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The resonance interaction between a doppleron wave and a sound wave in cadmium located in a magnetic 
field parallel to the hexagonal axis is investigated. A theory of the doppleron-phonon resonance is 
constructed which takes into account the induction, as well as the deformation interaction of the electrons 
with the lattice vibrations. The effect of the resonance on the properties of the doppleron and the sound 
wave is studied. It is shown that the attenuation of both waves is maximal in the resonance region. The 
oscillations of the surface resistance of a cadmium plate located in a magnetic field H II [0001] is 
experimentally studied in the 25-100 MHz frequency range. It is found that in the region of field 
intensities corresponding to the doppleron-phonon resonance the amplitude of the doppleron oscillations 
decreases significantly, and an additional series of oscillations appears. The theoretical and experimental 
results are in qualitative agreement. Comparison of the theoretical results with the experimenal data leads 
to the conclusion that the electron-lattice deformation interaction in cadmium predominates over the 
induction interaction and allows the deformation-interaction constant to be estimated. 

PACS numbers: 63.20.-e, 7l.85.-a, 72.55.+s 

In (1-2] it was shown that electromagnetic waves 
(dopplerons) can propagate in cadmium as a result of 
the dispersion of the nonlocal conductivity in the vicinity 
of the Doppler-shifted cyclotron resonance (DSeR). Like 
helicons, dopplerons are very slow waves: At a frequency 
of 100 kHz the phase velocity of an electronic doppleron 
in cadmium is of the order of 103 cm/sec. At higher fre
quencies the doppleron velocity becomes comparable to 
the velocity of sound, which results in the resonance in
teraction between these waves. In the region of the res
onance the attenuation of both waves increases signifi
cantly. This doppleron-phonon resonance is of the same 
physical nature as the helicon-phonon resonance in met
als with different concentrations of electrons and holes. 
(3-5] The influence of the doppleron on the attenuation of 
sound in cadmium has been experimentally investigated 
by Tsymbal and Butenko. (6] The present paper is devoted 
to the study of the properties of doppleron and sound 
waves under conditions of their resonance interaction. 

1. THEORY 

1. The coupling of the doppler on to the sound wave is 
due to the interaction of the conduction electrons with 
the sound and the electromagnetiC field. The electric 
field of the doppleron gives rise to lattice-ion vibrations; 
on the other hand, the distortion of the electron distribu
tion function during the propagation of the sound wave 
leads to the appearance of an electromagnetic field. 
Mathematically, this is expressed as follows: Into the 
Maxwell equations enters an extraneous electric current 
due to the sound wave, while into the lattice-vibration 
equations enters a force exerted by the electrons on the 
ions, which is proportional to the electric field of the 
wave. As a result, the Maxwell equations turn out to be 
coupled to the lattice-vibration equations. A set of such 
coupled equations without allowance for the Tolman
stewart effect was derived in (3], and with allowance for 
this effect in (7]. Since under the conditions under con
Sideration by us the indicated effect is negligibly weak, 
we shall use the simpler equations obtained in (3], which 
equations have the form 
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Here E (r, t) is the electric field, j (r, t) is the resultant 
current, u(r, t) is the lattice-displacement vector, p is 
the density of the metal, Aa{3yo is the elasticity tensor, 
c is the velOcity of light, and f is the volume density of 
the force exerted by the electrons on the lattice; summa
tion is implied over the repeated vector indices (3, y, and 
0, 

In the case of a single group of electrons, the current 
density, j, connected with the propagation of a monochro
matic plane wave of frequency wand wave vector k is 
determined by the expression 

i = - _2_e -s dP,~2S" dcpv(p" cp) S· dcp'[Aa,(p" cp') u.,-e(E+G)v(cp')] 
(2nli) , Q, _00 

Xexp ~ J [v-iCll+ikv(cp") ]dcp". (3) 

• 
Here e is the absolute magnitude of the electron charge, 
m is the cyclotron mass, pz is the component of the mo
mentum p along the direction of the constant magnetic 
field H (the z axis), n = eH/mc is the cyclotron fre
quency, cp = nt is the dimensionless time of electron 
motion along an orbit in the magnetic field, v (Pz, cp) is 
the velocity on the Fermi surface, I) is the electron
scatterer collision rate, Aa(3 (p) is the deformation
potential tensor characterizing the electron-lattice in
teraction, uaf3 = Haua/ox(3 + oU(3/oxa) is the strain 
tensor, U == du/ dt, and G = c -1 [u X H] is the induced elec
tric field in the system connected with the crystal, a 
field which arises as a result of the fact that the con
ductor deformed by the sound wave intersects the lines 
of force of the magnetic field H. 

In the case of several groups of carriers, the current 
density j is a sum of terms of the type (3) corresponding 
to each group. 

The Fourier transforms of the components of the 
vector j can be represented in the form 

(4) 

where O"ai3 (k, w, H) is the nonlocal-conductivity tensor 
of the metal and 
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The vector j(A) is the extraneous current due to the 
interaction of the electrons with the sound wave, a G is 
the extraneous induced current, while a E is the conduc
tion current; the components of the vector & A are deter
mined by the relation (aA)QI = aQl{3A{3. 

The force f exerted by the electrons on the lattice also 
consists of two terms: 

f =~[i, xH]+f'A), (6) 
c 

where the first term on the right-hand side is the induc
tion force, while the second is the deformation force. 

The Fourier transform of the deformation force, 
which is connected with the deviation of the electron 
distribution function from the equilibrium function, is 
given by the expression 

It) (k, H)=ik'(2:h)'~ dp, ; r dcpAa, (I'" cp) IdCP'[Ajo(p" cp') UjO 

E ( ') 1 { S·· v-iw+ikv(cp") d "} -e v 'l' exp Q cp. 
o 

(7) 

The first term in the square brackets in (7) causes the 
sound wave to be damped as a result of the deformation 
interaction with the electrons. It is not connected with 
the presence of the doppler on and the electromagnetic 
field, and has no effect on the doppleron-phonon reso
nance. Therefore, we shall not consider it. For the 
same reasons we shall discard part of the induction 
force, which is proportional to the deformation current 
j(A) and the induced current aG. 

2. Let us apply the above-presented general relations 
to the study of the doppleron-phonon resonance in cad
mium. Let us consider the propagation of a transverse 
wave in the case when the wave vector k and the mag
netic field H are parallel to the hexagonal axis. We shall 
be interested in the interaction of a sound wave with an 
electronic doppler on due to the DSCR of the electrons of 
the "lens." Since the electronic doppleron has a nega
tive circular polarization, [1] we shall henceforth be in
terested in only this polarization. Owing to the axial 
symmetry of the lens about the Cs axis, the longitudinal 
electron velocity Vz does not depend on the variable cp, 
and the expression for the electronic part of the conduc
tivity has the form 

" ,') ,.) ,''l . ec 2 S ( kc as .) -I (8) a,_ =a,,, -(aux =-1--- 1------'1 S(p,)dp" 
H (2nh)' _po 2neH aI', 

where S(pz) is the area of the transverse cross section 
of the lens in the plane pz = const, 2Pe is the thickness 
of the lens, and y = v In; we have neglected the wave 
frequency w in comparison with v. It is convenient to 
rewrite the formula (8) in the form 

") . ecN(q) 
a_ =-, H(1- i1) , (9) 

where 

1 I oS I p,=- --
2n 01', mox' 

(10) 

and the dependence of N on q is determined by the form 
of the function S (pz). 
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The Doppler-shifted cyclotron resonance of the elec
trons corresponds to the condition q = 1. Since for the 
holes of the monster, I asl apz Imax is roughly four times 
smaller than for the electrons, near the DSCR of the 
electrons the nonlocal effects in the p-type conductivity 
are weak and the contribution of the holes to a_is well 
described by the local approximation. The complex form 
of the monster then has no effect on the form of the con
ductivity, which depends only on the hole concentration. 
The total conductivity assumes the form 

a_(k,H)=--i~[ N(q) _ N(O) ], 
H 1-q l+q" 

where Yh = vh Inh' 

(11) 

In order to compute the deformation current j(A) and 
force f(A), we must know the explicit form of the tensor 
AQI{3 (p). In the case of an isotropiC electron dispersion 
law 

(12) 

where C is a constant. For metals with anisotropic 
Fermi surfaces the form of the function Aa{j(P) is un
known. However, for a qualitative investigation we can 
assume that also in this case the tensor Aa{j has the 
same form. Below we shall assume that AQI{3 is deter
mined by the formula (12). 

Let us substitute (12) into (5) and compute the defor
mation current j(A) due to the lens electrons. As a re
sult of simple, but tedious computations, the expression 
for j~A) reduces to the form 

j~.\) (k,H)=C[N(q)-N(O)leu-, (13) 

where A_ = Ax - iAy. 

The deformation current produced by the holes can 
be neglected in comparison with the electronic current 
(13). The reason for this is that in the vicinity of the 
DSCR of the electrons the nonlocal effects in the hole 
conductivity are very weak, and Nh(q) is close to Nh(O). 

The resultant current j is the sum of the conduction 
current aE, the induced extraneous current aG, and the 
deformation current ,(A). An analySis shows that the in
duced current differs from the deformation current only 
by the absence of the factor C and by small terms of the 
order of iy and iYh. Neglecting these terms, we can 
represent the total current L in the form 

i-=a-E-+ (HC) [N (q) -N(O) leu_. (14) 

Thus, we see that in cadmium the deformation and in
duced currents turn out to be of the same order of mag
nitude. 

Like the total current L, the force C contains two 
terms, one of which is proportional to the field E_, while 
the second is proportional to the displacement u_. This 
force is determined by the formula 

I_,E)= ~[(iJE)X 1I1_+I_'AE', 
c 

(15) 

where f(AE) is the field part of the force f(A), which part 
corresp~nds to the second term in the square brackets 
in (7). 

To find f~AE), let us substitute (12) into (7) and carry 
out the integration over cp", cp', and cp. The result can 
be expressed in terms of the function N (q): 

j~'EI=C[N(q)-N(O) leE-. (16) 
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The computation of the first term on the right-hand side 
of (15) offers no difficulty. The explicit expression for 
this term differs from (16) only by the absence of the 
factor C and by small terms of the order of iy and iYh' 
Upon neglecting these terms we obtain 

!~E)"" (HC)[N(q) -N(O) leE-. (17) 

Thus, the deformation and induction parts of feE) are 
comparable. In this respect, the doppleron-phonon res
onance in cadmium differs from the helicon-phonon res
onance in uncompensated metals. (3) 

For monochromatic plane waves with negative polari
zation the set of equations (1 )-(2), describing the cou
pled electromagnetic-acoustic waves, has the form 

1 
k'c'E_=4niCiJj_(k) , (k's'-CiJ')u_=-!_(k), (18) 

p 

where s is the velocity of transverse sound propagating 
along the C6 axis in the absence of a constant magnetic 
field; L(k) and f_(k) are the Fourier transforms of the 
current and force corresponding to the expressions (4) 
and (6). Neglecting the difference between f_ and f~E), 
and using the formulas (14) and (17), let us write the 
Eqs. (18) in the form 

(k'c'-4niCiJo_)E_=4nCiJ' (HC) [N(q)-JY(O) leu_, 

(k's'-CiJ')u_ = ~(HC) [N(q)-N(O) leE_. (19) 
p 

The left-hand sides of (19) correspond to noninteracting 
electromagnetic and sound waves, while the right-hand 
sides describe their interaction. 

The dispersion equation for the coupled waves is ob
tained from (19) by eliminating u_. Introducing in place 
of k the dimensionless variable q, (10), and using (11) 
for CT_, we can represent this equation in the form 

, {N(q) 1-i1 } 1]S' {N(q) } 
q -s N(O) - Hilh = q'_q,' N(O) -1 (20) 

where 

4nCiJN (0) Po'c 
s= .' eH'(l-q)' 

CiJpoC (HC)'H'(l-i,"() 
q. = eHs(l- il)' 1] = 4nps' 

and N(q) is determined by the relations (8)-(9). 

The dimensionless parameter TJ characterizes the de
gree of the coupling of the two types of waves. This pa
rameter is small: In a field H"" 30 kOe, the quantity TJ 
"" 10-3 • It follows from this that the sound wave exerts 
a significant influence on the electromagnetic wave only 
in the resonance region, where I q 2 - q~ I « 1, and the 
quantity on the right-hand side of (20) increases. 

In order to find the solutions to the dispersion equa
tion, it is necessary to know the explicit form of the 
function N(q), which depends on the form of the electronic 
lens. In (2) a lens model with smooth edges was used 
which is in good agreement with the results of measure
ments of the size effect and of the principal properties 
of the doppleron. Although the corresponding expression 
for the function N(q) is not very complex, it does not al
Iowan analytiC solutiOn of the doppleron dispersion equa
tion. In (8) a simpler model in which the Fermi surface 
consists of two paraboloidal cups and a circular cylinder 
was considered. A modification of this model qualitatively 
describes all the properties of the electronic doppler on 
in cadmium(9) and at the same time allows the determi
nation of the analytic magnetic-field dependence of the 

1154 SOy. Phys.-JETP, Vol. 42, No.6 

plate impedance in the case of diffuse reflection of the 
carriers from the surface. (10) In the present paper we 
consider the interaction of the electronic doppleron with 
a sound wave. We use here the paraboloidal model for 
the electronic lens, and restrict ourselves, in the de
scription of the hole contribution, to the local approxi
mation. In such a model the expression in the curly 
brackets in (20) has the form 

N(q) 1-i'"( aq' 
N(O) - 1Hlh "" l-q' +i(l+lh), (21 ) 

where QI is the fraction of the electrons of the para
bolOidal cups; it was shown in (9) that the best agreement 
with experiment is obtained with QI = 0.4. 

The second term on the right-hand side of (21) deter
mines the small root, proportional to ";Y + Yh and corre
sponding to the normal skin effect, of the dispersion 
equation. Furthermore, this term makes to the damping 
a contribution that is substantial near the electronic
doppleron threshold, and does not playa role in stronger 
fields. We are interested in the situation in which the 
doppleron-phonon resonance occurs at a point appre
ciably above the doppler on threshold. Under these con
ditions the skin root 

(22) 

and its magnitude turns out to be much smaller than the 
roots, ql and q2' corresponding to the coupled electro
magnetic-sound waves. In such a situation the interac
tion of the doppleron and the sound wave with the skin 
component of the electromagnetic field is very weak, 
and, in determining the roots ql and q2' the second term 
on the right-hand side of (21) can be neglected. In other 
words, the equation for ql and q2 can be represented in 
the form 

( as ) , , 1]s'a'q' 
1- l-q' (q -q.)= (i-q')' . (23) 

Since the coupling parameter TJ is very small, the spec
trum of the doppleron is, to a first apprOXimation, de
termined by the relation 1- q2 = QI~, whose substitution 
into the right-hand side of (23) leads to the Simpler 
equation 

( i-~) (q'-q.')=1]q'. 
i-q' 

(24 ) 

This equation describes very well the spectrum of the 
doppleron and the sound wave in the vicinity of the reso
nance. The study of the influence of the doppleron on the 
attenuation of the sound far from the resonance requires 
the use of (23). 

The solution of Eq. (24) offers no difficulty. The cor
responding expressions for the wave vectors of the two 
coupled electromagnetic-sound waves in the region of 
the resonance are determined by the formulas 

(25 ) 

where 

kcK=- eH (l- il), k' _ 4nCiJaN(0)e (26) 
P?C H - cH(l- i l) , 

kGK is a wave vector characterizing the Gantmakher
Kaner oscillations, (11) and kH is the helicon wave vector 
in the case of a single group of carriers of concentration 
equal to QlN (0). 
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The root k1 corresponds to a wave that is primarily 
electromagnetic, while the root ka corresponds to a wave 
that is primarily acoustic. Without allowance for the in
teraction with the sound (Le., for Ci - 0), the wave vector 
of the electromagnetic wave k (0) = - v'kbK - kh. The 
doppleron-phonon resonance occurs upon the coincidence 
of the wavelengths of the two waves, i.e., at a value of 
the magnetic field H corresponding to the condition 

(27) 

At resonance the first term in the curly brackets in (25) 
vanishes, and the solution to the dispersion equation can 
be written in the form 

(28) 

where the index r indicates that the quantities 1), kH' 
kGK, and y, which depend on the magnetic field, should 
be taken at the value of H corresponding to the reso
nance (27). 

The first term in the square brackets describes the 
attenuation of the waves as a result of their resonance 
interaction, while the second term describes the effect 
of the electron collisions on this attenuation. The ex
pressions (28) are applicable provided the first term is 
larger than the second. It can be seen that the doppleron 
attenuation is stronger than the sound-wave attenuation. 

The dependence of the real and imaginary parts of k1 
and ka on the field H in the vicinity of the resonance is 
shown in Figs. 1 and 2. The computation was carried 
out for the values of f = w/21f= 50 MHz, N(O) = 0.5 X 1022 

cm-3 , Ci = 0.4, Po = 1.511A.-\ 1= vF /1) = 0.05 cm, C = 1, 
and s = 1.67 X 105 cm/sec (the value for the velocity, s, 
of sound was taken from [la]). The resonance manifests 
itself in some distortion of the spectral curves of both 
waves and in the appearance of resonance maxima in 
their attenuation. The increase of kIt == 1m k1 to the left 
of the resonance is due to the approach to the doppleron 
threshold, where the doppleron is strongly damped. 

Let us now determine the distribution of the electro-
,magnetic field in the metal and the dependence of the 
plate impedance on the quantity H. The field distribution 
in the plate in the case of diffuse electron reflection from 
the surface was investigated in the framework of the par
aboloidal model in [10] The results obtained in [10] can be 
used for the solution of our problem. In the case under 
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FIG. 1 FIG. 2 

FIG. I. The doppleron and sound-wave spectrum in the resonance 
region (the frequency f = 50 MHz). 

FIG. 2. Attenuation of the waves in the resonance region at a 
frequency of 50 MHz: I) doppleron attenuation; 2) sound-wave 
attenuation. 

1155 Sov. Phys.-JETP, Vol. 42, No.6 

consideration the dispersion equation contains two sin
gular terms (poles at the points k = kGK and k = w/s) 
and has three roots: ko' kl' and kz. In this situation the 
electric-field distribution in a semi-infinite metal z > 0 
has the form 

(29) 

where EjO) is the electric field on the surface, 
a _ (k,-kc;..) (ko-wls) (k,-k , ) 
,- ko'(k,-k ,) +k,'(ko-k,) +I;,'(k,-I;,,) , 

(30) 

while the expressions for a l and az can be obtained from 
(30) by cyclically permuting the indices. The first term 
on the right-hand side of (29) is the electric-field com
ponent that attenuates in the skin layer, the second term 
is the doppleron field, and the third term is the electric 
field due to the suund wave. 

The impedance of a plate whose thickness d exceeds 
the attenuation distances of all the three wave components 
is determined by the formula(lOl 

E (d) z~dl""'R~d)-iX~dl=2Z~~II 1-----], 
E_(O) 

is the impedance of the semi-infinite metal; the factor 
2Z:O on the right-hand side takes into account the pres
ence of the two plate surfaces. The second term in the 
square brackets is due to the penetration of the wave 
field through the plate; this part of the impedance under
goes oscillations upon the variation of the H field as a 
result of the variation of the phase of the doppleron prop
agating through the sample. The results of the computa
tion of the H dependence of the derivative dR~d) /dH are 
shown in Fig. 3. It can be seen that in the resonance re
gion (H "" 28 kOe) the amplitude of the impedance oscil
lations decreases conSiderably, while the period in
creases somewhat. The decrease of the amplitude is 
due to the rise in the attenuation during the resonance 
interaction of the waves. The increase, however, of the 
period is caused by some change in the spectrum of the 
doppleron. 

It should be noted that the impedance oscillations are 
largely due to the penetration of the doppler on through 
the plate. The excitation of the sound wave makes some 
contribution to the impedance only in the resonance re
gion; far from it the electric field of the sound wave, 
which is proportional to the difference k2 - u.;/s, is 
negligibly small. The weak sound excitation at reso
nance is explained by the fact that the phase velocities 
of the doppleron and sound waves have opposite signs 
and their interaction turns out to be of little efficacy. 
Thus, the doppleron-phonon resonance is weaker than 
the helicon-phonon resonance in the alkali metals. [3-5] 

H, kOe 

-2 

FIG. 3. Plot of the derivative of the surface resistance, dL/dH, at 
a frequency of 50 MHz. 
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In the helicon-phonon resonance region there exist two 
series of impedance oscillations corresponding to the 
excitation of two coupled electromagnetic-sound waves 
of comparable amplitudes. The doppleron-phonon reso
nance in cadmium manifests itself primarily as a de
crease in the amplitude of the doppleron oscillations as 
a result of the rise in the doppleron attenuation. An im
portant role is played here by the deformation interac
tion of the electrons with the sound wave. Without allow
ance for this interaction, the coupling coefficient 1) would 
have been four times smaller and the resonance maxi
mum in the attenuation would have turned out to be so 
weak that its presence would have virtually had no effect 
on the impedance oscillations shown in Fig. 3. 

2. EXPERIMENT AND DISCUSSION 

The experimental study of the doppleron-phonon res
onance was carried out on a cadmium plate of thickness 
d = 0.57 mm. The normal to the sample surface coin
cided to within about one degree with the direction of 
the hexagonal axis [0001]. The resistance ratio P300/ 
P4.2K"" 3 x 104 • This sample was used earlier for the 
study of the properties of the doppleron in [9-10]. 

One of the main experimental difficulties encountered 
in the observation of the doppler on-phonon resonance 
consisted in the fact that the doppleron-sound interaction 
should occur in the region of relatively high frequencies 
f> 30 MHz in strong magnetic fields. The complexity of 
an experimental investigation in this frequency range is 
well known. Thus, for example, for the usual autodyne
detector circuits the operating frequency range does not 
exceed 30-40 MHz. The measurements of the derivative 
of the surface resistance with respect to the magnetic 
field were .carried out by us with the aid of a specially 
constructed high-frequency autodyne detector whose 
upper frequency was limited by the physical feasibility 
of fabricating oscillatory circuits with lumped inductance 
and capacitance. The raising of the operating frequency 
of the autodyne was achieved on account of the application 
of a generator circuit with a transformer coupling and an 
optimal matching of the oscillatory circuit and the posi
tive feedback circuit with coaxial cables. 

The autodyne circuit is shown in Fig. 4. The master 
oscillator L1 and C l' in whose induction coil the experi
mental material is located, is situated in a cryostat and 
is connected with the grid of the oscillator tube via a 
separative condenser of small capaCitance and a coaxial 
cable. The positive-feedback signal induced in the coil 
L4 is transmitted through the cable to the coil L2, which 

to detector 

FIG. 4. Circuit diagram of an autodyne for work in the meter band. 
LI and C1 are the elements of the oscillatory circuit; L2 and L4 are 
coupling coils; L3 and C2 are the elements of the anode oscillatory 
circuit; Cc is a coupling capacitor; the R's are resistors of resistance 
equal to the wave impedance of the coaxial cable; Ea is the anode vol
tage, equal to 50-100 V. The parameters of the indicated elements are 
chosen with allowance for the operating frequency range. 
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is inductively coupled with the coil L1 of the oscillator 
Circuit. Both of the connecting cables terminate on a 
resistance equal to the wave impedance. In such a wir
ing scheme the distributed capacitance and inductance 
of the cables are not introduced into the oscillatory cir
cuit, which allows the operating frequency of the auto
dyne to be considerably raised. 

The excitation of the cadmium plate was effected by 
a linearly polarized radio-frequency field. The measure
ment of the surface resistance was carried out in the 
25-100 MHz frequency range in a magnetic field pro
duced by a superconducting solenoid. The maximum 
field of the solenoid was about 65 kOe. The magnetic
field intensity was determined from the solenoid current. 
The solenoid constant was determined from Signals of 
nuclear magnetic resonance on protons and aluminum 
nuclei with the aid of the above-described high-frequency 
autodyne. The nonuniformity of the field did not exceed 
0.05%. 

In the cadmium surface resistance measurements the 
coil of the oscillatory circuit together with the experi
mental material was mounted on a rotatable device that 
allowed us to rotate the sample in the magnetic field of 
the solenoid in two mutually perpendicular planes paral
lel to the direction of the field. At the beginning of each 
experiment the direction of the magnetic field was set 
parallel to the hexagonal axis with the aid of the maxi
mum of the doppleron-oscillation amplitude near the 
doppleron threshOld and the symmetry of the dR/dH(J) 
curves, where J is the angle between the direction of the 
field and the axis [0001] of the crystal. 

The strict orientation of the magnetic field along the 
[0001] axis is necessary if the doppleron is not to espe
rience the magnetic Landay damping. As was shown in 
[13], when the field H deviates from the hexagonal axis 
this damping leads to a strong attenuation of the doppler
on. Under such conditions the doppleron-phonon reso
nance is highly smeared and difficult to observe. 

Examples of the experimental curves of the deriva
tive of the surface resistance of the cadmium plate as 
a function of the magnetic-field intensity are shown in 
Fig. 5. The curve in Fig. 5a corresponds to a relatively 
low frequency, when the doppleron-phonon resonance is 
shifted towards the region of the doppleron threshold, 
where, as a result of the strong damping of the wave, 
the oscillations in the impedance are not Observed. The 
amplitude of the doppleron oscillations in this case in
creases from the threshold value, attains a maximum, 
and then smoothly decreases with increasing field inten
sity. The doppleron - phonon resonance does not appear 
on this curve. The curves in Fig. 5b were obtained at 
higher frequencies, at which the resonance occurs sig
nificantly above the doppleron threshold. The character 
of the variation of the oscillation amplitude with the field 
in these curves differs qualitatively from the behavior of 
the oscillations in Fig. 5a. At values of H "" 27 kOe the 
doppleron-oscillation amplitude in the curve 1 of Fig. 5b 
decreases sharply. Furthermore, in this field region an 
additional series of oscillations of small amplitude is 
Observed. In the curve 2, obtained at a higher frequency, 
the decrease of the doppleron-oscillation amplitude oc
curs in stronger magnetic fields. 

The decrease of the oscillation amplitude in the curve 
1 of Fig. 5b in the neighborhood of the value H4 = 27 kOe 
is explained by the rise in the attenuation of the doppleron 
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as a result of its resonance interaction with the sound 
wave (see the curve 1 in Fig. 2). The physical cause of 
the decrease of the oscillations in the impedance in the 
resonance region consists in the conversion of part of 
the electromagnetic energy of the doppleron into acoustic
oscillation energy. 

The observed location of the doppleron-phonon reso
nance agrees with the theoretical value, Hr , obtainable 
from Eq. (27). Thus, at a frequency of 50 MHz experi
ment gives the value Hr = 27 kOe, while the theory gives 
Hr = 28 kOe. At a frequency of 73 MHz (the curve 2 in 
Fig. 5b) the experimental value for Hr = 34 kOe, while 
the theoretical value is 35 kOe. 

Comparison of the curve 1 in Fig. 5b with the theoret
ical curve in Fig. 3 shows that the results of the theory 
are in qualitative agreement with experiment. It is dif
ficult to expect complete quantitative agreement of the 
theory with experiment, since the considered model for 
the Fermi surface of cadmium is a crude approximation 
to the real Fermi surface. The primary difference be
tween the experimental and theoretical results consists 
in the fact that in the theory the doppleron-phonon reso
nance is weaker. The decrease of the oscillation ampli
tude in the curve 1 of Fig. 5b occurs in a wider field re
gion and is more drastic than in the theoretical curve. 
The computation was carried out for an electron mean 
free path 1 = 0.5 mm. If we take a shorter mean free 
path, then the resonance region broadens slightly, but 
the oscillation attenuation at resonance turns out to be 
less Significant. For better agreement of the theory with 
experiment, it is necessary to increase the electromag
netic wave-sound wave coupling factor. The induction 
interaction does not contain unknown parameters, and 
we cannot change its magnitude. On the other hand, the 
magnitude of the deformation interaction, which is char
acterized by the parameter C, can, in principle, be in
creased. The experimental results indicate that the quan
tity C exceeds unity and has the value C "" 2-4. The 
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larger value of C is also attested by the presence of the 
series of additional oscillations in the curve 1 of Fig. 5b. 
These oscillations are due to the dispersion of the sound
wave velOCity in the resonance region. However, for the 
value C = 1 this dispersion is so weak (see Fig. 1) that 
it does not lead to additional oscillations in the imped
ance as a function of the magnetic field. Accordingly, 
such oscillations are absent in the curve in Fig. 3. 

Thus, we can infer that the doppleron-phonon reso
nance in cadmium is largely determined by the electron
sound deformation interaction, and not by the induction 
interaction. In this respect, the resonance in cadmium 
differs from the helicon-phonon resonance in uncompen
sated metals, in which the induction interaction is not 
weakened as a result of compensation. 

The present paper is devoted, in the main, to the study 
of the doppler on-phonon resonance in the case when the 
magnetic field H is oriented parallel to the hexagonal 
axis of the crystal. Let us now briefly discuss the ques
tion of the effect on the resonance of the deviation of the 
vector H from the [0001] axis. As was noted above, when 
the vector H is not parallel to this axis, there arises 
Landau damping, which weakens the doppleron-sound 
interaction. Besides this obvious effect, the inclination 
of the magnetic field to the axis leads to a considerable 
shift in the location of the resonance towards the region 
of strong fields. In Fig. 6 we show recordings demon
strating the variation of the resonance value of the field 
as the angle .J between the vector H and the [0001] axis 
is varied. It can be seen that the resonance shift is quite 
large: for.J = 0.50 the quantity Hr increases by 2.9 kOe, 
while for .J = 10 it increases by 4.4 kOe. It might have 
been assumed that such a resonance shift is due to a 
change in the doppleron spectrum upon the deviation of 
the vector H from the hexagonal axis. However, this as
sumption contradicts the results of the studr of doppleron 
propagation in an inclined magnetic field. [13 Another pos
sible explanation could have been that the appearance of 
the Landau damping shifts the resonance, as occurs in 
an oscillatory circuit when its Q-factor is changed. Un
fortunately, this assumption also does not allow the ex
planation of the observed resonance shift, the nature of 
which remains unclear. 

In conclusion, let us say a few words about the rela
tion between the obtained results and Tsymbal and Bu
tenko's data. [6] In the present paper we have studied the 
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FIG. 6. Recordings of the derivative dR/dH for different angles {}. 
T = 1.5 K. 
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effect of the doppleron-phonon resonance primarily on 
the electromagnetic properties of cadmium, while in [6] 
the effect on the absorption of sound was studied. There 
is some discrepancy between the results of these inves
tigations. According to our results, the attenuation of the 
electromagnetic and sound waves has maxima in the re
gion of their resonance interaction. In contrast, the 
anomaly in the absorption of sound, observed in [6], is 
more of a jump than a maximum. The authors are grate
ful to V. G. Fastovskil for his attention to the work. 
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