
Magnetic ordering in nonequilibrium systems 
v. V. Kapaev and Yu. V. Kopaev 

P. N. Lebedev Institute of Physics, USSR. Academy of Sciences 
(Submitted June 9, 1975) 
Zh. Eksp. Teor. Fiz. 69, 2171-2186 (December 1975) 

The possibility is studied of magnetic ordering caused by coexistence of singlet and triplet electron-hole 
pairings in systems with a nonequilibrium concentration of excitations, for a model of an exciton insulator: 
that is, for a semiconductor with a small forbidden band E. and for a semiconductor with a large value of 
Eg • In the first case, when the (diamagnetic or antiferromagnetic) equilibrium state of the semiconductor is 
itself connected with the existence of either singlet or triplet electron-hole pairing, nonequilibrium 
excitations insure the coexistence of singlet and triplet pairings; that is, ferromagnetic ordering occurs. In 
the case of a semiconductor with a large value of E., nonequilibrium excitations undergo electron-hole 
pairing because of Coulomb interaction and of a strong electromagnetic pumping field. In this case the 
doped semiconductor goes over to a ferromagnetic state. 

PACS numbers: 75.30.-m 

1. INTRODUCTION 

It is known that semimetals whose electron (El(P)) 
and hole (E2(P)) bands satisfy the condition El(P) = - E2 
X (p + q) are unstable with respect to electron-hole pair
ing. A similar property is possessed by single-band 
metals with a spectrum E(p) = - E(p + q) and by semicon
ductors in which the width Eg of the forbidden band does 
not exceed the binding energy Eexc of an exciton. In all 
these cases, depending on the spin structure of the 
electron-hole pair, there occurs either a charge-
density wave (CDW), for singlet structure of the pair, 
or a spin-density wave (SDW), for triplet structure of 
the pair. That state is realized that corresponds to the 
larger coupling constant. The CDW state is accom
panied by a rearrangement of the crystal lattice. 

Examples of states with CDW are certain semicon
ductors of the group A4B6, a number of layered and 
quasiunidimensional systems, and certain compounds 
of the tranSition metals (see, for example, (1)). The 
antiferromagnetism of chromium is explained by the 
occurrence of SDW. The semiconductor state that oc
curs as a result of CDW or SDW is customarily called 
an exciton dielectric. It was shown earlier [2) that SDW 
and CDW can coexist, which leads to a ferromagnetic 
state. 

Semiconductors with Eg > Eexc, in which electron
hole pairing does not occur under equilibrium conditions, 
behave in a similar manner under pumping of the elec
trons and holes by an external source; that is, a non
equilibrium CDW or SDW state is possible[3). Electron
hole pairing with CDW may be accompanied by Bose 
condensation of photons[4), which transforms the system 
to the laser mode. A strong electromagnetic wave in
duces, in the Fermi quasilevels of the electrons and 
holes, a field gap[5), which makes the CDW state more 
favorable than the SDW state [6). 

In semiconductors with an indirect gap Eg, the elec
trons and holes have a tendency toward condensation in 
ordinary but not in momentum space; that is, they have 
a tendency toward formation of electron-hole droplets[7), 
within which Bose condensation in momentum space may 
still occur. A peculiarity of the nonequilibrium CDW or 
SDW state is that the phase of the corresponding order 
parameter is not fixed, both because of the absence of 
distortion of the crystal when CDW occurs, and because 
of the nonexistence of interelectron interaction terms 
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connected with interband tranSitions of the particles [B). 

Therefore a phase transition in the CDW or SDW state 
is a tranSition of the second kind, and superfluidity is 
possible in the system[4). Furthermore, in such a sys
tem, in contrast to an equilibrium system, there IS pos
sible a phenomenon[9) analogous to the nonstationary 
Josephson effect. If the pumping occurs in a doped semi
conductor, then when there is effective interelectron 
attraction, there is a possibility of simultaneous exist
ence of SDW or CDW and of superconductivity[6). Then 
the temperature of the super conducting transition may 
be significantly higher than when CDW and SDW are ab
sent. 

We shall suppose below that the effective inter
electron interaction is repulsive. In this case also there 
is in general a possibility of a superconducting state, 
if the width Eg of the forbidden band is less than a cer
tain critical Ecr[lO). We shall not consider this case 
(Eg < Ecr); that is, we shall assume that superconduc
tivity, with or without pumping, is impossible. In Sec. 
3 it will be shown that under pumping of a doped semi
conductor, coexistence of CDW and SDW is possible; 
that is, a nonequilibrium ferromagnetiC state is estab
lished. In Sec. 2, the possibility is investigated of a 
magnetically ordered state of an undoped exciton di
electric under the influence of pumping. Without pump
ing, a ferromagnetic state of an exciton dielectric is 
possible only with doping. 

The question arises: in an exciton dielectric, which 
itself is a dielectric because of equilibrium electron
hole pairing, cannot electrons and holes excited by an 
external source become bound into pairs, as in the 
case of an ordinary semiconductor with Eg > Eexc? 
As a result, in the electron and hole Fermi quasi
levels there would be formed a new dielectric gap 
t.b, also of collective nature, like the basic gap t.o 
in the equilibrium state of an exciton dielectric. An 
analogous question about the possibility of pairing of 
electron and hole excitations exists in superconductors 
with pumping. 

Analysis of the system of equations for t.o and t.b 
shows that this sytem is incompatible[l); that is, elec
tron-hole pairing of excitations in an exciton dielectric 
is impossible. Apparently a similar situation occurs 
also in superconductors with pumping. Therefore what 
is investigated in Sec. 2 is the influence of noninter-
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acting excitations of the electronic and hole types on 
the possibility of coexistence of CDW and SDW. Here 
excitations of the concentration n play the same role 
as does the doping in the equilibrium case [2], although 
the form of the solutions for the magnetic phase and 
the bounds on its existence differ significantly from 
the results of the previous work[2]. 

During pumping of an exciton insulator with gap 2~ 
larger than the energy 11"'D of a Debye phonon, the dis
tribution function of the excitations may be of Fermi 
type[10]. In the absence of magnetic ordering, the more 
advantageous solution for ~(r) and n(r) is a nonuniform 
one, of the type of the solutions for a superconductor in 
an internal magnetic field [11]. Here regions in space 
with concentrations of excitations above and beiow the 
mean alternate. Such a state is like the state of elec
tron-hole drops in a semiconductor with Eg > EeXC[7], 

when inside a drop there occurs Bose condensation of 
electron-hole pairs. 

In the present paper (Sec. 2), we shall investigate 
the spatially uniform magnetically ordered state of an 
exciton dielectric with pumping. 

2. SPIN ORDERING IN AN EXCITON 
DIELECTRIC WITH PUMPING 

Under the influence of an external source, for ex
ample an electromagnetic field with frequency 11", > 2~ 
or a tunnel current, let there be produced an excitation 
of quasiparticles and quasiholes with concentration n in 
an exciton dielectric with gap ~. In contrast to the 
analogous problem in superconductors[12], the dis
tribution function f( E) of excitations in an exciton di
electric may be almost of Fermi form; that is, for T 
= 0 it may have form of a step, equal to unity up to a 
certain level /l and to zero for E > /l. For this it is ne
cessary that the dielectric gap ~ be larger than half 
the Debye phonon energy, 11",;2[13]. Since the value of ~ 
in an exciton dielectric is determined by the Fermi 
energy EF instead of 11"'D as in a superconductor, the 
condition 

(1) 

can be easily satisfied. Because of the contrary situa
tion in superconductors (~ < 11,,(012), the distribution 
function f(E) is always less than 1/2[14]; that is, it is 
significantly non- Fermi, in contradiction to the as
sumption of [12b]. 

On the basis of the diagram technique of Keldysh116 ], 

for nonequilibrium processes it can be shown[lO] that 
in an exciton dielectric under the condition (1), the dis
tribution function f(E) with pumping can have the form 

t(e)=[e'Hl1T+1]-', (2) 

n = {1 E,.;;J.t 
• 0 E>J.t' 

-ig S 
.1= (2n)' G,,(p,w)dwdp. 

The value of /l is determined from the condition that 
the total number N of excitations (quasiparticles) is 
given: 

( 5) 

(6) 

Here n is the concentration, expressed in energy units: 
n = N/4VN(O), where N(O) is the denSity of states at 
the Fermi level and V is the volume of the system. On 
substituting G21 from (4) in equation (5) and USing con
dition (6), we get 

n='I,(M.1 o)'}'(.1o-M, (7) 

where ~o = 2w e- 1/ gN(O). The dependence of ~ on n, de
termined by equation (7), is shown in Fig. 1 (Curve 1). 
The value of ~ falls with increase of n and vanishes dis
continuously from a value ~cr = 1/3~o at ncr = 

O.192~. There is a second branch of the solution 
~(n), going out from the origin, which corresponds to 
an unstable state[17]. 

We shall compare these results with the case of a 
doped exciton dielectric, in which, depending on the 
type of doping, there are at T = 0 either electrons or 
holes, but not both together, as for pumping. In the 
latter case there are two Fermi quasilevels: +/l for 
electrons and -/l for holes. For doping in the equili
brium state, of course, there is a single Fermi level/l. 
Because of this difference, the gap ~ in the case of 
doping is a single-valued monotonic function of nand 
approaches zero continuously at ncr = 1/2~. 

As was shown earlier[2], in doping of an exciton di
electric there is a possibility of coexistence of singlet 
and triplet electron-hole pairings, which leads to spin 
splitting of the bands and to ferromagnetic ordering. 
Without doping, coexistence is impossible in the equi
librium state. We shall consider the possibility of 
such a state in an undoped exciton dielectric with 
pumping. Formally, the system of equations for the 
Green functions has the same form as in the equili
brium case[2]. 

The nonequilibrium of the system can be taken into 
account by a change of the rules for bypassing poles in 
the Green function: 

'G,,""(p, w) 

where (]I is the spin index, equal to ±1; 

while the normal and anomalous Green functions J,lda,dtldo 

Gu(p, "') and G21(P, "') can be expressed in the form 1.0 

(T = 0) 
U:!. v:! 

G .. (p,oo)=---+ ---+ 2nin.[u'6(00-E)-v'6(00+E)], (3) 
00-E+i6 00+E-i6 

-il nili 
G,,(p,oo)= +-n.[6(00-E)+Il(w+E)]. (4) 

(w-E+iti) (w+E-i6) E 

Here 
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(in formulas (8) and (9), A+ and E+ are taken for a = +1, 
A- and E_ for a = -1); 

d.=-~ J doo dp {G2I II (p, ~)+iO) +G,~"-' (p, oo+iO)}, 
2 (2,,)' 

ig, 'J -I.-')} dl=--( -)- doodp{G2I"(p,oo+iO)-G" (p,oo+tO, 
2 2" • 

(10) 

and gs and gt are, respectively, the singlet and triplet 
coupling constants111 • The values of np(E:t.), ua 2(E±), and 
va2(E±) are given by formulas (5). 

On substituting, in the conditions for compatibility 
of (10), the expression for G2laa from (9), and on car
rying out the integration, we get the equations that de
termine As and At. In the case j.J. > I A.I, I A-I they have 
the form 

d, In d,o='/,[A+L++d_L_l. 

d l In dto='/,[d+L+-d_L_l. 

In the case I A- I < IJ. < I A.I , 

d,ln d,,='/,[ddn I d+ I +d_L], 

d l In A"='/2[d+ In I d+ l-d_L], 

[ (11'_A",2)'/'+111' 
L±=ln Id",1 ; 

d,,=2wexp {-1/g,N(0)}, d lO =2wexp {-1/g,N(0)}, 

where w is a characteristic cutoff energy. 

(11) 

(12) 

(13) 

(14) 

We note that, although in pumping as in doping IJ. '" 
o occurs, equations (11), (12) and (13), (14) for As and 
At differ significantly from those in the equilibrium 
state with doping[2] because of the presence, with 
pumping, of electron and hole Fermi quasilevels sim
ultaneously. Actually a similar difference leads to the 
possibility of superconductivity when there is repulsion 
in the nonequilibrium casella]. 

Since in this problem the concentration n of non
equilibrium carriers is considered given, but not the 
position of the Fermi quasilevels of the electrons and 
holes, it is necessary to append to equations (11), (12) 
and (13), (14) a relation connecting IJ. and n. In the case 
IJ. > IA.I, lA-I we have 

(11'-.'L') ",+ (112_/~+') '!'=2n, 

and in the case I A-I < IJ. < I A+I 

(11'-d- ') "'=2n. 

(15) 

(16) 

We shall consider first the equations for As and At when 
AsO = A10 = AO; that is, on a diagonal in the (AsO, A1O) 
plane. 

For IJ. > I A+I, I A-I we get from equations (11) and 
(12) 

(17) 

Since the equations for A. and A- are identical, they 
have solutions A+ = A- = As (At = 0), and the value of As 
is determined from an equation analogous to (7). Be
sides these solutions, the system of equations (17) ad
mits a solution 

d_=O, d+=4n'/do, n<'/,do or d,=d,=2n2/d o. (18) 

It can be shown that in the case A-, A+ > 0 the system 
of equations (17) has no other solutions. 

In the case I A-I < IJ. < I A.I and AsO = A1O, we get 
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from equations (13) and (14), with use of the condition 
(16), 

d,ln (IA+I/do)=O, (19) 
[2n+ (4n'+d_ ') '/0]' 

d_In O. (20) 
dold_1 

The system of equations (19), (20) has the following 
solutions: 

The dependences of As and At on n in the case AsO = 
A10 are shown in Fig. 1 (curve 1, the nonmagnetic solu
tion (7); 2a and 2b, As and At. respectively, corres
ponding to formulas (22); 3, the line As = At = Ao/2; 4, 
As = At = 2n2/ Ao) • We found the solutions on the as
sumption that A- > 0; that is, As > At. When A- < 0 
(As < At), the solutions of the system (11), (12), and 
(13) are obtained from the above by the substitution As 
= At· 

Thus for AsO = A10 we obtain the whole set of solu
tions for the order parameters As and At. The pres
ence of singlet and triplet pairings leads to a broaden
ing of the concentration range within which a dielectric 
state of the system is pOSSible, in comparison with the 
case of a single type of pairing (ncr = 3-3/2 Ao = 0.192Ao 
in the case of a single type of pairing, ncr = 0.54.0 for 
coexistence of two types of pairing). 

The question arises, which of the solutions obtained 
for AsO = A10 (Fig. 1) will be realized. Starting from a 
qualitative analysis of the dependence of the energy E 
of the system on A, we find that some of these solutions 
correspond to a maximum on the E(A) curve; that is, 
they correspond to an unstable state. For example, the 
lower branch of Curve 1 (the nonmagnetic solution As 
'" 0, At = 0) is unstable l17]. If there were no magnetic 
solutions (As'" 0, At '" 0), then with increase of the con
centration n of nonequilibrium excitations, the gap A 
would decrease and would become zero discontinuously 
at n = ncr = 0.1924.0. For n > 0.192Ao there are two 
types of magnetic solutions; in both, As = At. 

One solution (Curve 4 in Fig. 1) corresponds to IJ. 
> I A.I ("weak" ferromagnetism); here As and At have 
a nonphysical behavior, since they increase with in
crease of pumping. This branch is unstable. Therefore 
in the range 0.192 < n/ Ao < 0.5 solution (21) is 
realized ("strong" ferromagnetism, I A-I < IJ. < I A.I, 
Curve 3 in Fig. 1). For 0.096 < n/ Ao < 0.192 the solu
tion (21) is energetically more advantageous than the 
nonmagnetic solution (7), and therefore it is also 
realized. In the range n < 0.096Ao the energetically ad
vantageous solution is (22) ("strong" ferromagnetism), 
corresponding to the upper branch of Curve 2a for As 
and the lower branch of Curve 2b for At. The lower 
branch of Curve 2a for As and the upper part of Curve 
2b for At correspond to an unstable state. 

Thus for AsO = A10 and for n < 0.0964.0, the parame
ters As and At vary according to the stable sections of 
Curve 2 of Fig. 1 (As decreases with increase of n, 
while At increases). There was an analogous behavior 
also in the case of a doped exciton insulator l21 . True, 
in the latter case As and At varied smoothly up to the 
value Ao/2, and on further increase of n remained equal 
to the value Ao/2 until n = 0.5Ao, where both became 
zero discontinuously. In the present case, at the point 
n = 0.096Ao the value of As drops discontinuously to 
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the value tlo and At rises discontinuously to this same 
value; at n = 0.5Ao both become zero discontinuously, as 
in the case of doping. 

A difference in principle between the "magnetic" 
solutions with pumping and the doping case consists in 
the fact that a net magnetic moment does not occur in 
pumping, since the moment of the electrons above the 
gap is compensated by the moment of the hole states 
below the gap. But in the doping case l2J there are, de
pending on the type of doping, either only "excess" 
electrons above the gap, or only hole states below the 
gap. Thus a net moment can exist in pumping only in a 
doped material, in which magnetization existed also be
fore the pumping. Here the influence of the pumping re
duces to a change of character of the magnetization. 

In the case AsO '" AW, the system of equations (11), 
(12), (15) has a solution At = 0, As = Aso (AsO is deter
mined by formula (7)) and a solution As = 0, At = AtO 
(AtO is determined by formula (7)). Both of these solu
tions are nonmagnetic. In addition to these solutions, 
the system (11), (12), (15) may, for certain values of 
the parameters AsO and AW, have ferromagnetic solu
tions. We shall find on the (AsO, AW) phase diagram 
the line on which At first appears when As '" O. For 
this purpose we shall set At = 0 in equations (11) and 
(15) and shall expand the right side of (12) up to quad
ratic terms in At: 

OJ 0,4 
n/I1,o 

FIG. 3 

magnetic solutions only outside the region bounded by 
Curves 1 and l' in Fig. 2. We note that in the doping 
case the curve As = 0 underwent a smooth transition 
into the curve At = O. In the pumping case these curves 
as it were repel each other. 

From consideration of the case AsO = AW it is clear 
that in addition to the lines of phase transition of 
the second kind already found, the (AsO, AW) phase dia-

2Ll.' 
1 ]+O(M). 

(23) gram should contain lines of transition of the first 
kind. In order to find these lines, the systems of equa
tions (11), (12), (15) for /1 > I A;. I and (13), (14), (16) for 
I A_I < /1 < I A+ I were solved numerically. 

On letting At approach zero, we obtain from (23) after 
simple transformations 

Ll"Ll,= [n+ (n'+Ll.') '/'J', 
LlIO 2Ll. z 

ln~+ n[n+(n'+Ll.')"'] + 1=0. (24) 

Equations (24) determine the line on the (AsO, AW) 
plane on which At first appears. This is a line of phase 
transition of the second kind into a ferromagnetic 
state. We find similarly the line on which As first 
appears when At '" 0) (the line As = 0). In Fig. 2 the 
line At = 0 is represented by Curve 1, the line As = 0 
by Curve 1'. It is easy to show that Curve 1 has the 
asymptotes AW = 0 and AW = Aso! e, Curve l' the 
asymptotes AsO = 0 and AW = eAsO. 

The system of equations (11), (12) (15) corres
ponds to weak ferromagnetism (/1 > I A;. I , I A.. I ) and has 

fa 

f', / 

/ 

FIG. 2 
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Figure 3a shows the dependence of As on the con
centration n of nonequilibrium excitations, Fig. 3b the 
dependence of At on nl for various values of Ato! AsO 
< 1 (for 1 and 1', AtOl ApO = 0.9; for 2 and 2/' Ato! AsO 
= 0.7; for 3 and 3', Atol AsO = 0.2). For AW AsO > 1, 
the solutions for As and At are obtained from those 
given above by the substitution As ¢ At. AW ¢ AsO. 
From the figure it is evident that in the case of coexist
ence of singlet and triplet pairings, the range of exist
ence of a dielectric state is broadened. 

With increase of n, at a certain ncr the Singlet and 
triplet gaps simultaneously become zero discontinu
ously. This is a point of phase transition of the first 
kind in the metallic state. In the (AsO, AW) plane (Fig. 
2), the line of transitions of this type is represented by 
curve 2. Beginning with Ato! AsO "" 0.7 and up to Ato! 
AsO "" 1.4, on the As vs n and At vs n curves for I A.. I 
< /1 < I A+ I there are regions of multivaluedness (for 
example, the region (a, b) on curve 1 of Fig. 3). Points 
of the type a and b may be points of first-order phase 
transition within the region of strong ferromagnetism. 
Lines of such transitions are shown in Fig. 2 (curve 
3). On the diagonal AsO = AW, point B of curve 3 (Fig. 
2) corresponds to a discontinuous transition from line 
3 to line 2 in Fig. 1; that is, on section AB (Fig. 2) the 
state (21) is realized. 

As is evident from Fig. 3, for a given value of n 
there exist up to two solutions both for As and for At, 
of which one corresponds to I A.. I < /1 < I A;. I (curves 1, 
2,3) and the other to /1 > I A+I (curves 1', 2', 3'). The 
latter solution is apparently unstable, since on the 
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branches corresponding to it both parameters ~s and 
~t have a nonphysical behavior, increasing with in
crease of the pumping intensity. Therefore curves 1 
and l' in Fig. 2 also correspond to a nonphysical state. 
Thus everywhere above and to the right of curve 2 in 
Fig. 2 a state of strong ferromagnetism arises dis
continuously; that is, I A-I < Il < I a.1, ~s '" 0, ~t '" O. 
Below curve 2 the system is a metal. 

Everywhere above, we supposed that the concentra
tion n of excitations was given, and the position of the 
Fermi quasilevels +Il for quasiparticles and -Il for 
quasi-holes was determined by the pumping n and the 
parameters ~s and ~t (see formulas (15), (16». An 
analogous situation is realized in an exciton dielectric 
in equilibrium, with doping, when the concentration of 
the surplus carriers (either electrons or holes) is set 
by the impurity concentration. In the equilibrium case 
one can imagine a situation in which there is an addi
tional band at the Fermi level with an infinite denSity 
of states. Then the position of the Fermi level Il will be 
fixed by this band. A state with a prescribed position 
of the Fermi quasilevel (+Il for quasiparticles and-Il 
for quasi-holes) can be formally realized by prescrip
tion of the frequency n of a powerful monochromatic 
source in the saturation mode (5 ), the energy of a quan
tum being larger than the width of the forbidden band. In 
this case equations (11)- (14) for ~s and ~t must be 
solved with Il = const; that is, without the additional 
conditions (15) and (16). 

Results of a numerical solution of these equations 
for ~s and ~t as functions of Il are shown in Fig. 4. 
Curves 1, 2, 3 correspond to the parameter ~s, curves 
1', 2', 3' to the parameter ~b for the case I A-I < Il 
< I ~+I and ~to/ ~sO equal to 0.9,0.5,0.2. Curves 4, 5, 
6 correspond to ~s, 4', 5',6' to ~t, for Il > I ~~I and the 
same respective values of the parameter ~tO/ ~sO. 
Curve 7 corresponds to the nonmagnetic solution ~s 
= ~sO, ~t = 0, Il < ~s, curve 8 to the nonmagnetic solu
tion ~s '" 0, ~t = 0, Il > ~s' As is evident from Fig. 4, 
the most favorable solution is ~s = ~sO, Il < ~s. The 
saturation mode, analogously to that considered by 
Galitskii and others (5 ), would correspond to the case Il 
> ~s, which is not realized, since for Il > ~sO the solu
tion ~s = ~sO (curve 7) becomes zero discontinuously. 
The reason for the impossibility of this state is as fol
lows: As soon as, with increase of the field frequency, 
n exceeds the value 2Ao by ever so little, the gap ~s 
must decrease because of the quasiparticles that ap
pear. Then because of the fixedness of the frequency n 
of the position of the Fermi quasilevels ±Il, the concen
tration of quasiparticles will increase, and so on. There 
occurs an avalanche-type disappearance of the gap ~s. 

In addition to the nonmagnetic solutions ~s = ~sO and 
~s '" 0, ~ = 0, Il > ~s (curve 8 in Fig. 4), for Il = const 

QB 

Q6 

1.0 

FIG. 4 
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there are magnetic solutions with ~s ?! 0, ~t '" O. In the 
equilibrium case (in the presence of a Fermi level 
either of electrons +Il or of holes -Il), the branch cor
responding to the magnetic solution is single-valued. 
Here ~s and ~t nonphysically increase with increase of 
Il, which is a sign that the state is unstable; that is, a 
magnetic state for Il = const is impossible(2 ). But in our 
case the magnetic-solution branch is three-valued; that 
is, there appears a stable-state section, on which ~s 
drops with increase of Il. On this section Il > A- (Il = 
tm/2); that is, a saturation mode can occur for the 
magnetic state (strong ferromagnetism). As ~tol ~sO 
approaches unity, the Il range (and consequently also 
the range of frequency n of the external source) 
broadens, as is evident from Fig. 4. 

We emphasize once more that the saturation mode in 
the nonmagnetic state of an exciton dielectric is im
possible. 

3. MAGNETIC STATE OF A SEMICONDUCTOR 
IN THE FIELD OF A STRONG 
ELECTROMAGNETIC WAVE 

We shall consider a semiconductor in which the ex
trema of the conduction and valence bands coincide in 
momentum space, in the field of a coherent light source 
of frequency n, where tin > Eg (Eg is the width of the 
forbidden band). For Simplicity we shall suppose that 
the effective masses are the same in absolute value 
in the two bands. In such a system, with sufficient 
source power, a saturation mode is possible(6 ), in 
which the states in the conduction band up to the level 
+EF (from the bottom of the band) will be filled with 
electrons, and the states in the valence band up to the 
level - EF (from the top of the band) will be filled with 
holes. At the corresponding Fermi quasilevels ±Il, in 
the absence of electron-hole interaction, there arises 
a dielectric gap x, proportional to the amplitude Eo of 
the field: 

;.= (e/2Q) V"Eo 

(V ve is the matrix element of the interband transition 
for the velocity operator). Such a state is poss ible for 
a normal semiconductor, in distinction from an exciton 
dielectriC, because the value of Eg is determined prin
cipally by noncollective effects. 

We shall suppose that the interaction between elec
trons within each band is of repulsive nature, so that 
the normal super conducting state considered earlier (6 ) 

is impossible. At a sufficiently large value of Eg, which 
is also assumed below, there is also no possibility of 
superconductivity caused by interelectron repulsion 
with inversion l10 ). We shall therefore disregard intra
band interelectron interaction. 

The Hamiltonian of the system has the following 
form: 

,0 
~ + + + ~ gacpa.at;p·~av,p·-q,pac.p+q,a., 
qpp' 

.~ 

(25) 

where a~ O! and a~O! are the creation operators of elec
trons in t'?:.e conduction band and in the valence band, and 
where O! and {3 are the spin indices. In the Hamiltonian 
(25), all that remains of the interband interaction is the 
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term with effective constant 

g=(ellivF ) In (4plIx D') , 

corresponding to interaction of the plane-plane type 
(here vF, PF, and KD are determined by the concentra
tion n of electrons and holes). 

We shall suppose that the frequency n and the am
plitude Eo of the field are so chosen that naB3 » 1. Then 
for a large value of Eg (Eg » me4/ E2n2), interaction 
terms connected with conversion of particles of one 
band to particles of another band[2] should be omitted; 
this has also been taken into account in the Hamiltonian 
(25). In this case the constants gs of singlet and gt of 
triplet electron-hole pairing will be the same (gs = gt 
= g). The interband conversion term in (25), propor
tional to A, does not become small because of a large 
value of Eg, because for nn "" Eg there is possible a 
real process of interband transition in such a field, and 
therefore there does not occur a large energy denomi
nator for the transition probability. 

After the unitary transformation [5] 

p. 

the Hamiltonian (25) reduces to the form 

Ii = .E {so (a,;.a, •• -a,:.a,p.) +Aa,;.a,." +1. ·a,;.a,p.} 
p. 

+ .E gae!aa,,!'tlal1,P'_Q,l'Iac,P+Q,a.; 

qpp' 
.p 

(26) 

(27) 

For A = 0, the expression (27) coincides exactly with 
the Hamiltonian for a semimetal with gs = gt[l]; that is, 
in this case the excited electrons and holes play the 
same role as in the equilibrium state of a semimetal. 
If the original semiconductor was undoped, then, as 
will be shown below, spin splitting does not occur; that 
is, a nonmagnetic saturation mode is realized[5]. But in 
the case of a doped semiconductor, in which the Fermi 
quasi-levels of the electrons and holes are outside the 
gap that is formed as a result of electron-hole pairing, 
spin splitting occurs; that is, a magnetic saturation 
mode is realized. 

We introduce the Green function: 

In the z-representation we obtain as in [2] 

G2I""(p, w) = )] ( + +E 'Il]' (29) [w+~-E±+illsign(E±-~ w ~ ±-! 

L\±=~±L\" ~=A+L\" 

where the Sign + corresponds to a = 1, the sign - cor
responds to a = -1, Il is the displacement of the chemi
cal potential because of doping, and 

L\. = - 2 (~~)' S dw dp{G2I " (p, w+iO)+G;;I.-1 (p, w+iO)}, 

ig S -1-1 L\,=---)- dw dp{G2I " (p, w+iO)-G2I ' (p, w+iO)}. 
2(211 " 

(30) 

On substituting in the condition for compatibility of 
(30) the functions G21aa from (29), we get the equations 
that determine the order parameters As and At: 

1108 SOy. Phys.-JETP, Vol. 42, No.6 

(31) 

here N(O) is the denSity of states at the Fermi quasi
level; it is proportional to the intensity of the pumping. 
The system of equations (31) has been written for the 
case Il > I A,. I , I A-I. To equations (31) must be ap
pended the condition for electrical neutrality, which in 
this case has the form 

(32) 

where n = N/ 4VN(0) is the impurity concentration ex
pressed in energy units. 

Equations (31) can be reduced to the form 
~+(~2_L\±2)'/' A 

L\+In = __ 
- L\o gN(O) , 

where Ao = 2we- 1/gN(0). 

We obtain similarly the equations for A,. and A- in 
the case I A-I < Il < I A+ I , 

IL\+I A 
L\+In~= g./V(O) , 

L\_In ~+(~2_L\_')'" =_1._ 
L\o gN(O) 

and the condition for electrical neutrality, 

(~2_L\_2) "'=2n. 

(33) 

(34) 

(35) 

(36) 

In the absence of doping (Il = n = 0), the equations for 
A,. and A_ are identical and independent: 

I L\±I A. 
L\±In--=--. 

L\o gN(O) 
(37) 

It is easy to show that for positive A,. and A-, when A '" 0, 
equations (37) have only nonmagnetic solutions (A- = A,. 

= :E, At = 0). If A- < 0 (that is, At > As + A), then for A 
< AogN(O)/ e the system of equations (37) permits ferro
magnetic solutions (curve 1 for At and l' for :E in Fig. 
5). We note that when A = 0, there is a ferromagnetic 
solution of the system (37) when A-, A,. "" 0 (A- = 0, A,. 
= Ao). 

When n is different from zero, the system (32), (33), 
in addition to the nonmagnetic solutions, has ferromag
netic solutions also when there is a certain relation 
between nand A. We shall find the line in the (n, A) plane 
that separates the regions of nonmagnetic and of ferro
magnetic solutions (the line At = 0). From equations 
(32) and (33) we get the system of equations that de
termines the dependence of A on n and the value of :E 
when At = 0: 

FIG. 5 
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n+(n'+~')'" " ~In 
lio gN(O) , 

~3 " 
(38) 

n[n+ (n'+~') ii] gN(O) , 

Curve 1 in Fig. 6 shows the dependence of n on X ob
tained by numerical solution of the system of equations 
(38). We shall find the line in the (n, X) plane that 
separates the regions of weak (Il > [Do+ [) and strong 
( [A..[ < Il < [Do+ [ ) ferromagnetism. When n and X lie 
on this line, Do+ = Il. Therefore on setting Il = Do+ in 
equations (32) and (33), we obtain after some transfor
mations 

). 
(li '+In') 'Ii In (li +2n) = --. 

+ + gN(O) 

By numerical solution of the system of equations (39) 
we find the desired line (curve 2 in Fig. 6). 

(39) 

Thus in the (n, X) plane (see Fig. 6) three regions 
can be distinguished: a) above curve 1 in Fig. 6, a re
gion of nonmagnetic solutions; b) between curves 1 and 
2, where along with nonmagnetic solutions there are 
solutions with Il > [.<l.[ (a region of weak ferromag
netism); c) below curve 2, where in addition to nonmag
netic solutions there are solutions with [A..[ < Il < [Do+ [ 
(a region of strong ferromagnetism). 

When X = 0, Eqs. (33)- (35) go over to the corres
ponding equations of a previous paper(2] on the diagonal 
(gs = gt)· In this case there are solutions correspond
ing only to strong ferromagnetism, which are more 
favorable than the nonmagnetic. In the general case 
with X and n different from zero, the systems of equa
tions (32), (33) and (34)- (36) were solved numerically. 
For the case A.. < 0 (that is, Dot > X + Dos), graphs of the 
dependence of .D.t and :E on X are shown in Fig. 5 (curves 
1,2, 3, 4 correspond to the parameter Dot, curves 1', 2', 
3', 4' to the parameter :E for [A..[ < Il < [.Do. [ and for val
ues of n/ ~ equal to 0,0.1,0.2, 0.4 respectively). It can 
be shown that when A.. < 0, the system of equations (32), 
(33) corresponding to Il < [Do+ [, [A..[ has no solutions. 

Figure 7 shows the dependences of Dot and of :E on n 
for various values of X in the case A.. > 0 (curves 1, 2, 
3,4 correspond to the parameter :E, curves 1', 2', 3', 
4' to the parameter Dot for values of V ~gN(O) equal to 
0, 0.1, 0.5, and 1.0 respectively; the dotted lines cor
respond to nonmagnetic solutions). 

We shall consider, for example, curves 2 and 2' in 
Fig. 7. For n/ ~ < 0.544 they describe a solution of 
the system (34)- (36); that is, they correspond to 
"strong" ferromagnetism. The system of equations 
(32), (33) has no solutions in this n interval. For n/ Doo 
= 0.544 the displacement of the chemical potential Il = 
Do+, and for larger values of n the system of equations 
(34)-(36) has no solutions. Starting with n/ ~ = 0.544 
there appears a solution of the system (32), (33) (Il > 

nf4, 

FIG. 6 
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1.6 

---1.1 

FIG. 7 

[Do+ [, "weak" ferromagnetism); and when n/ ~ "" 0.574, 
Dot vanishes. For n/ ~ > 0.574 there are only nonmag
netic solutions. 

Curves 1, 1', 1" in Fig. 7 correspond to X = 0 and 
are completely analogous to the case of an exciton di
electric l2 ]. From a comparison of these curves with 
curves 4, 4'; 2, 2'; 3, 3' (X ;r. 0) it is seen that when X 
;r. 0 the n region for magnetic solutions increases; in
stead of the discontinuous simultaneous disappearance 
of Dos and Dot when X = 0, the parameter Dot disappears 
smoothly when X ;r. 0, whereas :E meanwhile remains 
finite, approaching zero for n - ao. We remark that in 
the case of an equilibrium exciton dielectric (in the ab
sence of pumping), the role of the parameter X is quali
tatively analogous to the effect of interband hybridiza
tion. 

The expression for the change of energy oE in unit 
volume in our case is completely analogous to the cor
responding expression for an exciton dielectric(2]. From 
a comparison of the energies for different solutions of 
the equations for Dot and :E it is evident that for n < nl 
(nl "" 0.54~ for V ~gN(O) = 0.1- nl = 0.63~ for V 
DoogN(O) = 0.5; nl = 0.71~ for ;; ~gN(O) = 1.0), the solu
tions of equations (34), (36), corresponding to A.. , .Do. > 0, 
are more favorable than either the nonmagnetic or the 
ferromagnetic solutions, corresponding to A.. < 0 (nl is 
less than the concentration at which there occurs a 
transition from strong to weak ferromagnetism). For 
n > nl, the most favorable of all is the nonmagnetic 
solution. 

Thus in a doped semiconductor with pumping, states 
with Dos + X > Dot will be realized; when 0 < n < nl, the 
energetically favorable state is that of strong ferro
magnetism, [A..[ < Il < [.<l.[, whereas when n > nl it is 
the nonmagnetic saturation mode(5]; that is, the state of 
weak ferromagnetism is not realized under any condi
tions, just as in the case of an exciton dielectric[2]. 

We note that the possibility, which we have studied in 
Sec. 3, of magnetic ordering (spin orientation) of non
equilibrium electrons in a semiconductor with a large 
gap Eg differs importantly from the case, investigated 
experimentallyl1S] and theoretically(19] for semicon
ductors with a peculiar band structure, in which dipole 
transitions under the action of a circularly polarized 
electromagnetic wave are different in states with spin 
projections 1/2 and -1/2. In our model, such transi
tions were supposed to be equally probable, and fur
thermore the electromagnetic wave was supposed to be 
unpolarized. The spin orientation arose as a manifesta
tion of a collective effect, absent in the Single-electron 
(band) approximation; therefore in our case it remains 
as long as the pumping source is acting. But under the 
conditions of the papers of Zakharchenya et aL US] and of 
D'yakonov and Perel'[19], the orientation exists only for 
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times of the order of the spin-relaxation times. 

In the papers of Kokin and Popovkin[2o), as distin
guished from the paper of D'yakonov and Perel,[19), the 
electromagnetic field is supposed to be strong and is 
therefore taken into account exactly, just as in section 
3 of the present paper. Furthermore, in [20) it was de
duced qualitatively that just one singlet electron-hole 
pairing because of Coulomb interaction in the scheme of 
D'yakonovand Perel' (see (19)) leads to a diminution of 
the degree of orientation produced by an electromag
netic field of circular polarization. 

The effects, studied in the present paper, of spin 
ordering of nonequilibrium excitations can be detected 
experimentally both by magnetic measurements and 
from the character of the frequency spectrum and 
polarization of luminescence. In the spectrum of the 
radiation there should be two dips in the frequency de
pendence of the intensity, corresponding to the parame
ters t... and to... in the electron spectrum. In distinction 
from the experiments of Zakharchenya et al.[lS), the 
polarization of the radiation should take place during 
the entire time of action of the pump, and not only at 
the instant when it is turned on. Furthermore, the 
magnetic ordering produced by the collective effects, 
which we have considered, of coexistence of singlet 
and triplet electron-hole pairings should, with rise of 
temperature, disappear by phase transition. 
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