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The population asymmetry of the energy spectrum branches (~> 0 and ~ < 0; ~ = v(p - PF» that is produced 
in a superconductor S upon the tunnel injection of nonequilibrium quasiparticJes into S is theoretically 
investigated. It is shown that such an asymmetry leads to the appearance in S of a gauge-invariant 
potential 4> = If +( 1I2)X and to the appearance of a voltage potential in the measuring circuit. The steady-state 
value of the voltage potential is computed. It is also shown that if the electron-hole distribution in a 
normal metal N is made asymmetric through injection, then a potential difference arises between Nand 
the measuring electrode if as the latter a superconductor Sm ... is used. 

PACS numbers: 74.30.-e, 71.85.-a 

Clarke, Peterson, and Tinkham[l-3J have carried out 
experimental and theoretical investigations of the tunnel 
structure S'-S-N (Fig. 1). A current I was passed 
through the structure in such a way that quasiparticles 
were continuously injected from N into S. The neu­
trality in S was maintained as a result of the drift of 
Cooper pairs into S'. It was observed that a voltage 
potential tf existed in the measuring circuit whenever 
the injecting current I was different from zero. As has 
been shown by Clarke and Tinkham, the appearance of 
the voltage potential is due to the asymmetry of the ex­
citation distribution function n( ~) in the superconductor 
with respect to ~ (~ = v(p - PF)). This means that the 
number N> (/; > 0) of particles on the n-type excitation 
branch is not equal to the number N < (I; < 0) of parti­
cles on the p-type excitation branch. Tinkham computed 
the time for the establishment of the steady-state value 
of Q = N> - N <, and found that in the case of scattering 
of the quasiparticles by phonons this time is TQ ~ .0. -\ 

since in the normal metal the collision integral leaves 
the quantity Q unchanged (in the normal metal Q is the 
difference between the number of electrons and the num­
ber of holes, and therefore the invariability of Q im­
plies the conservation of the total number of particles). 
The time TQ determines the attenuation length of the 
longitudinal electric field E in a superconductor with a 
nonzero energy gape 4 J. Tinkham also calculated the 
quantity iff, and found that tf ~ Q"'TQ, where Q!:::! Q'" 
near the critical temperature Tc. He did not, however, 
take into account the appearance in S of the gauge-in­
variant potential 

(f/J is the electrical potential and X is the phase of the 
order parameter), and the electrical neutrality of the 
superconductor S was not properly taken into account. 
Meanwhile, as will be shown below, the voltage potential 
rff is due precisely to the presence of the potential 4>. 
Such a potential arises if the di vergence of the super­
current is different zero, which is the case when, for 
example, current is passed across an S-N junction!) [S,6J. 

In a previous paper by one of the present authors[9J, 
the growth rate of 4> was found (in the cp '" 0 gauge) 
without allowance for the collision integral. Here we 
shall find the steady-state values of 4> and iff, taking 
into account the inelastic collisions with phonons. 

We shall also consider the tunnel structure N I-N -N2' 
and show that the electron and hole distributions in the 
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FIG. I. The system under consideration: the hatched regions rep­
resent insulator layers, I is the injection current, and ~ is the voltage 
poten tial to be measured. 

metal N become asymmetric when a current is passed 
through such a structure (although the total number of 
electrons remains equal to the total number of holes, 
i.e., Q = 0). Such an asymmetry leads also to the ap­
pearance of a potential difference between N and the 
measuring electrode if as the latter a superconductor 
is used. 

1. THE SYSTEM S'-S-N 

For greater physical clarity, we use a computational 
method somewhat different from the one used earlier 
inC 9J. It is convenient to express the Green functions 
with the aid of which the calculation in[9J was carried 
out in terms of the occupation number n( ~) of the 
quasiparticles, as is done by Aronov and Gurevich in[lOJ. 

Let us find the rate of change, due to the injection, 
of the number of quasiparticles in S in terms of the 
functions G12 and G21 (loJ: 

an =_l_!..Soo dUl(G."-G_. ZI ). 

at 2Jli at" 

Let us write down the equation for G[ 10, 11 J : 

(i a~, -s) GI2(tlt2)=~IlG"+L:"G"~A(t"t,), 

(i~+S) GI2(t" t,) =A·(t" t ,), at, 

(1 ) 

(2 ) 

where :0 is the self-energy part responsible for the 
BCS interaction and the tunneling of quasiparticles from 
N into S[91. Let us add the Eqs. (2) and carry out a 
Fourier transformation with respect to the difference 
variable (t 1 - t 2). We obtain 

i~G."=2 Re A.(t). at 
Similarly, for G~ we find 

-i!..G ZI=2Re(L:Zl G"+L:"GZI) rJt (iI W, 
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(3) 

(4) 
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where t = 7'2 (t 1 + t 2). F~rther, let. us substitute the 
equilibrium values of ~t~n and Glk into the right-hand 

sides of (3) and (4), as was done in[9] in the computation 
of the sources JS-N' Using (1), we have 

On \I [e+v e-·V e S ( e+V 
-=-- th--+th---2tll-+- Lll--at 2 21' 21' 21' e 21' (5) 

-th e;v)]==_ ~ [P++1]], 
where the functions p and Tj, introduced inl91, are even 
functions of I; and V is the voltage potential at the S-N 
junction (the charge e in included in V). The rate of 
change of n as a result of pair injection will be equal 
to zero, a fact which can be directly verified by com­
puting the corresponding source. To the right-hand 
side of (5) must also be added the collision integral. 
Thus, in the steady-state case we have 

L[ p+ l.. 1]] = n\;p~ J w'dw JdS'{ [II(E'-i'-W) tn' (1-n) 
2 e 2eD' 

x (HNo) -n(l-n')Nw ]H(i'-E'-w) tn' (1-n)N. 
__ (6) 
~ .. , ~2 

-nO-n') (l+No)]] ( H ;\~, ) H(i'H'-w)[N.,(l-n) (i-n') 

, U'-t.' 
-nn (l+N .. )] (1-~ n, 

where eD = ps, s is the velocity of sound, g is the 
matrix element of the interaction with phonons, defined 
by 

g'=2n'\;p,/pm ["], ,Y .. =(e',,/T_1)-', f=Y(S+Q»)'+t.' ['0], 

the dimensionless constant I:ph being of the order of 
unity. 

We shall seek the solution to (6) in the form 
n = no (€') + n1, where 

no(f)= [e;/T+1]-'. 

We shall, however, be interested not in the function n1 
itself, but in some integral of it. In fact; let us write 
down the expression for the change oN in the total num­
ber of particles in S[ 10], a change which should be equal 
to zero: 

IIN=II J dT[u'n+v'(1-n)]= ~.; J ds [ ! n, 

( an ( 6 )' t., e)] + ~ -, --, tll- <D =0, 
Ue e 2e" 21' 

(7 ) 

where ~ is the nonequilibrium potential that was dis­
cussed above. It can be seen that the integral of the odd 
part of n1 over E, (with the weight 1;/ E) determines the 
potential ~, Le., ~ is determined by the asymmetry 
with respect to 1; of the quasiparticle distribution func­
tion. Notice that if we compute the growth rate of ~ 
with the aid of (5) and (7), then the result coincides with 
the formula (23) of[9], To find ~, let us multiply (6) by 
1;/ f and integrate over 1;, Then 

J ds (s/e)'1]=- n~~: J d", ds d;' (;+;') ",' (t.'/i"') {Ii (i" -E-W) 

x tn' (I-n) (HNw ) -n(1-n')Nw ]H(r-i" -w) tn' (1-n)Nw-n(l-n') (8) 
x (HNw) ]-li(i'+i"-(o) [Nw (I-n) (I-n')-nn' (HN.)]}. 

Linearizing (8), we find after simple transformations 
that 

where 
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(9 ) 

2"\;",, Joo de' [0 ') ( ')"(1 '" ) \",/(E)~~'-- ---== '(e-e e-e' -no -n._,' 
(::lv' , e' Ye"-L\' (9') 

PlnJ ' +("+e')'(n,:+N.+,,,)- (e'-e)'(n'+N.,_,)O(e' -e)], Q' = -, ds..2- n" 
n £ 

ThuS, the steady-state value of Q. is determined by the 
frequency LlQ' which vanishes in the normal metal. The 
time TQ, introduced by Clarke and Tinkham, character­
izes the time necessary for the establishment of equili­
brium between the branches of the spectrum (the 
branch-mixing time). 

Let us now turn to the establishment of the relation 
between the observable voltage potential and the poten­
tial ~. This relation can be found if the formula (5) 
of[9], as applied to the junctions S-Nmeas and S-Smeas 
of the measuring circuit, is used. Integration over ~ 

makes the left-hand side of this formula vanish, since 
it is assumed that no current flows through the measur­
ing junctions. Let us choose the gauge X = 0, i.e., let 
us assume that ~ = cp in S. The potential of the elec­
trode N me as is then equal to 1f'1 + ~,where 1f'1 is the 
potential difference between Sand Nmeas . As will be 
shown, there arise between the superconductors Sand 
Smeas a potential difference ~ and an order-parameter 
phase difference oX, 

Let us consider the junction S-Nmeas . Then from 
the formula (5) of[9] we have 

Ih· J ds J dTe-dM~) [~R(T)G(-T)-Q(T)GA(_,)] 
= v 1111 J d~.!!.':2. [G(I") -2 Lh ",-o,-<D GR(w)] =0 . 

. 2" 21' 

(10) 

Here we have taken account of the fact that in the case 
when the junction is with a normal metal ~ R( w) = -ill, 
and we have used the relation[9] 

w 
Q(w)= 2th 27' ~R«(O). 

Let us represent G( w) in the form 

G(w)=2ith 2~ ImGoRHG(",), (11) 

where G~( w) is the equilibrium retarded Green func­
tion and oG( w) is the nonequilibrium correction to 
Go(w) due to the injection of quasiparticles. The expres­
sion for 1m G~ (w) has the form 

(12 ) 

where u~ = 7'2(1 + E,/f) and v2 = 7'2(1 - E,/E). Substitut­
ing (11) and (12) into (10), we obtain 

~ Jds [Ill £+0, +th 0,-£] = IIllJ dsoG(t,t) 
2 21' 27' (13) 

+ J ds .dw [2<D 1m Go"(w)~th ~ -Zlh ~ 1m (0'0"(",) -GoR (",))], 

2rr 0", 21' 21' 

where G~ (w) coincides with the function G~ ( w) if we 
make the substitution I; - E, + ~ in the latter. 

In calculating 6'1> Tinkham[2] took only the first term 
on the right-hand side of (13) into account, since he as­
sumed that only the quasiparticle distribution function 
changes during the injection and that ~ = 0. Indeed, if 
we set ~ = 0, then 

ImIiG(t, t)~(~Ie)/)(2n-l)=2(~!e)n" 

and Tinkham's result follows from (13): 

I 'J~ [£+0' 0,-£ ] Joo S - ds th-. -+th-- =2 d~-[n,(S)-n,(-s)]. 
2 _00 21' 21' "e 
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As was pointed out in[9], however, the first term in (13) 
is the change in the total number of particles in Sand 
is therefore equal to zero. In fact, the voltage potential 
~ 1 is due to the second term. Computing it with the aid 
of (12), we find 

_ J d [th 8.+8 + th 8.-8] = 4~'<DJ~ de a th(El2T) (14) 
~ 2T 2T , (c'-~')'" iJE 

The expression (14) coincides with one found earlier 
in[9l. 

Let us consider the junction S -Smeas. Proceeding 
in the same way as in the determination of the source 
JS-S in[9], we can derive from the formula (5) of[9] the 
following expression for the phase difference Ox for the 
order parameter in Sand Smeas: 

-J ~~ [~"R(Ol)Fo'(-Ol)Hll2(Ol)Fo<'(-Ol)] sin6X 
2Jt 
d (15) 

= Re J ds ~ {LR(Ol)G(Ol) -Q(Ol)GA(Ol)-~12R(Ol)F' (-Ol) 
2Jt 

Hl" (Ol)FA' (-Ol) }, 

where in the expression on the left-hand side of the 
equality figure the equilibrium functions F 0, while in 
the expression on the right figure the nonequilibrium 
functions G and F. The integral on the left-hand side 
is proportional to the Josephson current. Let us denote 
it by IJ. Let us express the functions G and F figuring 
in the expression on the right-hand side of (15) in terms 
of 1m GR and 1m FR and take into account the fact that 
the integral of the second term in the curly brackets 
vanishes on account of the fact that this term is an odd 
function of w. Carrying out the computations, we find 

(16) 

Thus, the asymmetry of the quasiparticle distribution 
leads to the appearance in the system S-Smeas of a 
current that is canceled by the pair current. As a re­
sult of this, the phase difference Ox arises and, further­
more, a potential difference exists between Sand 
Smeas, since in computing (15) we assumed the potential 
of Smeas to be equal to zero. The observable voltage 
potential is made up of <I> and ~1: ~ = ~l + <1>. 

Let us find the dependence ~(V, T) for T - Tc. It 
follows from (14) that, near the critical temperature, 
Iff 1 ~ (t. IT )2<1> « <1>, and therefore the observable voltage 
potential is due to the potential difference between S 
and Smeas. In the expression (9') for vQ( E) only the 
first and second terms are important near Tc. Com­
puting them, we obtain 

(17) 

The expression (17) coincides up to a numerical factor 
with the expression found by Tinkham[2l. In the integral 
(9), which contains IIQ( £), the characteristic scale of 
the variation of n1 for T - Tc is the temperature; 
therefore, vQ is determined by the expression (17) with 
the energy E replaced by T*, where the "temperature" 
T* is of the order of T and should be determined from 
the exact solution to the kinetic equation (8). From Eq. 
(7) we find the relation between <I> and Q*: 

<D="';:"Q'''' Jd~n.-.i=-4(v/vQ)V. 
pm 8 

Substituting vQ from (17) into this expression, we 
finally find 

4\' (T') ( eD )' (T' ) 8=--- - - th - V. 
Jt'~Ph ~ T· 2T 
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The dependence of ~ on (T c - T) for t. « T agrees 
qualitatively with the corresponding dependence ob­
served experimentally in the case of Sn[ 3]. 

2. THE SYSTEM N\-N-N2 

The system (Fig. 1) in question also allows us to in­
vestigate the mechanism responsible for energy relaxa­
tion in the case of a normal metal. Then instead of the 
system S'-S-N, we should use the system N1-N-N2, 
where N 1 and N 2 may be of the same metal: It is only 
necessary that the frequencies VI and 112, which are 
proportional to the product of the density of states of 
the metal N1 (N2) and the matrix element for tunneling 
through the N1-N (N2-N) junction, differ from each 
other. Then in the presence of a current flowing through 
the system NcN-N2 the distribution function in N will 
become asymmetric in ~,although, as follows from the 
neutrality condition, the total number of electrons will 
remain equal to the total number of holes. In the meas­
uring circuit will then arise a potential difference Iff. 
In fact, using Eq. (7) of[9] and the expression for the 
self-energy part describing the tunneling from Smeas 
into N, 

L:"=-i\' I '" I [Ol'-I\']-'1.0 (I Oll-~), 

we obtain for the voltage potential Iff in the Smeas-N 
circuit the equation 

J d~(th 8+8 -th E-8)=_2Jd~ ~n,(~) O(I~I-~) (18) 
2T 2T (~'_~') '1. ' 

where E = (~~ + t.~)l/2 and n1 is the deviation of the 
distribution function in N from the equilibrium distribu­
tion function2). It can be seen from (18) that if the 
measuring electrode is a normal metal, then the inte­
gral on the right -hand side (and, consequently, ~) will 
vanish because of the electrical-neutrality condition. 

Let us find the quantity n1' Let a current flow through 
the system, so that we have established at the N eN and 
N 2-N junctions the voltage potentials VIand V 2 respec­
tively. The kinetic equation for n1 has the form 

(19 ) 

where the second term on the right-hand side is the 
source due to the injection of quasi particles from N 1 
and N2, the frequencies Ilk are connected with the re­
sistances of the junctions Nk-N[9], and 1st is the 
linearized collision integral for collisions with phonons. 
We shall restrict ourselves to the case of low tempera­
tures (T« t.) and shall assume that Vk < ® D. After 
integration over the angles Eq. (19) in the steady-state 
case assumes the form 

1 ~ , 
~£3n.(~)-8(S) I dOl(Ol-s)'n,(Ol)+8(-S) I dOl (0l-s)2n,(0l) 

= 2eD
' [\',O(~)8(IV,I-s)-\,0(-s)e(S+V2)], 

n~Ph 

where VI < 0 and V 2> O. We seek the solution in the 
form 

(20) 

nl(~) =n>O(~) O( I VII-~) +n<O (-s)O(~+ V2 ). (21) 

Then for the electron distribution function we obtain the 
equation 

1 ~ W~ 
_~3n>_ J dOl(0l-~)2n>(0l)=xl"'-.-v" s>o. (22) 
3, n,ph 

For the hole distribution function we obtain an equation 
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coinciding with (22) if we make the substitutions 
~ - -~, VI - VOl, and Kl - K2 in the latter, Differenti­
ating (22) three times with respect to ~. we obtain 

1 iP(s'n» 
----+2n>~O. 
3 os' 

The solution to (23) is the power function 

n>£'~C.s-'+ Rc (C,+iC,) :;""'. 

(23) 

Let us determine the constants from the boundary con­
ditions 

which follow from Eq. (22) and its derivatives. The 
solution then assumes the form 3) 

n ~~-=-{(~)'- l'33 ~sin(l'2In-s -- o)}, (24) 
> 11 Iv.I' S () S IV.I <p 

where sincpo = 5/ m. 
Let us substitute the solutions n > (~, Kl) and 

n«~, K2) = n>(-;, K2) into (21) and nl from (21) into 
(18). Then, assuming that E < T, we obtain 

0~ l_(~)'I'eA!T{Sv'dSsn>(s,",) _lsV>ld~sn>(s,",) 
2l'2rt L1 A (£'-L1')'/' A (5'-L1')" (25) 

where 

l'a'-l " 1 £T(a, 1) = ---l' (aly)'-l--:;- + arccos-
a 2 2~ ex 

}33 e - x 
- arccos l - -.-S dx(x'-1)-" sin ("I'2In--'I'0) 

a Ja2 1 a 

l'33 2 en _ X 

+-. -:-s dx(x2-1)-·"Sin(l'2In---.l-<po), 
Jcc 1 a 

a = \ V 1\ / A, Y = K2/ Kl = Rl /R2, and Rl,2 are the resist­
ances of the junctions N 1,2-N. In this case in deri ving 
(25) we used the neutrality condition IINl = IIN2, which 
follows from Eq. (19) if we integrate this equation (in 
the steady-state case) over ~. 

Let us give the asymptotic expressions for §(a, y), 
in the case when y » 1: 

£T(a, 1) =2V~ npll a-+l, 

£T(a, 1)=a[rrl2--"/;V(a!j)'-l) IIpl! a-+l· 

The form of the function (a, y), obtained by a numeri­
cal integration, is shown in Fig. 2 for several values of 
y. Let us estimate the magnitude of the effect, setting 
®D/A ~ 102, III ~ 106 sec- l [91, and §(OI, y) ~ 1. We ob­
tain C ~ lO,jT/Ae A/ T MV. Thus, by measuring the 
function C (V 1) we can make judgments about the dis­
tribution function of the nonequilibrium electrons and 
about the mechanism responsible for its relaxation. 
Allowance for the electron-electron colliSions leads to 
the appearance in (20) of terms of the type (~~/€F)nl' 
These terms can be neglected provided A » ®O!E:F' 
The flopover processes, which are neglected by us, 
will be unimportant if the Fermi surface does not get 
close to the Brillouin-zone boundaries. 

3. CONCLUSION 

Thus. the above-considered system allows us to in­
vestigate the asymmetry of the populations of the 
energy-spectrum branches of a superconductor and, in 
particular, determine the important characteristic TQ, 
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:T(a,Y> 
15 

12 -

-J 

FIG. 2. Dependence of F (a, ')') on a for,), = 2, 5, and 10. 

the time for the establishment of equilibrium between 
the branches. This time determines the attenuation 
length of the longitudinal electric field in the supercon­
ductor. Notice that the gap aA also changes during the 
tunnel injection. The change in the gap is due to the 
first term on the left-hand side of (6). The time charac­
terizing the establishment of the steady-state value of 
A is less (near T cl than TQ and coincides in order of 
magnitude with the energy-relaxation time in the normal 
metal [131. The change in A does not (so long as it is 
small) affect the magnitude of <1>, since liA does not 
enter into Eq. (7). 

The experimental investigation of the characteristic 
function C(VI. T) in the case of the system N1-N-Nz is 
also of interest, since such a dependence allows us to 
draw some conclusions about the mechanism responsi­
ble for energy relaxation in normal metals, 

liThe potential 1> also arises near the core of a moving vortex [7,8]. 
2lThe quantity n l is an electron distribution function for ~ > 0 and a 

hole distribution function for ~ < O. 
3lThis solution diverges at small ~. To obtain a finite n> at ~ = 0, we 

may take into account either the induced transitions or the nonlinear 
terms in 1st and in the generation terms in (20). We are, however, not 
interested in the region of small t since the contribution to (18) is 
made by ~ ;;. A. Notice that in the case of the model matrix element 
g2 _ q-2 of the interaction with the phonons, it is possible to solve 
exactly the nonlinear kinetic equation with allowance for recombin­
ation of nonequilibrium electrons and holes. It then turns out that 
the exact distribution function differs from the approximately de­
termined function at energies ~:;:; (V IV,)1I2 In the case of the matrix 
element used by us the nonlinear effects are important at ~ 
:;:; (ElbvIVI)1I4 
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