find the wave for z '" 0 if at the 
boundary z = 0 is given the monochromatic field 

e, = Re [ (E:') , E~') ,0) rio'j. 

Let us consider the second of these problems. Solving 
the infinite system of algebraic equations for the coef­
ficients C~, obtained from the boundary condition at 
z = 0, and substituting further the expressions for these 
coefficients into (13), we obtain 

"" M+= (E~') +iE:'» ~ l'-n (I!.) 1, (I!.)exp[ (A,+) 'I'z-i(ro+np) t], 
0,1 __ <:1> 

M-= (E.c')-iE~'» ~ In-' (I!.),-, (I!.)exp[ (A,-) '''z-i(ro+np)tj. _ 
n.' __ ~ (15) 

The equalities (15) determine the evolution in the medi­
um in question of a plane, initially-monochromatic 
wave of frequency w. It can be seen from these equali-
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ties that, in contrast to the case of a stationary medium, 
where the z dependence of the field is exponential, in 
the present case the corresponding dependence is de­
termined by a sum of an infinite number of exponential 
functions and, thus, strictly speaking, it cannot be 
described in the framework of the wave-vector (or 
refractive-index) concept. It can also be seen that the 
propagation of an initially monochromatic wave is 
generally accompanied by the appearance of new waves 
with frequencie s W + np. 

Let us consider in greater detail the indicated evolu­
tion under the condition that 

p't~1, (16) 

which means that the width of the cyclotron-resonance 
line in the constant magnetic field Ho does not exceed 
the frequency p, and let us restrict ourselves to the 
analysis of, for example, the quantity J.1, i. e., of one 
of the Circularly polarized waves. Let, furthermore, 

(17) 

where k = 0, ± 1, ± 2, ... is a whole number given 
beforehand and satisfying the condition \ k \ «wHip. 
Then, according to (12) and (15), the intensity of the 
harmonic component of frequency w after paSSing 
through a layer of thickness L ~z~ of the medium is an 
oscillating function of a (for a ~ \ k \), i. e., of the 
amplitude of the alternating component of the magnetic 
field (see (6)). The values of a at which this intensity 
assumes its maximum values are determined from the 
condition J~(a) = 0. 

The specific nature of, and the mechanism underlying, 
these oscillations do not, however, amount to the 
previously-described[1] absorption oscillations mani­
fested by the medium in relation to a weak homogeneous 
monochromatic field, since in the case of waves this 
mechanism is, as can be seen from (15), determined 
simultaneously by absorption and quite a complex in­
teraction between the various frequency components in 
the medium under consideration. The latter leads, in 
particular, to the transformation of the energy of the 
initial wave into the energy of waves with frequencies 
w+np. For a fixed value of n*O(\n\ «WHip) and a 
given value of k, the intensity of the wave with frequen­
cy w + np assumes appreciable values under conditions 
when L ~ z;, a ~ \ n \, \ k \ and is then an oscillating 
function of a. The minimum values of this intensity 
correspond to the condition I n_lI(a)J_II(a) = 0. 

The efficiency of the transformation of the energy of 
the initial wave into the energy of waves with other 
frequencies depends essentially on the relation between 
the quantities z ~ and L. For z; «L, the fraction of 
transformed energy is small virtually for any a. The 
change in the intensity of the initial wave of frequency 
w is then also small. For L ~z; and a ~ 1, this frac­
tion generally becomes substantial. Under these same 
conditions the change in the intensity of the wave with 
frequency w becomes appreciable. In the last case the 
total width of the spectrum can be estimated to be aw 
- pa. It is also interesting to note that the total energy 
of the wave transmitted across the layer of the medium 
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under consideration may, as can be seen from (14), be 
close to the energy of the initial wave even when L» z;. 

Let us now consider the case of transverse propaga­
tion (Hy=Ho -H1 cospt). As can be seen from the sys­
tem (7) and the equalities (5), in this case the natural 
waves of the medium have the following polarizations: 
(0, E y , 0) and (E,,, 0, E z ). The waves with polarization 
of the first type coincide with waves in a stationary, 
isotropic plasma (see[91), and will therefore not be 
considered below. We shall consider the waves with 
the second type of polarization under the conditions (1) 
and (16) and under the additional requirements that 

(18) 

The first of the inequalities (18) implies that the elec­
trical conductivity of the medium is, like the conduc­
tivity of a slightly anisotropiC (at any w) medium, fairly 
low even under resonance conditions. Under this condi­
tion, as can be seen from (7), the component E z of the 
wave under consideration can be neglected. Owing to 
the second of the conditions (18), we can drop the quan­
tities D~II in the expressions (5) for &(n,II). 

As a result, the system of equations for Enx can be 
written as: 

d'E. (' 2ni ) """dz' = - ~ + -e- ~D- E .. (19) 

where Ex is a column made up of the elements Enx and 
D- is the matrix (10) made up of the elements D~II. The 
difference between the equations (19) and (9) for g 
amounts to an inSignificant factor of t attached to the 
matrix D-; therefore, let us at once give the result: . 

e,.= Re L, C, exp[ -i(w+lp)t+UI sinpt+>.,zj. (20) 
,--"" 

Here 

nNe' ( i )-' A,=ix-i-- w-wx+lp+- , 
me T 

(21) 

and the C,are arbitrary constants. When the first of 
the conditions (18) is fulfilled, the problem of the 
normal incidence of a plane wave at the boundary of the 
half-space z :;. 0, occupied by the medium under con­
Sideration, reduces directly to the prescription of the 
corresponding boundary conditions at z = 0, since the 
intensities of the reflected waves in this case are small. 

Setting 

e21,~,=Re[ (E~') ,0,0) e-'·'l, 

we find that 

e2.=Re{ E;'} L, In_,(ti)J_,(MexP[A,z-i(w+np)t j }. (22) 
",1=_"", 

The expression (22) gives the same distinctive features 
of the evolution of the initial monochromatic wave in the 
medium as were considered above on the basis of the 
expreSSion (15) for M-. 

Under the conditions (18), all the results can easily 
be generalized to the case when the z axis of the wave 
propagation is arbitrarily oriented with respect to the 
direction of the external magnetic field H. 
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Let us consider a numerical example, having in mind, 
for definiteness, a semiconductor plasma in which the 
charge-carrier density has the value N-1011 _1012 cm-s• 
Assuming the value of the effective mass of the electron 
in the conduction band to be of the order of the mass of 
the free electron, and assuming further that Ho=6x104 
Oe, we find that W H = 1012 rad/ sec, which, in its turn, 
corresponds under the condition (17) to a wavelength 
21TC/W - 0.2 cm for the propagating wave. At a frequen­
cy p-lOl0 rad/sec, satisfying the condition (1), the 
results obtained above are applicable in a layer of 
thickness L« 20 cm, in which case z" $1 cm (in partic­
ular, Zk S L) for T $10-10 sec. Furthermore, for Hl 
~5x102 Oe, we have ~ ~1. As can be seen, the above­
considered values of the parameters of the system are 
entirely realizable. Notice also that in some semicon­
ductors the value of the effective mass of the change 
carriers is much less than the free-electron mass; for 
example, in the semiconductor n-InSb the indicated 
values differ by two orders of magnitude. This allows 
us to lower the values of Ho and Hl (for the same values 
of the remaining parameters) to 6X 102 and 5 Oe respec­
tively. This circumstance has already been used in 
experiments[3) on the observation of the magnetoresis­
tance of a sample, in which values of the parameter ~ 
»1 were attained at a value of Hl - 30 Oe. 

Let us now briefly discuss another phySical example 
to which the above results are applicable. Expressions 
of the same form as the formulas (5) are, under cer­
tain conditions, valid for the susceptibility of a two­
level quantum-mechanical system. It can be verified 
by direct calculations with the aid of the equation for 
the density matrix with a collision term that if the off­
diagonal matrix element d12 and the difference d22-dl1 
between the corresponding diagonal elements are dif­
ferent from zero, then there arises in an external elec­
tric field e1 = el0 cospt, where 

is the frequency of transitions in the unperturbed sys­
tem, owing to the linear Stark effect, a modulation of 
the transition frequency that is similar to the cyclo­
tron-frequency modulation arising in a plasma on ac­
count of the alternating component of the magnetic field. 
The susceptibility of the medium with respect to a weak 
field ez = e20 coswt is then determined by expressions 
similar to the expreSSions (5) and (6) for (j~~' R) (the 
argument of the Bessel functions is then the quantity ~ 
= (d22 - dU)elO/lfP). Therefore, the results obtained 
above are applicable (mutatis mutandis) in the case of 
the two-level medium. 
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The use of such a medium may afford us a practical 
opportunity for observing the effects conSidered in this 
paper in the optical range of frequencies w. Indeed, the 
quantity ~ attains values exceeding unity when, for 
example, P-109 rad/sec, Idz2-dl1l-0.3xlO-18 cgs esu, 
and e10 ~ 3 cgs esu. If a layer of a medium of the indi­
cated type is placed in an optical resonator, then at 
values of the frequency p close to the frequency interval 
between two axial (not necessarily neighboring) types of 
oscillations of the unperturbed resonator, as for exam­
ple when p -109_1010 rad/sec and ~ ~ 1, Llz,,;e1 - r 
(where r is the coefficient of specular reflection), there 
will occur a considerable reconstruction of the modes 
of this resonator, which, in turn, can be used to con­
trol the generation regimes of lasers. In the particular 
case when the frequency p coincides exactly with one of 
the axial intermode intervals and the mode losses are 
all the same, the modes will, as a result of the recon­
struction, be determined by the natural waves of the 
medium. 

I)The inverse relations look like: 

1 __ 00 1 __ 00 

2) According to (13), the appearance of a periodic nonstation­
arity of the medium results in a reconstruction of the natural 
waves of the medium. The general form of the natural waves 
in the periodically nonstationary medium (i.e., the kind of 
reconstruction under consideration) and the formulation of 
the problem of finding these waves as a problem of the di­
agonalization of the Q matrix are contained in the author's 
papers. [6-8) 
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