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Quantum oscillations of the second harmonic amplitUde of sound in a conductor located in a magnetic field 
are considered. These are due to oscillations of the nonlinear electron susceptibility. It is shown that the 
only condition for the existence of strong nonlinear susceptibility oscillations is the presence of a quantizing 
magnetic field. Quantum oscillations of the second harmonic amplitUde can be observed in the propagation 
of sound along the magnetic field, as well as perpendicular to it. In the latter case, oscillations of geometric 
resonance may be superimposed on the "ordinary" quantum oscillations. The calculation is performed for 
an arbitrary electron spectrum and a closed Fermi surface. 

PACS numbers: 72.50.+f, 75.80.+q 

It is known that the sound absorption coefficient in a 
conductor located in a quantizing magnetic field can 
undergo strong oscillations with the magnetic field-the 
so-called giant quantum oscillations. [IT At the present 
time, this effect is widely used for the study of Fermi 
surfaces of metals. In the works of Demikhovskir and 
the author, [2,3J the existence of another effect has been 
pOinted out-strong oscillations of the nonlinear suscepti
bility in the propagation of sound along the magnetic field, 
which can lead to oscillations of the amplitude of the 
second harmonic of the sound. The second-harmonic os
cillations were then discovered experimentally. [4J How
ever, the conditions for the existence of these oscilla
tions have not previously been conSidered. In contrast 

'th[2,3J h I th f' . Wl , were on y e case 0 an lsotroplc and quad-
ratic spectrum was considered, we give a calculation 
here for a closed Fermi surface and an arbitrary spec
trum. We have shown that strong quantum oscillations of 
the second harmonic can be Observed even when q 1 H 
(q is the sound wave vector, H the constant magnetic 
field strength). In this case, oscillations of geometric 
resonance can be superimposed on the "ordinary" quan
tum oscillations. In contrast to the quantum oscillations 
of the absorption, the presence of a quantizing field is 
actually the only condition for the existence of strong 
second-harmonic OSCillations. 

1. For a description of the interaction of electrons 
with sound, we use the Simplest model of a deformed 
potential. The Hamiltonian of the interaction of an elec
tron with the lattice is of the form 

V(t)=Adivu, 

where A is the deformation potential constant, which we 
shall for simplicity assume to be independent of the mo
mentum; u is the lattice displacement vector. 

We now write down the equation of motion of the lat
tice; 

Poo'ulot'=AAu+AVn, (1) 

where po is the density of the crystal, A the elastic modu
modulus, and n the electron concentration. The concen
tration of electrons n depend nonlinearly on the lattice 
displacement vector u, and this fact leads to the genera
tion of higher harmonics of the sound. In the absence of 
a magnetic field, electron nonlinearity in metals gives a 
contribution to the generation of harmonics that is of the 
same order as the lattice and "geometric" nonlinearities. 
However, we shall be interested only in the electron non-
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linearity; therefore, we use the linear equation of elas
ticity theory (1). 

Let a sound wave propagate in the sample with fre
quency w, wave number q and amplitude u; 

u (r, t) ~lIe'q·-'wt+c.c. 

Assuming the amplitude of the fundamental u to be given, 
we find the amplitude of the second harmonic U(2) from 
(1), recognizing that U(2) '" 0 on the boundary of the sam
ple; 

where L is the distance from the sample boundary, 

~=(2A)-",\')«')(2"" 2q) (qu)', 

X (2) (2w, 2q) is the nonlinear susceptibility, defined by 
the relation 

(~nl"~)(I" (2"" 2q) V'e"(q·-w"+ c.c. 

(2) 

on (2) is the correction to the electron concentration at 
the frequency of the second harmonic, V '" iAqu. The 
expression (2) is valid if the conditions of synchronism 
are satisfied at the distance L, and rL « 1 (r is the 
damping coefficient). 

As will be shown below, the nonlinear susceptibility 
x(2)(2w, 2q) in the quantizing magnetic field can undergo 
strong oscillations, which leads to oscillations of the 
sound second harmonic. 

2, We proceed to the calculation of the nonlinear sus
ceptibility. We shall start out from the equation for the 
single-particle density matrix p; 

iJji/iJt+i[H, iij=/(p), (3) 
".. ,.. A "" 

where H '" Ho + V(t), Ho is the Hamiltonian of the electron 
in the quantizing magnetic field and I(p) is the collision 
integral. The T approximation is often used for approxi
mation of the collision integral, and is written in the 
form ' 

(4) 

where Po(Ho) is the equilibrium density matrix and Tis 
the relaxation time. However, such a collision integral, 
as is well known, does not conserve the number of par
ticles and its use in the calculation of the reaction of the 
system to a longitudinal wave can lead to incorrect re
sults. 

The collision integral, which describes the relaxation 
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in terms of an "instantaneous-equilibrium" density 
matrix is physically more justified: 

l(p)=-(p-Po(Ii, ~»;';. 

The operator Po(H, ?;) satisfies the equation 

[H-~, po(lI, m=O 

(5) 

(6) 

with boundary condition Po(H, ?;) = Po(Ho) if V(t) = O. The 
parameter /; is the nonequilibrium contribution to the 
chemical potential, determined from the condition. 

(7) 

where n(r) is the particle denSity operator. 

If the perturbation V does not depend on time, then 
?; = 0 and the solution of (3) will be 

p=p~(if) =po(Ho+ V). 

The collision integral (5), by virtue of the condition (7), 
preserves the number of particles. Such a collision 
integral is also used frequently in the literature. It was 
applied, for example, to the calculation of the linear 
conductivity tensor in a quantizing magnetic field. [5J We 
shall also use the collision integral in the form (5)); 
however, in the specific cases considered by us, the 
parameter ?; is small and can be neglected. Therefore, 
we shall immediately set ?; = 0, so that we do not have 
to write out more cumbersome general formulas. 

Let V(t) depend on the time according to the law 

V(t)=Ve-i·'+H.c. 

The operator Po(H) is now expanded in powers of V: 
po (Ii) =po (Ho) +e-i.,p'p' +e-"·'po(" +. . . (8) 

Solving Eq. (6) by the iteration method, we get 

(9) 

(10) 

where P~~A' and VAA , are the matrix elements in the 
wave functions of an electron in the magnetic field, A is 
the complete set of quantum numbers of the electron, 
EA the eigenvalues of the energy, fA the equilibrium dis
tribution function of the electrons. 

We write down the density matrix p in the form 

p=p~ (il) +e-i.'p(1 '+e-"·'p(',+ . . . (11) 

Solving Eq. (3) in the linear approximation, we get 

In the next approximation, we have 

Using Eqs. (10) and (13), we get for the nonlinear 
susceptibility X( 2) (2w, 2q) 

'1.(" (2Ul, 2q) = E <"'/e-2iQ'/"><,,/ei "/,,I/><,,I//ei"/,,'> 
"-,A',)." 
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(12) 

(13) 

{ 1 [f.-fA" fAu-t..] x -- ---~ __ 
eA.-EA' e,,-c,," e","-e,,' 

3. We first consider in more detail the case in which 
the sound is propagated along the magnetic field. We 
shall assume the magnetic field to be parallel to the z 
axis. If the Fermi surface is closed, then the energy EA 
depends only on the two quantum numbers EA = En(pZ)' 
Pz is the projection of the momentum on the direction of 
the magnetic field. and n = 0, 1, 2, ... (for simplicity, we 
shall not take spin splitting into account). Let the condi
tion 

qR<1, (15) 

be satisfied, where R is the Larmor radius. In this case 
we have for the matrix elements 

(16) 

In several special cases, for example, for an isotropic 
and quadratic spectrum, the expression (16) is accurate 
and its validity is not connected with satisfaction of the 
inequality (15). 

In addition, we shall assume that the following in
equalities are satisfied: 

q'fmT<l, ms'<T, (17) 

where m is the effective mass, T the temperature, s the 
speed of sound; then (14) can be transformed into the 
expression 

eH { 1 i}'f Ul i)'f 
X(2'(2Ul,2q)=~IES dp. 2W+ 2v.,(p,)q-2Ul-h; , Je' 

n 

Ul 0 q af} 
+ 2vn (p,) q-2Ul-i,-1 0 p, Vn (p,) q-Ul-i-r I oe ' 

(18) 

where vn(pz) = aEn/apZ is the velocity, e the charge of 
the electron (absolute value) c the speed of sound. We 
obtain this formula by solving the one-dimensional 
"classical" kinetic equation. 

By virtue of the second inequality (17), the largest 
contribution will be made by the first term in the curly 
brackets of Eq. (18), and we get 

eH 1 i)'f 
x("=-~Sdp,--. 

2,,'c "-.i 2 0 e' 
(19) 

The physical meaning of Eq. (19) is extremely simple. 
Actually, the condition ms 2 « T means that the electrons 
on the Landau level with maximum n = nF' which interact 
resonantly with the sound, are not degenerate. At the 
same time, the small contribution s(T/mrl12-the ratio 
of the sound speed to the thermal speed of the elec
trons-is the parameter of the adiabaticity for electrons 
on the Landau level with n = nF (on other levels, such 
parameters are the ratios s/vnF' where vnF is the Fermi 
velocity on the n-th level). Because of this, the non
linear reaction of the electrons is identical with the 
static one and can be obtained from the expansion of 
Po(Ho + V) in powers of V, i.e., from ;;~2). It is by calcu
lating the nonlinear susceptibility with the help of the 
operator Pb2) for small q that we obtain (19). It is clear 
that, inasmuch as the nonlinear susceptibility is iden
tical with the static value, it does not depend on the 
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scattering (of course, if the condition nT » 1 is satis
fied, n being the cyclotron resonance) and Eq. (19) 
remains valid even for ql < 1 (l is the free path length). 
On the other hand, the expression (19) is valid even in 
the case in which T = 00. 

We now estimate the magnitude of the nonlinearity. 
For n » T and upon satisfaction of the resonance con
dition J1ln = nF, where J1 is the chemical potential, the 
baSic contribution to the nonlinearity is made by the 
component with n = nF' Calculating it, we obtain 

ell (2mT)!! 
X(2) """' 2:rt2.c ~-T-'-' (20) 

which can exceed appreciably the value of the nonlinear
ity without a magnetic field: 

x") (l/=O) oom'/2n'pF, (21) 

where PF is the Fermi momentum. Summation over n in 
(19) can be carried out by using the Poisson formula. 
After standard calculations, we obtain the following ex
pression for the oscillating part of X(2): 

x~~=- ell ~ ~ k'/'Q-' (p,m) (_C_I 8'Sm II~)-'h 
nC £...J £...J 2nell 8 p,' 

11=1 m (22) 

( cS n ) 
XIjJ(Amk)sin k ellm ±T ' 

where 

ljJ(z)=zl"h Z, Am =2n'TjQ(p,m), 

Sm is the area of the extremal cross section of the 
Fermi surface, and P~ is the momentum corresponding 
to this cross section. The nonoscillating part is the same 
as in the absence of a magnetic field. 

If n »21T 2T and if the resonance condition cSm/eH 
= 21TnF is satisfied, all the harmonics in (22) are added 
in phase and the contribution to the sum over k is made 
by a large number of harmonics with k -;:; n/21T~. 
Replacing the summation over k by integration, we again 
obtain the contribution of a single component with n = nF 
in the initial sum over n (20). Thus we see that the 
nonlinear susceptibility X(2) in a quantizing field can 
execute strong, essentially nonsinusoidal oscillations 
with the magnetic field, which One can call giant quantum 
oscillations. 

We also note that, as follows from (19), the nonlinear 
susceptibility X(2) can be expressed in terms of the 
linear X< 1> and the total number of particles no: 

1 8'1.(1). J lPn, 
'1.")=----=-- (23) 

2 8fJ, 2 UfJ,' 

The oscillations of the linear susceptibility in the situa
tion that we have considered, in which the inequality (17) 
is satisfied, are of course small. 

4. Now let the sound be propagated perpendicular to 
the magnetic field: q 1 H. Here, just as above, we shall 
assume that the inequality qR « 1 is satisfied. Then, 
taking into account only the matrix elements that are 
diagonal in the quantum number n, since the remaining 
matrix elements are small, and taking in (14) the limit 
as qz - 0, we get 

(" 2w 2 )=~ ~S d {~~_~ w iJ'!} x ( . q 2n'c 4" p, 2 lie' 2 w+i (2't) -. De' . (24) 

If WT « 1 then we again get 

(2)- ell ~Sd ~!2 x - 2n'c £...J p, 2 de' • 
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and in the case in which WT - 00, the expression (24) 
vanishes. Thus, we see that, to obtain the correct static 
lim it for the susceptibility X (2\2w, 2q) in this case, we 
must take the scattering into account, in contrast to the 
situation when the sound is propagated along the magnetic 
field. while use of the collision integral (4) would have 
led to an incorrect result. The nonlinear susceptibility 
X (2) (2w. 2q) thus calculated goes to zero as qR - 0, 
independent of the values of the parameter WT. 

It follows from Eq. (24) that the nonlinear susceptibil
ity in the low-frequency region WT « 1 can execute giant 
quantum oscillations, just as for q II H. At large values 
of the parameter WT the oscillations are weakened, as 
follows from (24). However, we must note that in this 
case, when q 1 Hand WT » 1, the model of interaction of 
electrons with the sound that we have used is unsatisfac
tory. since it is necessary to take the electromagnetic 
field into account. It appears, however, that a weakening 
of the oscillations for large values of WT is the correct 
result. We shall not consider this question further. 

We now proceed to the general case, when the param
eter qR can take on arbitrary values. In the quasiclass
ical approximation nF » 1 and q « PF' the foll?wing 
expression is valid for the matrix element < A le1q . rl A' >: 

Tel t 

<no p" px+qxk"ln', p" px>=/' (q. En. p,) = -/;- S dt exp{ iq S v(t.)dt.+ilQt}. 
ei 0 0 

(25) 

where 1 = n' - n, V(t) = V(En' Pz' t) is the velocity and Tcl 
= 21Tln is the period. The integral (25) is calculated 
from the classical trajectory. The matrix element Jl (q) 
is exponentially small if 1 »qR; therefore the important 
contribution is made by terms with 1 -;:; qR « nF' inas
much as q «PF' Consequently, we can assume that 

E"cI(P,) -e.,,(p,) =!Q(p,). 

We will again consider only the case WT « 1. Then 
the basic contribution to the nonlinear susceptibility is 
made by terms that are independent of frequency, ob
tained from the expansion of the instantaneous-equili
brium density matrix Po(H) in powers of V. We calculate 
the susceptibility by using the Poisson summation 
formula. As usual, we transform to integration over E 
and p. Since the important contribution to the integral 
over E is made by the small region near the Fermi sur
face, we can extend the integration to -00, The integral 
over Pz is calculated by the saddle-pOint method. After 
some transformations, the oscillating part of the sus
ceptibility can be represented in the form 

x~:~= ;~ L L,t S dE!(E) 1:2 {[F,.'(e-(l+s)Q)Re e""""-(l+·)O).,",, 
m II A_I 

,I 1 
-F '(E-IQ)Ree,n,'n,,-'O)·>"/']_+ ___ [F '(e)Ree'"''''''"'"'' (26) 

" sQ (I+s) Q ,. 

-F,.' (e- (I+s) Q) He e''''''''·-(l+·)c)±(nl']} p,_p~, 

where 

/(E) =(e,·-,)/T+l)-', 

( 1 
i)'n 1 ) -'I, dn 

F,.'(e)= k iiP1 'de w,,(e, q), 

w,,(e, q)=/,(e, -2,,)/,(e, ())/-I-,(e, ,,). 

In Eq. (26) the summation is over alll and s, including 
1 = ° and 1 + s = 0. The corresponding terms are taken in 
the sense of the limit as 1 - 0, s - ° and 1 + s - 0. 

The functions FfS(E) are smooth functions of the en-
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ergy; therefore they can be expanded in series: 

dF,/(e) 1 d'F,,'(e) 2 

F,.'(e-IQ)=F,.'(e)--d-e-lQ + T----;w--(IQ) . 

(Py{tw - Py{t(2»))extr' whereas (30) contains this differ
ence taken on the extremal section, Le., on the section 

(27) with extremal area. These quantities can coincide in 
special cases. 

Upon substitution of (27) in (26), we see that differences 
of the rapidly oscillating exponents appear, of the form 

_1_(e2ltikn(e-,QJ_e21'ilMJ{d). 

IQ 

Recognizing that n(E -In) = n(E) -l, we obtain 

1. . d 
_(e2n,kn(e-W)_e2ltlkn(e) =-6/1J _ e21likn(e). 

IQ de 

It is therefore clear that the basic contribution to Eq. 
(26) is made by terms with l = s = 0; therefore, only the 
rapidly oscillating exponential e21Tikn(E) is differentiated 
twice. Taking this into consideration, and carrying out 
integration over E, we get 

(", df Loo L" ., Xo",=-- /.-Q--(r:")woo(q,p;") 
:1(' 

( (" I iFs", I ) .', ( C8m n) X -- - lP(Amk)sin k-±- . 
~JIell J p,' elf 4 

(28) 

Equation (28) differs from (22) only in the factor woo. 

For qR « 1. we have woo = 1; if qR > 1, then woo 
executes geometric -resonance oscillations. We calculate 
the matrix element Jo(q) in the limit qR » 1, using the 
saddle-point method. There are at least two points on 
the trajectory of the extremal cross section where q . v 
= 0, the vicinities of which also give the principal con
tribution to the integral (25). For Simplicity, we shall 
assume that there are two such points, and denote them 
by t(1) and t(2). We choose the origin so that tw = O. 
Then, calculating the integral (25), we get 

1 f{Z) 1t I } I' 2n 1 'I, 
Jo(q)=-[exp{iq S v(t)dt+i-signqv(2) -,-

Tel 0 4 qv (2) (29) 

+cxp {i .~. sign qV;,,} 1 ~~ '1"'], 
I: q ill 

where v' = dv/dt. 

We assume that q . v' F O. Let the vector q be directed 
along the x axis. Then 

t(2) 

S qc 
q v(t)dt = dl[P.(t(I) -P.(t(,» J. 

o 

It is thus seen that woo at qR » 1 is an oscillating func
tion of l/H with a period 

(30) 

Thus, for qR > 1, the oscillations of geometric reson
ance are superimposed on the ordinary quantum oscilla
tions. We also note that, generally speaking, the period 
of the geometric -resonance oscillations considered by us 
is not the same as the period of the geometric-resonance 
oscillations in sound absorption. Actually, the absorption 
oscillation period is the extremal difference 
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According to (29), the amplitude of oscillations of the 
nonlinear susceptibility falls off with increase in qR as 
(qRf312• If at the saddle points t(1) and t(2) q . v' = 0, then 
this decrease is much slower-like (qRf\ as can be 
verified by calculating the asymptotic matrix elements. 

For the nonoscillating part of X (2), we get 

(2) _ 2 S d' 1 8', 
X - (2n)' P"20e2' (31) 

which is identical with the nonlinear susceptibility with
out a field. In obtaining Eq. (31), we have assumed that 

Lw,.=1. 
Thus, we have shown that the nonlinear susceptibility 

can undergo strong quantum oscillations, and the only 
condition for their existence is the presence of a quan
tizing field. For observation of giant quantum oscilla
tions, as is well known, satisfaction of the condition 

q,I(Q/[.t)'''>1, (32) 

is necessary. This is a rather strong limitation on the 
purity of the metal and the sound frequency. For obser
vation of nonlinear oscillations, it is more convenient to 
use comparatively low frequenCies, since the sound 
damping coefficient r decreases with decrease in fre
quency, and the condition rd « 1 (d is the thickness of 
the sample) can be obtained for rather large samples. 

In conclusion, I express my gratitude to Y. Ya. 
Demikhovskil, Yu. A. Romanov and A. S. Garevskil for 
discussion of the research. 
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