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A set of self-consistent equations for the electron and phonon Green functions of a normal metal is 
derived on the basis of the complete electron-ion Hamiltonian. A qualitative analysis of the obtained 
equations is carried out. It is shown, in complete agreement with the adiabatic approximation, that the 
nonadiabatic electron-phonon interaction, which leads to a considerable change in the electronic properties 
of a metal, cannot be the cause of a lattice instability. The stability of a lattice is determined by its 
dynamical vibration matrix. The electronic contribution to this vibration matrix is connected not with the 
electron-phonon coupling constant, but with the unscreened bare electron-ion interaction and the electronic 
susceptibility. It is shown on the example of the simple isotropic system that the condition for the 
dynamical stability of the system does not impose any restrictions on the electron-phonon coupling 
constant, but only leads to some restriction on the ratio of the bare electron-ion interaction to the electron­
electron interaction. In particular, for the simple jellium model this condition leads to the absence of the 
Peierls instability even in the one-dimensional case. 

PACS numbers: 71.85.Ce, 63.20.Kr 

1. INTRODUCTION 

The problem of the self-consistent description of the 
electron-phonon system in metals is undoubtedly one of 
the central problems in solid state phySiCS. The estab­
lishment of the cause of the instability of a given crystal 
lattice, the influence on this instability of the electron­
phonon interaction, the connection between the electron­
phonon coupling constant, which determines the renor­
malization of the electron mass, and, for example, the 
value of the lattice-instability temperature, all these 
problems have, in our opinion, up till now not been sat­
isfactorily solved. The reason for this lies not only in 
the complexity of the concrete computations of the prop­
erties of metals, but also in the absence of a consistent 
mathematical apparatus in the theory of the electron-ion 
system of a metal that takes the many-particle nature of 
such a system into account. Most often, the Hamiltonian 
used in considering the properties of the electron-phonon 
system is the Fr15hlich Hamiltonian. [1] The properties of 
the system described by this Hamiltonian have been stud­
ied by Migdal. [2] In particular, it is shown in this paper, 
as well as in the paper [3] by Tyablikov and Tolmachev, 
that the phonon frequencies become purely imaginary, 
and, consequently, the lattice becomes unstable when 
the dimensionless electron-phonon coupling constant 
i: = g2N (0) > 1. As was shown in an even earlier paper 
by Fr15hlich himself, [4] as well as by Kuper, [5] in a one­
dimensional metallic system described by the Frohlich 
Hamiltonian, the lattice becomes unstable at an arbitrar­
ily small value of the electron-phonon coupling constant. 
Although, as has recently been elucidated in quite a num­
ber of papers, [6-8] allowance for the Coulomb interaction 
between the electrons, which is neglected in the Frohlich 
model, leads to the establishment of certain conditions 
on the magnitude of the electron-phonon coupling con­
stant at which a structural transition occurs, the possi­
bility itself of establishing these conditions remains 
very much debatable. 

The point is that the consistent adiabatic approach to 
the computation of the phonon spectra of an electron-ion 
system, first proposed by Born and Oppenheimer [9] and 
developed recently on a rigorous many-particle basis in 
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Brovman and Kagan's papers, [10] shows that the renor­
malization of the phonon frequencies as a result of the 
nonadiabatic electron-phonon interaction is small and 
certainly cannot lead to any lattice instability. In this 
connection, the attempts undertaken in, for example, 
Kulik's paper [6] to establish a connection between the 
conditions for lattice stability and superconductivity on 
the basis of the assumption that the cause of both of 
these phenomena is the electron-phonon interaction also 
seem quite doubtful to us. In fact, lattice instability is 
possible even in the framework of the adiabatic approxi­
mation, and allowance for the nonadiabatic electron­
phonon interaction adds little to this phenomenon. The 
cause, however, of the appearance of superconductivity 
is precisely the nonadiabatic electron-phonon interac­
tion. 

Unfortunately, the mathematical apparatus of the 
adiabatic approach is very poorly equipped for a self­
consistent analysis of the electron and phonon systems. 
As one of the illustrations of this circumstance, we can 
cite Chan and Heine's paper, [11] where an incorrect use 
of the adiabatic approach led to the establishment of a 
lattice-instability condition containing the nonadiabatic 
electron-phonon coupling constant. 

Recently, there have appeared in the wake of Baym's 
paper [12] investigations [13, 14] in which attempts at a self­
consistent description of the electron-phonon system are 
undertaken with the aid of the Green-function technique. 
It is absolutely clear that the self-consistent equations 
for the electron and phonon subsystems will be ex­
tremely complex. Unfortunately, in the majority of the 
indicated papers, these equations are unnecessarily 
overcomplicated. In Baym's early paper, [12] rigorous 
sum rules allowing the simplification of these equations 
were not used. In the recent Cohen and Rajagopal's 
paper, [14] which is closest in spirit to the present paper, 
instead of a single permittivity function for the electrons, 
several types of such functions were introduced. Also 
absent in these papers are analyses of the equations ob­
tained. 

The object of the present paper is to derive self­
consistent equations for the electron-phonon system and 
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investigate on the basis of them the problem of lattice 
stability. We shall also consider the behavior of the non­
adiabatic electron-phonon interaction constant and the 
possible connection between this constant and lattice in­
stability. In Sec. II we derive the complete set of self­
consistent equations describing the electrons and pho­
nons; in the next section we carry out a qualitative anal­
ysis of the equations obtained and elucidate a number of 
their characteristic properties; in the last section of the 
paper we consider the results obtained from the equa­
tions derived and as illustrated by the simple quasi­
isotropic system. 

2. DERIVATION OF THE SELF-CONSISTENT 
EQUATIONS DESCRIBING THE ELECTRON­
PHONON SYSTEM 

Let us begin the analysis of the problem with the con­
sideration of the complete electron-ion Hamiltonian in 
the harmonic approximation: 

H=H,+Il,+H". (1 ) 

e~ " 
x~l\(r ,t )¢(r,tJ. 

(2) 

++ ~ (n,,"-un,")'VaV,,(R""-R",") 
n,n 

+ -1-.E (n,,"-un''') (un'-n, .. ') V" V ,V" (R:-Rn'")' (3) 
n,n' 

H,_, = .E J dr¢+ (r, t) ¢ (r, t) V" (r-R:) 
n 

- .Ef dr¢+ (r, t)ljJ(r, t) VaV,,(r-R"')u"" 

(4) 

Here, in writing down the Hamiltonian, we used the sec­
ond-quantization representation for the electrons, 1jJ+(r, t) 
and 1jJ (r, t) are electron creation and annihilation opera­
tors, and fJ. is the chemical potential of the electron sys­
tem. 

The ionic subsystem has been written in first-quan­
tized form with the use of the ion-displacement opera­
tors: 

(5) 

where ~ is the location of an ion in a perfect periodic 
lattice, Vii (~- ~,) is the ion-ion interaction potential, 
and Vei (r - R;1) is the elect ron-ion interaction potential. 
A consistent analysis of the problem requires, generally 
speaking, that we treat the conduction and valence elec­
trons on the same footing. In that case Vii (~ - ~,) 
and Vei (r - ~) are simply the Coulomb potentials of, 
respectively, the internuclear and the electron-nuclear 
interactions. The successes of the pseudopotential the­
ory(15l have shown that a metal can be treated as a de­
generate plasma with an electron denSity determined by 
the valence electrons, whose interaction with the ions 
is given by some pseudopotential. In our paper we shall 
consider this pseudopotential, Vei (r - ~), to be local 
and independent of the energy. We shall return to this 
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question and discuss it more rigorously in a specific 
computation of the physical properties of metals on the 
basis of the equations obtained by us. 

Let us introduce in the usual manner the temperature 
Green function for the electrons: 

(6) 

as well as the Green function for the ion displacements: 

D,,~~( T-T') =-i<T,un" (T) -<u,,"); un,'-<u, .. ') >, 

where T is a fictitious time varying within the limits 

(7) 

In a perfect crystal the function Dgg'(T - T') goes over 
into the standard phonon Green function if we expand the 
ion displacement in terms of the phonon operators. We 
shall not do this, but shall obtain all the equations di­
rectly in coordinate space. For the derivation of these 
equations we shall use the method of functional differen­
tiation. For this purpose, we shall add to the Hamiltonian 
(1) the external sources 

H' = J drlP+(r, t)lP(r, t)U(r, t)+ ~ In''(t)un''(t). (8) 

Let us write down the equation for the operators: 

(9) 

Averaging the equations for ug, and taking into account 
the fact that 

6<n,,"(T) > ", ( , 
6I,,"(T') =D"", T-T), (10) 

we obtain the equation for the ion-displacement Green 
function 

M ~U::'(T-T')+~(, Jdr<¢+(r,T)IP(r,T»V"V,,(r-Rn') 
ih' 6/", T) 

(11) 

+ ~ V" VTV,,(Rn'-R:,,) [D:n'(T-T')-D!~'n'(T-T') ]=-&:!'&(T-T'). 
n"¢n 

In the usual manner, for the electron Green function 
G (x, x') (here x = r, T; x' = r', T'), we obtain 

[i ()~ + (2: +)L) -U(x)-~ V,,(r-R:) ]G(x,x') 

-iSdr'-1 e' I <T,IP+(r"T)IjJ(r,,'t')IP(x)ljJ(x'». (12) 
f-r 1 

By using the rules of functional differentiation, we can 
rewrite the equations for the Green functions G (x, x) and 
Dg~'(T - T') in the form of equations in functional deriva­
tives: 

- Jdr<p,(r,T)v"VTV,,(r-RnO) ]D,:; .. (T-.') 

=-6,,~,~1\ (T--T) + .E V" V TV" (R""-R,~,, )D':~'n' (T-T') 
11" 'l-n 

E. G. Maksimov 1139 



+ S dr 6Jn'~(") [ <peer, ,»V.V,,(r-Rn') 

+ 6J.~(') <p.(r,T»VaV,V,,(r-R.O)] , (13 ) 

Here (Pe (r, T) is the averaged electron-density opera­
tor: <p.(r, .»=<.p+(r, .).p(r, .», 

a V' '< (" ) > 
[ i-+(-+Il)-U(x)-Sdr" e pe r " 

a. 2m Ir-r"l 

- L, V.,(r-R.O)+ 1:, VaV.,(r-R"O) (u,,·(.» . . 
- i" V aV"(r-R,,O)-_6-
~ 6J:(~ 

- ie'S dr" 1.-:" I OU(~'" T)] C(x, x') =6 (x-x'), (14) 

Introducing in place of the external source U (x) the gen­
eralized field Ueff (x): 

U,," (x) =U(x) +e' S dr" (p. (r", T) > 
Ir-r"l 

+ L, V,,(r-R,,')- E 'i7.Vd (r-R,,')(U,,·(T», (15) 

we can express the functional derivatives 15/15U (x) and 
151Mit' (T) in terms of 15/15Ueff (x). With that end in view, 
let us, to begin with, determine the irreducible polari­
zation operator II (x, x') of the electrons: 

rr(x x')= 6(p,(x» 
, 6U,!! (x') 

J dx, dx,C (x, x,) G(x, x,) r(x" x" x'), (16) 

where r (Xl' x 2, x') is the irreducible vertex function of 
the interelectron interaction: 

r( ') _ 6C-' (x" x,) 
x" x" x - 6U'1f (x') , (17) 

We shall return a little later to the consideration of this 
function. USing the formula (16) we can determine the 
permittivity function E (x, x') and the total electronic 
susceptibility X (x, x'): 

, 
g-'(x,x')=6(x-x')+ J dx, J dr"lr~r"l ll(r".,x,)g-'(x"x'), (18) 

x(x, x') = Sdx,ll(x, x,)g-'(x" x') = ~[8-' (x, x') -6 (x-x') J, (19) 
4ne' 

Using the above-introduced functions, we can write 
6 

= L,J dx, dx,g-' (x" X2) VaVe' (r,-RnO)D:."n' (T,-.') 6 , (20) 
." 6U,If(x,) 

__ 6_=J dx 6U./I(x.) 6 
6U(x') , 6U(x') 6U,If(x,) 

= S dx, { c' (x" x') - ~ J dx, dx,g-' (x" x,) 

x x (x', x,) V. v .. (r,-R.O) V ,V,,(r,-R.,O)D:~' (T,-,.)}. (21) 

Finally, after lengthy, but straightforward calculations, 
we can reduce the equations for the ion-displacement 
Green functions and the electron Green function to the 
following quite standard form: 

[ M 0' • '" +" a,] ,0 (' .0 , a.'u"" ~ ID •• " D'''n' '-T )=-6 •• ,6(.-.), (22) 
n" .. ,. 

where If>~ri" is the dynamical vibration matrix, deter­
mined by the sum of the ionic and electronic parts: 

ID .~, = a'V .. (R.o-R.~') 
." oR.· aR~" 
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+ J drdx'x(n,x')VaV,,(r-R.O)V,V.,(r'-R!,,) 

-6 n ." 1: S drdr'x(n,r',+) V.V,,(r-R.') V,V •• (r'-R!",). (23) 

In writing down the last term, we used the well-known(l3) 
sum rule: 

S dr(p, (r, .» 'i7. V, V,, (r-R.') =- S dr( V .p, (r, T» V ,V"(r-R,,O) 

= 1: S drdr'x(n,r'T+) V.V., (r-R:,,) V,V,,(r-R.O). 
n""'n 

For the electron Green function we have 

C-'(x,x')= i~+ (~+ Il) -U'If(X)-~(x,x'). (24) 
aT 2m 

When the external source is switched off, Le., when 
we set U (x) = 0, the quantity Ueff (x), as can be seen 
from the formula (15), goes over into the usual expres­
sion for a crystal potential of the Hartree type for con­
duction electrons. The self-energy part, ~(x, x'), is de­
termined by the exchange and correlation of the electrons 
as a result of the direct Coulomb interaction and the 
electron-phonon interaction, and is given by the follow­
ing expression: 

{J dr" e' 
~(x,x')=-i Sdx,dx, Ir-r"l g-'(r"T,x,) 

+ L, J dx, dx,g-' (x, x,) V .V,,(r,-R.O) g-'(x" x,) 
71.,71.' 

xV ~ V., (r,-R.,O)D::, (T,-T.) }C (x, x,) rex"~ x', x,), (25) 

The quantity figuring in the curly brackets in the for­
mula (25) plays the role of an effective interelectron in­
teraction Veff(x,x'): 

, S If e2 _1" I V.f/(x,x)= dr Ir-r"l e (r T,X) 

+ ~ Jdx,dx,e-'(x,x,)V.V,,(r,-RnO)e-'(x',x,) 
n,n' 

The first term in Veff (x, x') is the potential for the 
screened Coulomb interaction between the electrons 
and the second term is the potential for the electron­
phonon interaction. 

3. QUALITATIVE ANALYSIS OF THE 
SELF-CONSISTENT EQUATIONS 

(26) 

Before proceeding to make an attempt at a consistent 
solution of the obtained equations, let us discuss some 
characteristic properties of these equations. Let us 
point out at once that the main fundamental difficulty in 
solving these equations lies in the computation of the 
vertex function r (x2, x', Xl)' USing the definition (17) 
and the formula (24), we can write r (x2, x', Xl) the fol­
lowing equation: 

rex"~ x', x,) =6(x,-x')6(x,-x,) - J dx, dx, dx, dx, ' 

6~(x"x') ) 
, G (x" x,) r (x" x" x,) C (x., x, ' 

6C(x" x,) 

Some simple perturbation-theory diagrams for 
r (x2 , x', Xl) are shown in Fig. 1. In these diagrams the 
wavy line corresponds to the electron-phonon interac­
tion; the dashed line, the screened Coulomb interaction. 
As has been shown by Migdal, [2) allowance for the pho­
non corrections to the vertex function leads to quantities 
smaller than the bare vertex function by a factor of 
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»»J»» 
abe d c f 

rrlllM. Indeed, it is easy to verify that the diagram 1b 
is smaller than 1a by precisely a factor of ..; m/M. The 
same is true for the diagrams 1d and 1c. It would seem 
to follow from this that we can, in computing the vertex 
function r (x2, x', Xl)' neglect all the diagrams with pho­
non lines. It can be shown that this is, in fact, correct 
when computing the polarization operator IT (x, x'). At 
least at temperatures lower than the characteristic pho­
non frequencies, we should in the formula (16) use in 
place of the total vertex r (x2, x', Xl) the function 
r 0 (x2, x', Xl) determined by only the screened Coulomb 
interaction (the sum of diagrams of the type 1, a), c), f)). 
In metals the Coulomb interaction virtually does not have 
any smallness parameter; therefore, there is no consis­
tent procedure that allows us to select the most impor­
tant diagrams for the computation of r 0 (x2, x', Xl)' In 
recent years the problem of Coulomb correlations at 
electron densities corresponding to real metals has been 
the subject of numerous investigations. [10,16-19] It was 
elucidated in these papers that the properties of an elec­
tron system with respect to the screened Coulomb inter­
action are, at least if not literally, then numerically, very 
close to the properties of a tenuous system. In Rice's 
paper[20] it is also shown that allowance for even the 
simplest, to all intents and purposes, ladder diagrams 
with a screened Coulomb interaction leads to quite a 
good description of many properties of metals. 

Returning to the determination of the self-energy part 
of the electron Green function (formula (25)), we note 
that in this case the total neglect of the phonon correc­
tions to the vertex function is absolutely inadmissible. 
In order to understand why this is so, let us schematic­
ally rewrite the expression for ~(x, x') in the form of a 
sum of two terms: 

Here we have denoted the screened Coulomb interaction 
by Vee and the screened electron-ion interaction by Vie' 
As is well known, without allowance for the vertex cor­
rections, the second term is smaller than the first by a 
factor of wD / EF' The necessity of the allowance for the 
phonon contribution to ~(x, x') is connected with the fact 
that the second term is not small in comparison with the 
electron energies near the Fermi surface and rapidly 
varies in this region, leading to large corrections t.m 
to the electron mass (t.m "" o~/ow). Since each addi­
tional phonon line at the vertex leads to a smallness of 
the order of ..; mlM , we can neglect in the vertex func­
tion in the second term in (27) the phonon corrections 
and replace it by r 0 (x2, x', Xl)' We cannot do this in the 
first term. 

Let us consider the series of the simplest diagrams 
arising as a result of the first term in (27) and shown 
in Fig. 2. It can easily be verified that the diagrams 2b 
and 2d are not small compared to the phonon contribu­
tion arising from the second term. The overall sum of 
the diagrams arising from the first term with allowance 
in the vertex function of one phonon line and the second 
term can be reduced to the skeleton diagrams shown in 
Fig. 3. In the diagram 3a the circles denote the total 
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Coulomb vertices ro. Batyev and Pokrovskil[21] have 
shown that for isotropic systems with a Coulomb inter­
action the diagram 3b is small compared to the purely 
Coulomb interaction (arising from the summation of dia­
grams of the type 2a, 2c, and 2e) and is a constant near 
the Fermi surface. An analogous conclusion can be drawn 
about diagrams of the type 3c. Therefore, we can neglect 
all these diagrams and rewrite Eq. (27) for ~(x, x') in 
the following form, which formally coincides with the 
equation obtained by Batyev and Pokrovskil for an iso­
tropic system: 

~(x, x') =-i J V"Gfo-i J fo \7 .V"D.~ro \7 ,V;,G. (28) 

The dynamics of the lattice is determined by Eqs. (22) 
and (23). The nonadiabaticity is contained only in the 
third term of Eq. (23), which determines the dynamical 
vibration matrix cl>gl". In the framework of the self­
consistent approach to the electron-phonon system, the 
adiabaticity condition reduces to the following apprOxi­
mation for the electronic susceptibility: 

z (x, x') =6 (,-T') Z (I', r'). (29) 

The characteristic times, T e , of the variation of the elec­
tronic susceptibility are due to the interelectron corre­
lations. In metals, Te "" liEF, i.e., they are considerably 
less than the characteristic phonon times T ph"" 1/wD at 
which the temporal behavior of X (x, x') is important. For 
such large times T ph, the relation (29) is valid up to quan­
tities of the order of wD I EF' It should be noted that the 
deviation from adiabaticity and the nonadiabatic correc­
tions to the phonon frequenCies, as well as the attenua­
tion of these frequencies, arise not only because of the 
electron-phonon interaction, but also because of the 
purely Coulomb correlations. Indeed, as can be seen 
from (19) and (23), the nonadiabatic corrections and the 
deviations from the relation (29) will arise also in the 
case when the influence of the phonons is neglected in 
the computation of the electronic susceptibility X (x, x'). 
As has been shown by Ipatova and Subashiev, (22) an anal­
ogous phenomenon obtains also in the adiabatic approach 
when the Coulomb correlations are correctly taken into 
account. 

Before proceeding to a concrete investigation of the 
condition for lattice stability and its connection with the 
effective inter electron interaction, a problem which is 
very important, in particular for the superconductivity 
of metals, we note two conclusions which follow from 
the equations for the lattice dynamics, (22) and (23), 
and for the electron self-energy part ~(x, x'), (28). 

1. The electronic contribution to the lattice dynamics 
is, as follows from (23), determined by the unscreened 
electron-ion pseudopotential and the electronic suscep­
tibility. The electron-phonon interaction matrix element 
determining the phonon contribution to the electron self­
energy (the second term in (28)) is connected with the 

~ -Q.;.r .--<~:-- ~ 
b d 

FIG. 2 

b 

FIG. 3 
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effective screened electron-ion pseudopotential which 
takes the vertex corrections into account, V\e: 

(30) 

If even we assume the unscreened electron-ion PSfWdo­
potential to be local, the effective pseudopotential Vie 
will, because of the presence of r 0' be nonlocal. As the 
Yasuhara and Watabe's computations [23] show, this non-
local nature of Vie can be very important for real metals. 

2. In the standard Bloch approach to the electron­
phonon system, it is assumed that the matrix element of 
the electron-phonon interaction is determined by the gra­
dient of the total self -consistent crystal potential. As can 
be shown from Eqs. (24) and (8), this is, in fact, not so; 
the electron band structure is, in accordance with (24), 
determined by the following equation: 

(( 2Vn: + Ii )-U,fI(X) ]1Jl,(rl- J d3r'2;(r,r',Eh)~,,,(r')=Eh1Jlh(r'). (31) 

The matrix element of the electron-phonon interaction 
is determined by the gradient of the effective electron­
ion pseudopotential Vie (formula (30)). As the computa­
tions of Rasolt and Vosko [24] show, the nonlocal potential 
determining the band structure in Eq. (31) can, generally 
speaking, be significantly different from Vie' 

4. A CRITERION FOR LATTICE STABILITY AND 
THE EFFECTIVE INTERELECTRON INTERACTION 
IN A QUASI·ISOTROPIC MEDIUM 

In conclusion of this paper, let us, as an example of 
the use of the above-obtained self-consistent equations, 
consider the properties of a quasi-isotropic electron­
phonon system. For such a system, we can, on the basis 
of Eqs. (22) and (23), write 

D-'(q).., w)=D,-'(q).., w)-Jl1(q).., w). (32) 

The function Do (q:\., w) will determine the vibrations of 
the ionic lattice, and the longitudinal vibrational mode 
for q - 0 gives the plasma frequency of the ion vibra­
tions: 

w,(g)=!,nNZ'e2/M, (33) 

D(g).., w)=w,'(q),)/[w2-w,'(q)..)]. (34) 

The mass operator M(q:\., w) contains the electron contri­
bution to the lattice dynamics and is, in accordance with 
Eq. (23), equal to 

AI (q).., w) =g,' (q)..)x (g, 0), (35) 

where g~(q:\.) is the matrix element of the interaction of 
the electrons with the plasma oscillations of the ions 

(36) 

In accordance with these eq uations, 

D(q).. ".)= w,'(q)..) (37) 
, W'-(iJ,'(q1.) [1-go'(qA)x(q, 0)] 

The phonon frequencies are determined by the condition 

(iJ'(qA) ="','(1]1.) [I-g,'(q).)x(q, 0)]. (38) 

The condition for dynamical lattice stability, w 2 (q:\.) > 0, 
leads to the following inequality: 

g,'(qA)x(q, 0)<1. (39) 
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If we use for X (q, 0) the well-known approximate expres­
sion[ll] 

II,(q,O) 

x(q,O)= 1-[V(g)-'/,U]II,(q,O) (40) 

where no(q, 0) is the standard Lindhard expression for 
the polarization operator, V (q) is the direct unscreened 
Coulomb interaction in an isotropic system (V(q) 
= 41Te 2/q2), and U is the exchange interaction, then we 
obtain the following condition for lattice stability: 

U 1 
g,'(qA)+2- V (q)<III,(q,O)1 (41) 

This condition is quite similar to the condition obtained 
in the already mentioned paper by Chan and Heine. [11] 

However, because of the incorrect use of the adiabatic 
approximation in their paper, instead of the coupling 
constant g~ for the interaction of the electrons and pho­
nons with the bare plasma oscillations, into the condi­
tion (41) entered the true coupling constant for the inter­
action with the phonons. The incorrectness of their re­
sult is clear even from the fact that at small q the quan­
tity g~ ~ l/q2, i.e., it behaves just like V(q), whereas the 
true coupling constant for the interaction with the phonons 
g(q:\.) - 0 as q - O. If we do not use the approximate ex­
pression for X (q, 0), but express it in terms of € (q, 0): 

x(q,O)=V/q) t(g1,0) -1), 

then we can write the stability condition in the form 

go' (q)..) < e (g, 0) (42) 
V(q) e (g, 0)-1 

It can be seen from (42) that, in contrast to the Frohlich 
model, the lattice-stability condition does not impose any 
limitation on the electron-phonon coupling constant, but 
only establishes a relation for the ratio of the electron­
phonon coupling constant to the Coulomb constant. In the 
simplest isotropic "jellium" model, as is well known, 

go'(qA)/V(q) =1. 

Since € (q, 0) > 1 in an electron system, there cannot be 
any lattice instability in the jellium model-not even in 
the one-dimensional case. The conclusion about the ab­
sence of the Peierls instability in the one-dimensional 
jellium model was arrived at in [7,8]. 

The last question that we consider in this paper con­
sists in the following. Does the lattice-stability condition 
impose any limitations on the effective inter electron in­
teraction Veff (q, w) determined by the formula (26)? Let 
us rewrite this interaction in the form 

4ne' + go' (q)..) wo'(q)..) 
V", (q, w) = q'e (q, w) e'(q,O) w'-w'(g)..) 

4ne' 
(43 ) 

where 

g,'(q)..) w,'(g)..) 
e'll(q, w)=e(g, w)- V(q) w'+wo' (q)..) [g,'(q)")/V(q)-1J 

In Nozieres and Pines's book, [24] there is derived 
virtually for an isotropic medium a stability condition 
for the system that amounts to the following: 

e,,;,(q, 0»0. (44) 

It follows from this condition that the electron-phonon 
interaction, which is the second term in (43), should be 
weaker than the direct Coulomb repulsion. Cohen and 
Anderson[2!5] and Kirzhnitz, Maksimov, and Khomskir[26] 
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have shown that in such a situation there obtains a very 
strong limitation on the possible maximum values of the 
critical superconducting-transition temperature Tc in 
the isotropic medium. As follows from the analysis car­
ried out in this paper, the lattice-stability condition (42) 
leads, in fact, only to the following limitation on Eeff (q, 0): 

e"!f(q,O)[g,'(ql.)/V(q)-1J<O. 

At small q - 0, as follows from (42) and from the behav­
ior of E (q, 0) at small q, we indeed have that g~ (q:\.) < V (q) 
and Eeff(q, 0) > o. On the other hand, at large values of 
q, which are the most important in superconductivity, the 
condition (42) allows us to have g~(q:\')/V(q) > 1, and in 
this case Eeff (q, 0) < O. This means that the electron­
phonon attraction at large q can be considerably stronger 
than the Coulomb repulsion and the stability condition 
does not impose any limitations on the possible values 
of Tc. 

Irrespective of the computations carried out here the 
very existence of the stability condition introduced by 
Pines and Nozieres[24J arouses, as D. A. Kirzhnits has 
informed this author, a strong objection from the dynam­
ical point of view. 

In conclusion, I wish to express my sincere gratitude 
to my friends and colleagues for the numerous discus­
sions and debates on the problems touched upon in this 
paper. In the first place, I wish to thank D. A. Kirzhnits 
and D. I. Khomskil. I am also grateful to L. V. Bulaev­
skil, L. V. Keldysh, B. A. Volkov, and Yu. V. Kopaev, as 
well as to V. L. Ginzburg and the participants of the 
seminar conducted by him for a discussion of the paper. 
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