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The exchange interaction between states localized at different centers in the presence of an external 
electric field is considered. Exact (in the field) expressions for the wave function, the Green function, and 
the particle-scattering operator are found in the long-wave approximation for an arbitrary number of 
interaction centers. A characteristic equation is obtained which is exact in all the energy parameters and 
which determines the energy levels of the system with allowance for the exchange interaction, the Stark 
effect, and the field ionization. Different limiting cases are considered, and the auto-ionization widths of the 
multicenter states are found. It is shown that near the field points of pseudointersection of the terms the 
exchange interaction leads to the exponential growth of the rate of auto-ionization of the state with the 
higher binding energy. The problem of the distinctive features of the interaction between the field and quasi­
statIOnary states is discussed. The possibility of a marked field stabilization of resonances is established. 
The effects considered are of interest in connection with the physics of atomic collisons in a field, the field 
ionization of negative molecular ions, and charge transfer between impurities in a solid. 

PACS numbers: 03.65. - w, 31.10. - y 

1. INTRODUCTION 

The exchange interaction between states localized at 
different centers, i. e., that part of the total interac­
tion which is due to the overlap of the coordinate wave 
functions, plays an important role in many physical 
processes and systems. The pertinent examples are 
well known, and may pertain to different quantum ob­
jects. In the present paper we consider the effects of 
the exchange interaction in the presence of a homoge­
neous electric field. Physical examples-the interac­
tion of negative ions with neutral atoms in the presence 
of a field, charge transfer between impurities in a solid, 
the photodetachment of an electron from a negative 
ion-are discussed in the Conclusion. 

It is well known that an exchange interaction cannot 
be properly taken into account in the framework of per­
turbation theory based on a power-series expansion in 
a small energy parameter. The presence of a constant 
external force gives rise to additional characteristics 
of the systems in question. In an external electric 
field the energy spectrum of an atomic system becomes 
strictly speaking, continuous. [11 The escape to infinity 
of a particle is described by analytical expressions 
having essential Singularities with respect to the field. 
The field-ionization effects cannot, in principle, be 
described in the framework of the conventional itera­
tion schemes for solving the Schrodinger equation (or 
the equivalent Lippmann-Schwinger equations). 

The self-consistent solution to the problem of the ex­
change interaction of localized and quasi-localized 
states is possible to obtain in the presence of a small 
coordinate parameter in the system. The exchange in­
teraction is most effective for states with small binding 
energies E, for which states the particle wavelength ;\ 
is long: ;\»a(;\=(2IEI)"1/2, m=fl=e=l), where a is 
the range of the potential in whose isolated field the un­
perturbed state is realized. The short-range interac­
tion can be taken into account either through a boundary 
condition imposed on the wave function, [2-41 or by the 
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use of a separable representation of the pair scattering 
operators (see, for example, [51) in the equations of 
multiple interactions. [6-111 Under these conditions the 
problem reduces to one of solving algebraic equations 
written in terms of the Green function for long-range 
forces and the physical amplitudes of scattering of a 
particle by the individual short-range centers. The 
generalization of the corresponding equations to inter­
actions of the general type (including the nonpotential 
interactions connected, for example, with the exchange­
particle creation-annihilation events) is contained in [111. 

The long-wave approximation (the short-range inter­
action model) has been widely used in recent years to 
describe the exchange interaction between the stationary 
states of atoms, [7-121 negative molecular ions, [4,13,141 
and impurities in a solid. m,161 It is in this same ap­
proximation that the exact (in the field) solution to the 
problem of the interaction between an external field and 
a weakly-bound S electron of a negative atomic ion has 
been obtained. [17-191 

Two single-center systems (the negative ion[171 and 
the hydrogen-like atom[l,191) exhaust the known exam­
ples of systems for which the three-dimensional prob­
lem of the interaction of a bound state with an electric 
field has been solved. In the present paper we con­
sider multicenter systems. Exact (in the field) analyti­
cal expressions are found in the long-wave approxima­
tion for the one-particle Green function, the scattering 
operator, and the wave functions of quasi-bound states. 
A characteristic equation is obtained which is exact in 
all the energy parameters of the system, and which de­
termines the electron-energy levels with allowance for 
the exchange interaction, the Stark effect, and the field 
ionization. Using the two-center system as an exam­
ple, we carry out a detailed investigation of the prob­
lem of the distinctive features of the exchange interac­
tion in the presence of an electric field. It is shown 
that the electron-field interaction leads to the appear­
ance in the term system of "field" pOints of pseudo in-
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tersection1) in the vicinity of each of which the auto­
ionization width of the state with the higher binding 
energy exponentially increases. The distinctive fea­
tures of the decay of quasi-stationary states in an elec­
tric field are considered. It is shown that a marked 
stabilization of resonances in a strong electric field is 
possible. As the intensity of the field is decreased, 
the width of the resonance level oscillates with a de­
creasing amplitude and an increasing frequency, as­
suming its minimum values under the conditions of 
maximal influence of the Stark effect. 

2. THE GENERAL SOLUTION. COMPUTATION OF 
THE FIELD GREEN FUNCTION 

The Hamiltonian of the system under consideration is 
given by 

1I~-j.,2+ ~ C(r-H)-f'r (e~m=Tz~I). (1) 

Here r is the radius vector of the electron, Us is its 
interaction with the s-th center located at the pOint R s ' 

and f is the electric-field intensity. 

The equations determining the Green function G 
= (E - H)-I of the system, the scattering operator T, and 
the wave function of the quasi-bound state have the 
form [7-11,15) 

'I'(r)~ IC.(r.r,) ~ T.(r,)dr,. 
. ~ 

,.(r)~ I t/(r,r,) E C.(r"r,)T,'(r,)dr,dr" . 

T(r,r')~ L.T.(r,r'), 

T.(r,r')~I/(r,I·')T I I, (r.r,) ~C:(r"I'.)T'(I,,,',')dr,dr:. 

C(r,r')~C!\r,r')+ J G.(r,r,) L.Q.(r"r')dr" 

Q, (r. r,) ~ J 1/ (r, r,) C,(r" r,)dr, 

+ J t,' (r, r,) L. c! (r" r,) Q., (r" r,) dr, dr,. 
~' or, 

(2) 

(3) 

(4~ 

(5) 

(6) 

(7) 

Here G, = (E + t./2 + f . r)-1 is the electron Green function 
in a homogeneous electric field. In the coordinate rep­
resentation[20, 21) 

i 00 dt {[ (r-r'J' j't' ]} GI(r,r',E)~- (? ')'/' S ---:;;;-exp i -,)--+£,(r,r')I---;;-;- , 
_:u "I _t _"-

(8) 

£ (r, r') ~E.J..'/,f(r-'-r'). (9) 

In Eqs. (3), (5), and (7) t~(r, r') is the operator of 
scattering by the s-th center of an electron interacting 
with the field: 

1/~C,+C(£+j.!2+f'r- Usr' Us : (10) 

E is the total electron energy measured from the elec­
tric-field potential at the pOint r=O. The electron en­
ergy enters into the Eqs. (1)-(7) only in the combina­
tion (9); therefore, they are invariant with respect to 
the choice of the coordinate origin. 

~ ~ 

The functions Ts and the operators T. and ns are dif-
ferent from zero only in finite regions of space where 
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the potentials Us act. It is precisely this circumstance 
that allows us in the most general case to formulate 
algebraic equations for quantities that are the projec­
tions of T., T .. and n. on states with definite values of 
the orbital momentum is relative to the centers Rs. [10,11) 

In the long-wave approximation the corresponding equa­
tions get substantially Simplified. For A»a .. allow­
ance for higher angular momenta (ls ;to) offers no dif­
ficulties and does not introduce any fundamental changes 
into the nature of the general solution. Therefore, we 
shall restrict ourselves to the solution of the problem 
with allowance for only S-scattering. The changes that 
must be made in the final expressions when describing 
the exchange interaction of p and d states will be in­
dicated below. 

In the leading approximation in the small parameter 
a/A the form of the operators t ~(r, r') is known (see[9), 
formula (10)): 

(11) 

Here %;1 is the scattering length for scattering of a free 
electron by the s -th center and Gi(R .. R s) is the regu­
larized, equal-argument field Green function: 

Gr(H. HI~lil1l [G (r. RI-G(r. HI]. ,'~H: (12) 

Go is the Green function for free motion: 

G R __ ~ exp(il2E:r-R~ I 
.(r, .)- '2" Ir-HI (13) 

According to (6), (7), and (11), the algebraic equa­
tions determining in the long-wave approximation the 
Green function of the system have the form2 ) 

Q,(R, .• "=2.,[ G.(H..rl-~G (R .. H)~L·(R ,"1]' 

·[z-'-il'.!.E-·2:1G'(H.HI]-'. (14) 

The poles of the Green function, i. e., the complex 
roots of the equation 

,.. 2:1. (I-C",)G,(R,.R,') I 
del ~.,.- =(1. 

z,-;-il 2E-'.!.:TG'( R. H I 

characterize the energy spectrum of the system. 

(15) 

The problem thus reduces to the problem of the com­
putation of the field Green function G,(r, r', E) at the 
pOints R s', with the subsequent solution of the trans­
cendental equation (15L In the coordinate representa­
tion it is possible to obtain a closed expression for 
G,(r, r', E), i. e., to solve the problem exactly with 
respect to the energy parameters. Indeed, let us align 
the z axis along the field f and introduce the new vari­
ables defined by the relation 

'21]=:+:'-'-1 r-.,'I. 2~=:+:' -I,'-r' I. (16) 

Notice that the integral 

-i ~ dt {.[ (\:-1])" _. fl']} 
1=--J-::cp\jJ I ----;-E.(~, 1])1--.. 

(2.,0 ,.] 1 21 21 
(17) 

is equal to the one-dimensional Green function for an 
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electron in a homogeneous field, the regular method of 
construction of which is well known (see, for example, [22] 
p. 136). Taking into account the fact that 17 ~ {; for all 
values of r and r', we obtain 

Here V(z) and U(z) are the Airy functions of the first 
and second kinds respectively. [23] 

It is easy to notice the analogy between the obtained 
expression and the well-known Hostler representation 
for the Coulomb Green function. [24] The similarity be­
tween the analytic expressions for the operators 
(E + A/2 + 1/r)-1 and (E + A/2 +f' r)-l in the coordinate 
representation is natural and is connected with the fact 
that the field of a remote Coulomb center can always be 
approximated in a finite region of space by a homoge­
neous field. 

For r- r', the function Gf(r, r', E) diverges like 
(21i I r - r' I )-1, and the regularized Green function (12) 
remains finite: 

G 'RR-(2i!{'I'('[l' -'I' 1 " ( ")--ry-~" .I) I,.r,) I (x,.) 
_:1 

il2E 
-1"(.11 [C'(x . .)-ir'(x.) l}--.,-: 

_:1 

x .. ~-2E (R .. R)i (:~/)' 

(19) 

Notice that the formula (19) coincides up to the sub­
stitutions 

with the regularized Green function of the attractive 
Coulomb center for a negative energy E = - 1/2n2 close 
to the classical reversal pOint (see the formula (20) 
inC7 ]) • 

The problem of the computation of the one-particle 
Green function in a homogeneous electric field has been 
the subject of a large number of papers (see, for ex­
ample, [21,25]), but the closed representation (18) was 
apparently unknown. The approach used above also 
allows us to find in its explicit form the multidimen­
sional Green function 

1 .Y S_I 

G,( (r}. {r,'}. E) ~ (E-'-~ r. -", -,-1 ~).,) . 
1=1 

which describes the motion of an odd number (N = 2" + 1) 
of non-interacting (among themselves) electrons located 
in a homogeneous electric field. We give the final re­
sult without derivation: 

G~,_YS'_2-"{_l [~(I'-r')']' (L_:!....)} .'S''',' 
, (21) 2 .• .\"·'......." ,j 'l ,j~ . , 

I'(.r,) [('(.rJ -iT'(IJ l: 

~ (0,7:.')-"--,\," r \"1 (1',-1':1' 1 
.-d , l-,J , 

1: (0,+::) -II'" , [12 (I',-r,')']" 
2E. (.Y.:;, :;) 

x 1= - .y ('2f\~ 
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(20) 

For an even number of particles interacting with an 
electric field, we can find only an integral representa­
tion of the Green function, the situation here being en­
tirely analogous to the situation that obtains for multi­
dimensional oscillators. [26] 

The formulas (14), (15), and (18) solve the formu­
lated problem in its general form. The asymptotic 
representations of the Airy functions are well known, [23] 

and this allows us to write out without difficulty the 
solutions to all the equations in the various particular 
and limiting cases. The corresponding examples are 
considered below in Secs. 3 and 4. It should, however, 
be noted that for a weak electric field (j/ I E 13/2 « 1) 
the asymptotic expressions for G f(r, r', E) can be found 
directly from the representation (8). Such an approach 
is physically very graphiC, and can be used in the case 
of quasiclassical motion in the field of a potential of the 
general type. 

With that end in view, let us consider the integral (8) 
for Ef > O. It is not difficult to verify that in the lowest 
approximation with respect to the small parameter 
f/E;/2 the dominant contribution to (8) is made by the 
two slightly overlapping integration domains: 

. The time tl is equal to the classical time of direct tran­
sit of a particle from the pOint r to the point r' and t2 
is equal to the classical time of travel of a particle to 
the point r' after its reflection from the field potential 
barrier. For t - t1, we have f2 t 3 «1, i. e., that the 
role of the external field is insignificant. In the second 
integration domain the instant t2 is the stationary-phase 
point, the vicinity of which makes a contribution having 
an essential Singularity with respect to the field. As a 
result, we obtain 

, E exp[ik·rl. if [, (2k/ , fP')] G,(r.r, )~- -,---exp 1 --T-
, 2:1p 4:rk' 3/ 4k, 

(21) 

For negative energy values, i. e., for Ef < 0, the 
saddle point of the integrand is located on the lower 
imaginary semiaxis of the complex t plane and corre­
sponds to a purely imaginary "time" t = - i2k,!f of es­
cape of a particle from under the field potential barrier. 
Therefore, in computing the integral it is convenient to 
deform the contour, integrating first along the imagi­
nary semiaxis up to the saddle point, and then along 
the right branch of the saddle contour parallel to the 
real axis and going to infinity. The first integration 
determines the real part of the Green function, the 
dominant contribution being again given by the values 
of t close in absolute value to t 1 = p/k f' for which f2 t 3 
«1. This allows us to expand exp(j2 t 3/24) in a series 
and, with exponential accuracy, replace the upper limit 
of integration by infinity. As a result, we have: 

(22) 

where Kv(z) is the Macdonald function. The imaginary 
part of the Green function, which corresponds to the 
escape of a particle to infinity, is determined by the 

F. I. Dalidchik and V. Z. Sionim 27 



remaining part of the contour: 

f [2 k/ jp' ] ImG=---exp -----, 
J 8:tk/ 3 j 4k J ' 

(23) 

(Because of the Stokes phenomenon, the asymptotic for­
mulas (21), (22), and (23) do not coincide when analyti­
cally continued.) 

The asymptotic representations of the Green function 
in a strong electric field (J/k} "" 1) can easily be found 
from the exact formula (18). The plots of the functions 
ReC/(x) and ImC/(x) for x=_2E/(2j)2/3-1, which will be 
needed below, are shown in the figure. 

3. THE POLARIZABI LlTY OF AND DISINTEGRATION 
PROBABILITY FOR NEGATIVE MOLECULAR IONS 
LOCATED IN A HOMOGENEOUS ELECTRIC FIELD 

Equation (15), together with the above-found represen­
tations of the field Green function, determines the en­
ergy levels of quasistationary, multicenter states for 
arbitrary relations between the energy parameters of 
the system. Of the greatest interest physically is the 
case of weak (J/k}« 1) electric fields, to the analysis 
of which case we here restrict ourselves. 

Let us consider a negative diatomic ion. Retaining 
in the expansion (22) the two leading terms, we have3 ) 

2 ,j', if II [%,-kt(R,.R,)T 8k,'(R.,R,) , ~k,'(R"R,) 
d=1 

Here R = 1 R 1 - R 21 is the interatomic distance, x i~2) 
are the scattering lengths for scattering of an electron 
by the atom A(B), and kf(R., R s') =[ - 21 Ef(R., R s') 1 ]1/2. 
For j- 0, Eq. (24) goes over into the Firsov-Smirnov 
equation, [4) which describes the exchange interaction in 
the absence of a field. The zeros of the left-hand side 
determine the Stark effect and the auto-ionization of 
negative atomic ions. [17) For j*O the obtained equa­
tion with allowance for the right-hand side describes 
the exchange interaction between resonances of the 
"field" type. The procedure for solving Eq. (24) and 
the explicit form of its roots are determined by the en­
ergy parameters 

%,'. ~. l1(f·R), ~,. Ul(le. R). fk. j), (25) 

Here xV2 is the electron affinity for the atom A, .:l 

= (x ~ - x ~)/2 is the resonance defect of the noninter­
acting states, u(jR) = f· R is the voltage potential of the 
field between the pOints R 1 and R 2, w(k, R) is the elec­
tron-transition frequency in the term system of the ion 
AB-, .:l2 = {3j2 is the quadratic (in the field) Stark shift 
of the ionic level ({3(R) is the polarizability of the molec­
ular ion AB-), and r s is the auto-ionization width of the 
s-th atomic ion. The possible relations between the 
above-indicated parameters determine the physically 
different situations in the system under consideration. 
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For example, in the case of weak interaction between 
the field and the homoatomic ion Ai (.:l =0, u« w- Q!R-1 

xe-aR, {3f2« w), expanding kf(R., R s ') in powers of the 
small parameter u/E, we can transform Eq. (24) into 
the form 

('£=1-2£, £<0), (26) 

Here cose = f· R zljR z and the signs ± pertain respectively 
to the symmetric (+) and antisym metric (-) states of 
the system. Solving Eq. (26) by iterating with respect 
to the terms containing the field, we obtain 

£'=' (j, R) =e;") (R) -'I,~ =' (R) j'-'/,if' = (R), (27) 

Here E ~±) = - [Q ~±) (R) J2 /2 denote the terms of the ion 
Ai, Q!~±)(R) are the zeros of the left-hand side of Eq. 
(26), and {3(±)(R) is the polarizability of the molecular 
ion for arbitrary R For e = ° and e = 1T/2 the general 
expression for the polarizability of the two-center sys­
temAi, 

1 [1 R'cos'O 
4[1±e-"'] ~T~ 

R' cos' Be'-" (28) 

COincides with the components of the polarizability ten­
sor for the homoatomic ion Ai, {iz"1, {3~±; = {3 (;;, com­
puted earlier (by a direct method) in[Z7). The auto­
ionization widths of the negative molecular ion in the 
corresponding states are equal to 

(29) 

The dependence of the polarizability tensor on the in­
teratomic distance has already been analyzed. [27) Let 
us consider the asymptotic expressions for the auto­
ionization width. 

For small R, when we go over to the one-center situ­
ation Q!R« 1, r(+)(R) coincides with the well-known ex­
pression for the auto-ionization width of a negative 
atomic ion with a weakly-bound S-electron, [l7) while 
rH (R) determines the rate of disintegration of an 
atomic ion with a weakly-bound p-electron. [19] We 
have: 

(30) 

(31) 

Thus, the auto-ionization probability for a p-electron 
turns out to be less than that for an S-electron by a 
factor (Q!R) equal to the centrifugal-barrier penetration 
factor, while the orientation of the electron cloud along 
a direction perpendicular to the field reduces the decay 
probability by a factor equal to the quasi-classical field 
parameter j/ Q!3. These conclusions illustrate the nature 
of the changes that should be made in the final expres-
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sions when we go over to the 1 '" 0 and the general cases. 
cases. 4) 

Let us now consider the case of large values of the 
interatomic distance. For aR» 1 the polarizability (28) 
and the decay probability (29) for a two-center system 
increase exponentially. This effect is directly con­
nected with the strong exchange interaction of states 
localized at different centers, states between which an 
electron makes resonance transitions. The exponential 
growth of (f')(R) and r<')(R) occurs as long as the con­
ditions for a weak interaction of the system with the 
field are fulfilled, i. e., as long as R "" a-1In(a 3/j). For 
larger R the interaction of the system with the field is 
not weak (u ~ w). This case requires a different method 
for solving Eq. (24). 

Let us consider, for example, the heteroatomic ion 
AB-(~*O). It is not difficult to see that there occurs in 
the system of "field" terms E~(jRs) = - ~ ;/2 - f· R s 
(s = 1, 2) pseudointersecting in the plane defined by the 
equation 

(32) 

Solving Eq, (24) in the vicinity of the plane of pseudoin­
tersection, we find the terms of the system with allow­
ance for all the interactions: 

(33) 

Here the Vs(Rs) are the terms of the zeroth (in the ex­
change interaction) approximation: 

3' _ J 
.' - ·1%,' . 

(34) 

(35) 

The exchange interaction between disintegrating states 
(the term 4G 7(R)''-1 % 2 under the radical sign in (33)) not 
only separates the terms Vs(Rs) in the region of pseudo­
intersection, it also substantially changes the auto­
ionization rate. For example, in the case of strong 
exchange interaction of slowly decaying states (I wi 
» I VI - V2 1) 

(36) 

Here p= (M + i3~)/2 is the mean polarizability and r 
= (r ~ + r~) /2 is the mean decay width of the noninteract­
ing states. Separating the real and imaginary parts in 
the formula (36), we find the polarizability and the auto­
ionization width with allowance for the exchange inter­
action: 

(k2 = tc"- ~ + )( m. Thus, the exchange interaction in the 
case under consideration leads to the exponential growth 
of the rate of disintegration in a field of the state with 
the higher binding energy. We discuss some physical 
consequences of this result in the Conclusion. 
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4. DISTINCTIVE FEATURES OF THE INTERACTION 
OF QUASI-STATIONARY STATES WITH AN ELECTRIC 
FIELD 

The question of the distinctive features of the inter­
action betWeen an electric field and quasi-stationary 
states is of fundamental interest in connection with the 
problem of the dipole moment of unstable particles 
(see, for example, [221, Chap. XI). This question has 
been discussed in the framework of the nonrelativistic 
Lee model with a specially chosen hypothetical spec­
trum of the charges and masses by Zel'dovich and 
Perelomov, [28,29] who take the interaction of the system 
with the field into account with the aid of perturbation 
theory. Such an approach is, however, inapplicable in 
the general case, which admits of disintegrations into 
charged particles whose interaction with the field should 
be allowed for exactly. 

The decay of a potential (centrifugal) p-resonance in 
an external electric field is exactly described by the 
two-center equation (15) of the antisymmetric state for 
R < 1/.,... I (x I = x 2), in which the asymptotic representa­
tions of the Green function for positive energies (see 
the formula (21)) should be used. The case of the 
multichannel (Feshbach) resonance can, on the whole, 
be described in similar fashion, but it allows us to 
simultaneously consider the question of the competition 
between the elastic and inelastic auto- ionizations of an 
excited negative ion in an electric field. 

In the long-wave approximation the characteristic 
equation determining the energy levels of a two-chan­
nel system in a field has the form[7,10,30] 

[%,--X,-~.'1G' (-x,) J [%,--x,-~,'1c.' (-xJ 1 =4.'1'~'G" (-x,)C' (-xJ 

(39) 

Here v = £1 - e 2 is the excitation energy of the atomic 
core, the xi~2) are the scattering lengths for electron 
scattering by the excited (~2) and unexcited (xl) core re­
spectively, and y is the channel-coupling parameter, 
which is proportional to the amplitude of inelastic electron 
scatter ing by the atomic core. [30,31] It should be noted that 
the limitations of the long-wave approximation are of little 
significance in the problems under consideration. For 
j« 109 V/cm the external field only slightly distorts the 
electron wave function in the region of action of the po­
tential of the core, i. e., the interactions of the electron 
with the core and the field virtually do not overlap. A 
system of exact algebraic equations describing the mo­
tion of an electron in the resultant field of nonover­
lapping interactions (some of which may be long-range 
interactions) is derived in[10,ll]. The use of the multi­
channel variant of these equations in the case under con­
sideration (momentum-conserving S-electron transi­
tions) leads to results differing from those obtained 
below only by the overdetermination of the phenomeno­
logical constants. 

For c'l>O and £2<0, the solution to Eq. (39) deter­
mines the complex shift {jE f of the resonance level in 
an external electric field: 

(40) 
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Plots of the functions: I) g = 21d:lf}-1/3 Re G ,(x). II) g (x) 
= 2,d2{)-1/3 1m GJ(x); x = - 2E/(2{)2/3. 

(k =./21 € 11). Here the first term describes the Stark 
effect and the "elastic" field ionization of the resonance 
state of the negative ion and the second term determines 
the resonance-level shift induced by the interaction in 
the final state. With allowance for the previously com­
puted values of the functions He G ,(E) and 1m G ,(E) 
(see the figure), it is easy to establish the occurrence 
in a strong field withf- E ~/2 (the conditionf« € ~/2 may 
also be fulfilled in this case) of a substantial (up to 20-
30% whenf- 4 q/2) decrease in the resonance-decay 
rate. The effect of the stabilization of the low-energy 
resonances by the electric field could, apparently, be 
observed in a different sort of ionization experiments: 
in the resonance photodisintegration of negative ions, 
in Penning processes, etc. 

In a field that is weak with respect to the parameters 
of both channels (J« a~, f« aV the complex resonance­
level shift is equal to 

. {[ j. (2 k')].[ j (2 k')]} -rx, x, + 2k' SID 3'/ -! k- 2k' cos 3/ 

{[ f. (2 k')]' [ j (2 k')]'}-' (41) . x.+-, SID -- + k--, cos -- .' 
2k- 3 f 2k- 3 f 

i. e., as the field is decreased the resonance-energy 
shift and the decay rate undergo damped oscillations, 
the level shift assuming its minimum value under con­
ditions of maximum field stabilization. This effect is 
the quantum-mechanical analog of the well-known phe­
nomenon of "lightening" of optical devices, and can quali­
tatively very graphically be interpreted in terms of the 
interference of waves diverging from the region of 
localization of a quasi-stationary state and reflected 
from the field potential barrier. It should, however, 
be emphasized that the absolute magnitude of the effect 
depends on the result of the interference of three-di­
mensional spherically nonsymmetric waves, and can, 
therefore, be found only from the exact solution to the 
problem. Also of interest is the nontrivial nature of 
the transition to conditions of free resonance decay: 
As the field intensity is decreased the effective dipole 
moment does not decrease, but oscillates with increas­
ing frequency and constant amplitude whose magnitude 
is, generally speaking, of the same order as the dipole 
moment due to the asymmetry of the electron cloud in 
the initial state. [22] 
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For € 1 < 0 and e 2 < 0, the solution to Eq. (39) deter­
mines the total width of the excited negative ion (A -)* 
in the electric field: 

Here re and rj are the "elastic" and "inelastic" auto­
ionization widths corresponding to the formation of the 
atom A either in the excited (re ) or in the ground (r i ) 

state. The obtained formulas show that the commonly 
observed "elastic" auto-ionization of excited negative 
ions[32) predominates over the "inelastic" process only 
at sufficiently large values of the field intensity 

j>j.=lox,'-ox,'l/ln (ox,'/y'ox,'). 

In a weak electric field f <fk the decay accompanied by 
the formation of the unexcited atom is more probable. 

5. CONCLUSION. PHYSICAL EXAMPLES 

The possibility of the rearrangement by the field of 
the terms of multicenter systems is of considerable in­
terest in many respects. With the presence of "field" 
pOints of pseudointersection can be related diverse 
physical effects, examples of which are given below. 

A. Field charge transfer 

In the term system for negative molecular ions of the 
type AE' there is, as a rule, no pseudocrossing; there­
fore, at low collision rates the probability of the non­
resonance charge transfer 

d -+B-+.4 +B-

is exponentially small. However, in a field with 
f- a~ln-1(~2v/ ( 5) (v is the speed of the atoms) the prob­
ability of a nonadiabatic transition in the vicinity of the 
plane of pseudointersection rises sharply. An entirely 
analogous situation obtains in a system of neutral atoms. 
At low collision rates the nonresonance charge transfer 
process 

(43) 

proceeds, owing, as is well known, to nonadiabatic 
transitions at the points of pseudo intersection (PI) of 
the ionic term with the covalent terms. (12) In typical 
cases Significant changes in the PI parameters can be 
expected even for f-105-106 V /cm. As is easy to ver­
ify, in these cases the charge-transfer probability on 
the whole increases. The process (43) is the initial 
stage of the chemical transformations that occur during 
the interaction of halogen molecules with alkali-metal 
atoms. [38) The change in the PI parameters that occurs 
in an external field indicates an interesting possibility 
of a catalytic influence of an electric field on an ele­
mentary chemical-reaction event. 

B. Field ionization 

Atomic interactions in an external electric field are 
also of considerable interest in connection with the 
theory of auto ionic spectroscopy. [34) The interaction of 
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an atom A of the representative gas with a neutral atom 
B adsorbed in the surface of an emitter results in a 
sharp increase in the field-ionization probability near 
the PI plane. This should lead to the appearance in the 
energy spectra of the A + ions of resonance peaks whose 
intensity is directly determined by the magnitude of the 
exchange interaction. 

C. The effects of resonance tunneling 

The above-considered mechanism of resonance tun­
neling of an electron can also change appreciably the 
rate of field disintegration of the negative ion A - (or of 
the neutral atom A) in a medium of atoms B of an alien 
gas (€ B < f A, where e A(B) is the electron affinity of the 
atom A(B)). Averaging the two-center auto-ionization 
width (38) over the positions of the B atoms, we obtain 

" j (2 Z.") lA ~-(,"P ----. , 
4Y._l ;., j 

(44) 

Here nB is the density of the alien gas that constitutes 
the medium in which the field disintegration of the A­
ion (or A atom) occurs. It is not difficult to see that for 
nB-jexp(-xAIl/j) the resonance-tunneling mechanism 
will predominate. 

Let us note, finally, the possible effects of electron 
tunneling through a cooperative (two-center) impurity 
level in experiments with dielectric films. (35] IT the 
opposite surfaces of a film are heavily doped with dif­
ferent impurities (Il *0), then a resonance-tunneling 
current will be observed only when j" Il/ a (a is the thick­
ness of the film and Il is the energy defect of the one­
center impurity levels). It is important that the volt­
ampere characteristic of a junction, doped in the way 
indicated above, have a pronounced resonance character 
only for a totally definite polarity of the applied voltage. 

The detailed analysis of the above-noted processes 
and systems is of independent interest, and the corre­
sponding results will be published separately. 

The authors are grateful to G. F. Drukarev and all 
the participants of the seminar conducted by him for a 
discussion of the papero 

I)Such points move to infinity as the field is switched off. 
2)The equations for the wave function are given in(7] (formulas 

(9) and (10». 
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