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The ground state and the excitation spectrum of the electron liquid in ferromagnetic metals located in a 
quantizing magnetic field are considered. A material equation determining the dependence of the 
magnetization on the magnetic field strength is deduced for arbitrary temperatures. The quasic\assical­
magnon and quantum-spin-wave spectra are obtained for arbitrary wavelengths in the case of propagation 
of the oscillations along the direction of magnetization. It is shown that the character of the quantum-wave 
spectrum depends on the location of the transparency windows in which Landau damping is negligible. If 
the magnon quasic\assical dispersion curve falls in the transparency windows, giant oscillations of magnon 
damping occur. In the opposite case the quantum dispersion curves lie near the window boundaries. The 
most favorable conditions for observation of quantum spin waves are realized near the quasic\assical 
dispersion curve. 

PACS numbers: 75.30.Fv 

1. The quantization of the orbital motion of electrons 
in a magnetic field makes it impossible, under certain 
conditions, to obtain the collision-free damping of the 
waves due to the Cerenkov effect on the electrons 
(Landau damping). This effect appears in giant oscilla­
tions of the wave absorption and in the generation of 
new branches of excitations of the SOlid-quantum waves 
(see, for example,(1,2)). Among such new excitations, 
we must note quantum spin waves (QSW), the theory of 
which, as applied to the electron liquid of normal 
metals, was developed in[3,4). However, spin waves in 
normal metals have been studied comparatively little. 
On the other hand, spin waves in ferromagnetic metals 
have been the object of an extraordinarily broad range of 
investigations. In this connection, special interest 
should be attached to the quantum spin waves in ferro­
magnets, the theory of which is developed in this paper. 

Two possibilities of the appearance of quantization 
of orbital motion of electrons in the laws for the propa­
gation of magnons are manifest, depending on the loca­
tion of the regions of prohibition or, at finite tempera­
tures, on the location of regions of significant suppres­
sion of the Landau damping, which can be called magnon 
transparency windows. To be precise, if the quasiclas­
sical dispersion curve of the magnons (see, for exam­
ple,[5) crosses the transparency window, then giant 
oscillations appear in the magnon damping, similar to 
those predicted for ultrasound.(1) On the other hand, if 
the quasiclassical dispersion curve does not fall in the 
transparency window, then the ordinary magnons cannot 
propagate. However, the existence of quantum spin 
waves turns out to be possible in this case. The dis­
persion curves of these waves are close to the bounda­
ries of the transparency window. 

2. To consider the properties of the quantum waves 
in a ferromagnetic metal, we first formulate the quan­
tum dispersion equation. Such a problem can be solved 
only with the use of definite model representations, as 
is clear from the claSSical theory (cf.[5,6)). We shall 
assume below that the energy of the electron in the ab­
sence of a quantizing magnetic field depends quadratic­
ally on the momentum, while the exchange interaction 
between the electrons is characterized by a single 
Fermi-liquid constant (the contact interaction approxi­
mation). We then have for the energy of the electrons 

En'(P) =en(p) -ab, 
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where p is the projection of the momentum of the elec­
tron on the direction of the magnetic field B, (] is the 
spin variab Ie (± 1), and n an integer. In this case, 

en(p) = (n+'/,)ILU+p'l2m, 

where n is the cyclotron frequency and m is the ef­
fective mass. 

The exchange energy b, in an approximation in 
which it is small in comparison with the Fermi energy 
of the electron E:F at zero temperature (T '" 0), is con­
nected with the constant Bo of Fermi-liquid interaction 
in the following way: 

B=_[1+~(~)'_~IB] (1) 
o 24 CF >10' 

where no'" 2b/ti is the exchange frequency, nB 
'" 2f1.B/ti, B is the magnetic induction in the ferromagnet, 
JJ. is the magnetic moment of the electron, Bo 
= <P~F/ 1T2 h3 VF, [2) and PF '" mVF '" (2mE F)l 2 is the Fermi 
momentum of the electrons. 

That term in the right side of Eq. (1) which depends 
on the magnetic induction B plays an important role in 
ferro magnets even in the absence of an external mag­
netic field, because of the presence of a strong internal 
field[7,8) B '" 41TM due to spontaneous magnetization. 

At finite temperatures, the equation connecting the 
exchange energy b(T) with the constant Bo differs from 
(1) in the presence on the right hand side of the term 
-(1T2/24) (T/E:F)2 (cf[9)). Accordingly, it is not difficult 
to obtain the following equation for the magnetization 
per unit volume M '" -JJ.bhp 

aM+~M3=f{, (2) 
where 

'" [ 4n[t' n' ( T ) '] a=-- l+Bo+--+- - , 
[t' '" 24 eF (3) 

~=-IjJ'/21[t'eF'. 

and H '" B - 41TM is the' magnetic field strength in the 
ferromagnet. This equation for the magnetization deter­
mines its temperature and magnetic field strength 
(paraprocess) dependence and corresponds to the 
thermodynamic theory of ferromagnetic transition (see, 
for example,[1O)). 

We shall be interested in transverse-polarization 
spin waves propagating in a degenerate ferromagnetic 
electron liquid along the direction of constant magneti-
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zation. In the approximation w « kVFOlk/C/ €F)2, the 
spectrum of such waves is determined by the singulari­
ties of the magnetic susceptibility x± (see, for exam­
ple,P11). Using the general relations obtained inl3 ], we 
can write down the following eXJ;lres~ion for the non­
equilibrium magnetization (~e-lwt+lkz): 

m*= /!'S± (w, k) b" 
l-¢S±(w,k) , 

where m± = mx ± imy, b± = bx ± iby are the transverse 
components of the nonequilibrium magnetization and of 
the magnetic field, 

S±(w k) = 2eB ~f dp n(en+(p=f=lik)J-n(en-(p)] 
, c ~ (2nli)' ±liw+en+(p=f=/ik)-en (p)±iO 

Here n( E) is the equilibrium distribution function of 
Fermi particles. 

From this it is now easy to obtain an expression for 
the magnetic susceptibility 

x±(w, k)=-/!'S±(w, k){1-[¢-4n/!']S±(w, k)}-t, 

which allows us to write down the spin-waves disper­
sion equation that connects the frequency w and the 
wave vector k: 

(¢-4n/!')S± (w, k) =i. 

Taking into account the fact that -41fJ1. 2/ 1/1 = 41fJ1.M/b 
== OM/Oo, we can write down the dispersion equation of 
spin waves of left polarization at zero temperature in 
the following explicit form: 

D(w, k)=O, 

!~ ~ ~ [ I w-Qo+kv"(n)-crlik'l2m I 
D(w,k) =-'-~l_/ In " .. 

2kv" .~±. " .. ' w-Qo-kv (n) -.fIlik-l2m (4) 

h t-G(11.) Q 

-in f 6 (w-Q,-alik'/2m-x) dX] -B, -. ( 1 - Q: ) , 
_ ltvG:{II) 

Here N a is the number of levels in the magnetic field 
occupied by particles with spin a, va(n) = {(2/m)[EF 
+ ab - (n + Yz}lin]}t!2 is the longitudinal velocity of 
particles with spin a on the Fermi surface. The disper­
sion relation for waves of right polarization differs 
from (4) in the sign of w. 

For the problem of interest to us, the decisive role 
is played by those regions on the (w, k) plane for which 
the imaginary part of Eq. (4) vanishes. We first observe 
that the imaginary part of the dispersion equation is 
equal to zero in the region 

w<Qo-kv+(0)+lik'/2m, (5) 

which corresponds to the result of quasiclassical theory 
that there is no cOlliSion-free damping of the magnons. 
However, along with this, the imaginary part of the dis­
persion equation also vanishes in regions determined by 
the inequalities 

FIG,l 
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Q,-kv-(n-l)-lik'/2m<w<Qo-kv+(n)+lik'/2m (n=l, 2,."N-), (6) 

We assume that 00» 0 and, consequently, v+(n) 
> v-(n - 1). In the (w, k) plane, the boundaries of the 
regions (6), for which we use the name transparency 
window, begin with the axis w = 0, where they are 
bounded by the points k(1) (n) = m [v+( n) - v-( n)]/11, and 
end with w = 0 at the points k(2)(n) = m[v+(n) 
- v-(n - 1)]111, which determine the minimum possible 
value of the wave vector in the transparency window. 
In Fig. 1 the regions of absence of Landau damping are 
not shaded. The transparency window on the extreme 
right of Fig. 1 is determined by the inequalities 

w>Qo-kv- (N-) -Ilk'/2m, w<Qo+kv- UV-) -lik'l2m, 

w<Qo-kv+(N-+l) +lik'/2m, 
(7) 

from which it follows that the maximum value of k in 
the transparency region corresponds to w = 0 and is 
equal to km = m[v+(N-) + v-(N-)]Itl. The left and right 
boundaries for w = 0 correspond respectively to the 
values k(2)(W + 1) and k = m[v+(N- + 1) + v-(N-)]Itl. 
The curve that forms the upper boundary of the trans­
parency window (5) has a minimum at the point 
k = mv+(W + 1)/1l, equal to 0 - (EF/n)(v-(N-)/vF]2. 
The value of the wave vector in the transparency win­
dows changes from the value k"" (k/ EF) ~F /n in win­
dows with small n « N- to k "" (2b/ E F)1 2 PF /n in win­
dows with n ~ N-. 

Outside the transparency regions (5)-(7), the imagi­
nary part of the dispersion equation turns out to be 
comparable with the real part, which corresponds to 
solutions of the dispersion equation corresponding to 
strongly damped waves. In this connection, we shall 
concentrate our attention below on determining the con­
sequences that follow from the dispersion equation (4) 
in the regions (5)-(7). 

3. The possibility of the existence in the transparency 
windows (6) and (7) of solutions of the dispersion equa­
tion (4) corresponding to undamped waves follows from 
the fact that, inside the transparency window, the left 
side of Eq. (4) changes from - 00 on the right boundary 
to + 00 on the left. This property of the dispersion equa­
tion, along with general confirmation of the existence of 
quantum waves in ferromagnets, reveals a way for 
estimating the approximate solutions in the transparency 
windows. 

We separate out those components in Eqs. (4) which 
become infinite on the boundaries of the n-th transpar­
ency window (Dqc (w, k» (qc = quasi classical). We 
calculate the sum of the remaining components approx­
imately, replacing the summation by integration (Dcl 
(w, k». As a result, in the region of absence of colli­
sion-free damping, the dispersion equation takes the 
form 

Dqc(w, k)+Dcl(w, k)=O, (8) 

where 
Dqc(w,k) = 

Q { I [w-Qo+kv+(n)-lik'/2m][w-Qo-kv-(n)+lik'/2m] 1 
= 2kvF In [w-Qo-kv+(n)-liP/2m][w-Qo+kv (n)+lik'/2m] 

1 [w-Qo+kv+(n-l)-lik2/2m][w-Qo-kv-(n-l)+lik'l2m] I} 
+In [w-Q,-kv+(n-l)-lik'/2m] [w-Q,+kv'-(n-l)+lik'/2ml ' 

(9) 

Dcl(w,k) =.!!.!:...{[( v+) '_ (W-Qo-lik'/2m) '] 
4lik UF lcv" 

x In/ w-Qo+kv+-lik'/2m 1_ [(~) '_ (W-Qo+lik'/2m) 2] 
w-Qo-kv+-ttk'/2m VF kVF 
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xln 1 Cll-Qo+kv-+hk'/2m 1 +2 v+ Cll-Qo-hk'/2m 
Cll-Qo-kv-+hk'/2m VF kVF 

-2 v- Cll-Qo+hk'/2m }_BO-I (1-~) . 
~ k~ ~ 

(10) 

Here v± = vF (1 ± b/ EF )1/Z. The error connected with 
the approximate calculation of the sum in the dispersion 
equation (4) does not exceed (tiUIEF) (kVF /UO)2. 

In the classical region (5), the effect of Dqc(w, k) on 
the spectrum of spin waves is unimportant and the dis­
persion equation can be written approximately in the 
form 

DCI(Cll, k)=O. (11) 

We shall say that Eq. (11) determines the quasiclassical 
spectrum of the magnons (wM( k». Not too far from the 
point k = ko, which corresponds to the intersection of 
the boundaries of region (5) with the straight line w = 0, 
in the broad range of wavelengths 

Ik,-kl [lnl~l] ';;l>~+~(!!.-)' (12) 
2ko ko-k Qo 12 8F 

the following comparatively simple expression for the 
magnon frequency can be obtained: 

[ Qo (hk)']2k/ Ik,+kl Cll.(k) = QH+- - - In -,- , 
12 p, ko ko-k 

(13) 

where U H = 2jJ.H/ti. 

Using the condition (5), it is not difficult to obtain the 
following expression for ko: 

ko=m(v+-V-)/h=~[1+~ (~) ']. (14) 
VI" 8 £1" 

The second term in the right side of (14) is due to 
quantum effects of the finite character of the momentum 
tik and turns out to be important near the boundaries of 
the region (5): 

In the longwave limit (kVF)z« U ~ the well known 
expression for the low-frequency magnon spectrum 
follows from (13) (see, for examplep,6]): 

(15 ) 

We note here that the approach based on the use in[5] of 
the kinetic equation does not take into account the quan­
tum (in the sense described above) effects and enables 
us to consider only the longwave excitation of the type 
(15). On the other hand, Eqs. (11) and (13) evidently 
take the quantum effects into accountl8 ] (see alsol 6]). 

In correspondence with Fig. 1, the quasiclassical 
magnon spectrum, as is seen from Eq. (13), at first 
(with increase in k) corresponds to an increase in the 
frequency, the frequency reaching the maximum value 

Cll.""~[QH+~(~)'] /In(~) 
3 12 e" a 

(16) 

at k"" [1- (Y3) a/In (1/a)]U o/vF. Here a =[Ul:{ 
+ (Ylz)U o(b/EF)z]/2[UH + Y4Uo(b/EF)z]"" Yato leis a 
parameter that generally depends on the magnetic field 
strength. In addition, as k approaches the value k = ko, 
the frequency of the magnons decreases according to 
the law 

The dispersion curve of the magnons crosses the 
boundary of the classical region (5), in the absence of 
Landau damping, at the point k = k+, which is deter­
mined by the equation 

-- -In --- +1 =-+- -ko-k+ [V- 1 28F ko 1 ] QH 1 ( b ) , 
2ko VF b ko-k+ Qo 12 8, . 

(18 ) 
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For the frequency of the magnons at this point, the fol­
lowing equation holds: 

(J) [ 128F Qo I' ] QH 1 (b)' - In -- +1 =-+- -
2Qo b (J) Qo 12 8F 

(19 ) 

The dispersion equation (8) reduces to the quasiclas­
sical equation (11) not only in the region (5), but also 
relati vely far (see below for further detail) from the 
boundary of the transparency window, when the com­
ponent Dqc(w, k) in Eq. (8) turns out to be negligibly 
small. Therefore, it is convenient to follow the path of 
the quasiclassical dispersion curve even in the classical 
region. 

After crossing the boundary of the classical region 
(5), the quasiclassical dispersion curve passes through 
a minimum located in the region of strong damping, and 
then crosses the left boundary of the first transparency 
window. The value k = k- corresponding to the point of 
such an interaction is determined by Eq. (8), in which 
we must replace v- by v+. The frequency of the mag­
nons at this point is given by Eq. (19), the approximate 
solution of which can be written in the form 

[ Q, ( b ) '] / [ 128. QH 1 b 'I' ] Cll.(k±)""2 QH+-:- - In --+-- +1 . 
12 8F b Qo 6 8" 

(20) 

With increase in k, when the condition (12) is satisfied, 
the behavior of the quasiclassical frequency of the mag­
nons is determined by Eq. (13). As follows from (13) 
and (19), the frequency of the magnons remains approx­
imately equal to the value (20) in the region of wave­
lengths 

1 k-ko 'I'.:;;;~(~)' 
ko 8 8F 

corresponding to transparency windows with 
n ,s (biEF)'N-;8. 

(21 ) 

It must be emphasized that in reality the quasiclas­
sical dispersion curve crosses the transparency win­
dows only in the case in which 

(J). (k) <Q. (22) 

This corresponds to the requirement of smallness of 
the right side of Eq. (20) in comparison with the cyclo­
tron frequency U of the electrons. Such a requirement 
can be satisfied also in the absence of an external mag­
netic field, since 41IM ~ 2 x 104 GalS] and bl EF ~ 10-1 

_10-Z for typical ferromagnets. 

We note here that even more favorable conditions 
can exist for satisfaction of the inequality (22) in metals 
with anisotropic Fermi surfaces, when the cyclotron 
mass of the electrons turns out to be less than the ef­
fective mass characterizing the motion of the electron 
along the direction of magnetization. Such a situation 
is possible for metals of the iron group.llZ] Here the 
range of values of k for which the quasiclassical curve 
lies in the transparency window is broader. The limita­
tion of the possibility of such a position at large values 
of k follows from Eq. (13) which, for (kvFl» U~ gives 

[ 
Qo hk' kVF' 

Cll.(k)= QH +12( p;-) ] (0,) . (23) 

For example, inasmuch as, in windows with n ~ N-, 
(kVF /Uo)Z "" 2EF /b, it turns out that here wM"" Uo/3. 
Under these conditions, the inequality (22) is violated; 
it is then clear that for a window with a large number 
n, crOSSings with the quasi classical dispersion curve do 
not occur. The maximum value of the wave number for 
which there is a possibility of such a crossing is deter­
mined by equating the expression (13) to the cyclotron 
frequency. 
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In correspondence with established terminology (see, 
for example,(l,l!]), the crossing of the quasiclassical 
curve wM( k) with the transparency window can be ac­
companied by giant quantum oscillations of the absorp­
tion of the magnons. We shall associate the new 
branches of spin waves, which arise in the transparency 
windows, with quantum waves. 

4. We now discuss the form of the dispersion curves 
determined by the quantum equation (8) inside the 
transparency window. We begin such a discussion with 
the case of comparatively small n, when the inequality 
(22) can be satisfied. Then, far from the boundaries of 
the transparency window, the spectrum of quantum 
waves turns out to be close to the quasi classical WM( k), 
and upon approach to the boundaries of the window, the 
dispersion curve of the quantum spin waves turns out to 
be very close to the corresponding boundary curve. 
Upon increase in k, the dispersion curve, beginning at 
the points W = nand k = k(2) (n), corresponds to a fall­
ing off of the frequency according to the law 

Itk [k-k(2)(n) ][klll(n)-k] ( v-(n-1) ]' 
w=w-(n)+ 

m kill (n)-k(2) (n) v+(n) (24) 

{ 2kvp } Xexp ~Dcl[w-(n), k] , 

where w-(n) = no - kv-(n - 1) - tik~/2m determines the 
left boundary of the transparency window (6). 

Upon approach of the curve (24) to the quasiclassical 
dispersion curve, the condition of applicability of for­
mula (24) breaks down: 

(25) 

Therefore, the falling off of the frequency is slowed and 
the quantum dispersion curve merges with the quasi­
classical one. The dispersion curve then approaches 
the right boundary of the transparency window with in­
crease in the wave vector according to the law 

lik [k't)(n)-kj[k-k,2'(n)] [ v+(n) ]' 
w = w+(n)--".:.,..,~":"""..,..,.-:..:..,..,.,.,.,,.--~..:. 

m k't)(n-1)-k"'(n-1) v (n-1) 

{ 2kvp } 
xexp -~DCI[w+(n),k] , 

(26) 

where w+(n) = no - kv+(n) + tik2/2m determines the 
right boundary of the window. The condition of applica­
bility of formula (26) is given by the inequality (25). 

Under the conditions (12), Dcl(w, k) takes the form 

D (w k)= w.(k)-w Inl k+k'i 
cl, 2kvF k - k, ' (27) 

where wM(k) is given by Eq. (13). The inequality (25) 
here can be represented in the form 

I w. (k) -w± (n) I 41tk / ·1 k + k, ·1 
----:::---- ~ -- In -- . 

Q PF k-k, 

The behavior of the dispersion curves of the quantum 
waves inside the transparency window, in their interac­
tion with the quasiclassical dispersion curve, is illus­
trated in Fig. 1. 

We now proceed to a discussion of the situation in 
which the quasiclassical dispersion curve does not fall 
in the transparency window. In this case, waves with 
frequency close to wM(k) cannot be propagated. How­
ever, the dispersion equation (8) in this case also has 
undamped solutions in the transparency Windows, cor­
responding to some other type of quantum waves. To be 
precise, the dispersion curve of such waves in the 
transparency windows (6) lies near the right side of the 
window. The quantum spin wave spectrum is given by 
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Eq. (26) everywhere in the window. Finally, on the edge 
of the right side of the window (7), the quantum disper­
sion curve diffuses to the upper w +( N- + 1) = no 
= kv+(W + 1) + tik2/2m and the right w = no + kv-(N-) 
- tik2/2m boundaries. Near the upper boundary, the 
following expression can be obtained for the frequency 
of the quantum spin wave: 

i [ 1 w =2[w+(N- + 1)+ ili]- "4[w+(N- + 1)- ili]' 
(28) 

,k-k'2J(N-+1) {2Q, w.(k) }]'" 
+16Q, k'I)(N-)-k"'(N +1) exp -Tk;;- . 

The dependence of the frequency on k not too close 
to the upper boundary is given by the expression 

w =..!..[w+(N-) + ili]+ [~[w+(N-)- ilil' 
2 4 

, '1£ - k,2, (N- + 1) { 2Q, w.(k) }]'" 
- 16Q, k -'1£ exp - T------;;;;;-' , 

(29) 

where w+(N-) = no - kv+(W) + tik2/2m, and the fre­
quency wM(k) is determined by the expression (23). 
The regions of applicability of Eqs. (28) and (29) over­
lap. The behavior of the quantum dispersion curves 
under conditions when the inequality (22) is not satis­
fied is shown schematically in Fig. 2. 

5. Up to now, we have not taken into account the ef­
fects associated with the finiteness of the temperature 
and the scattering of quasiparticles. These effects 
limit the region of existence of the quantum waves, 
"diffusing" the boundaries of the transparency window. 
The spreading out of the boundaries ~ because of scat­
tering has the order of magnitude 

d.-'ct, 

where T is the relaxation time of the momentum of the 
quasiparticles. The temperature effects lead to the 
following value of the spreading out of the boundaries 

d.-kT/mv+(n) . 

The condition for the existence of quantum spin waves, 
the frequencies of which lie close to the quasiclassical 
dispersion curve, will be the smallness of the spreading 
out of the boundaries in comparison with the width of 
the transparency window ~k[v+(n - 1) - v'(n)]. This 
condition thus takes the form of the following two in­
equalities: 

(QT)-t<2b/eF, T<fiQ. (30) 

For the existence of quantum waves with spectra (24), 
(26) and (28), (29), the dispersion curves of which spread 
out to the boundaries of the transparency windows, it is 
necessary to require the satisfaction of more rigorous 
conditions. Such conditions are the smallness of spread­
ing out of the boundaries in comparison with the quanti­
ties I w - w±(n)l, I w - wi: 

w 

FIG. 2 
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(Q-c)-'«(b/eF)', T«(b/eF)/iQ 

in transparency windows with numbers n « N-, and 

(Q-c) -1«QjQO, T« (Q/Qo) hQ 

in windows with n ~ N-. 

(31) 

(32) 

Thus the most favorable conditions for observation 
of quantum spin waves in ferromagnets exist near the 
quasiclassical dispersion curve of the magnons. 

In conclusion, we note that in real ferromagnets, the 
condition (30) can be satisfied in sufficiently pure sam­
ples, where the content of impurities does not exceed 
0.01-0.001% (7 ~ 10-9_10- 10 secp,B] at liquid helium 
temperatures (T :s 4.2°K) and at magnetic fields 
B ~ 41TM ~ 2 x 104 Ga. 
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