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A microscopic theory of nonlinear polarization of "ionic" crystals is developed. The nonlinearity at optical 
frequencies is due to the anharmonic motion of the outer electrons of an ion relative to their core. Only the 
Coulomb· induced anharmonicity is properly taken into account. In order to quantitatively verify the 
Coulomb·anharmonicity model, the components of the quadratic-susceptibility tensor of the non-cubic 
crystals AH2 XO. (A = K. Rb. Cs; X = P, As). BaTiOJ• PbTiO). LiIOJ and the cubic crystals CuCI. CuBr. 
ZnS, ZnTe. GaAs are computed. The results of the computation are compared with the experimental data. 
Qualitative and good quantitative agreement is found. in particular. for the ferroelectric substances KDP 
and BaTiOJ in a wide range of temperatures. 

PACS numbers: 77.30.+d. 77.80.-e 

1. INTRODUCTION 

The source of the optical nonlinearity at frequencies 
much higher than the frequencies of infrared lattice 
vibrations is the distortion of the electron wave func
tions. There exists a relatively large number of papers 
devoted to the computation of this nonlinearity for spe
cific compounds (see, for examplep-loJ). The greatest 

. success in the computation of the spectral components 
d aj3y responsible for second-optical-harmonic genera
tion has been achieved on the basis of Levine's macro
scopic bond-charge model[9, 101. 

However, the problem of the computation of the ten
sor components d a j3y is, generally speaking, a problem 
for a microscopic theory. The limited successes 
achieved in the computation of d a j3y on the basis of 
quantum-mechanical perturbation theory, which re
quires knowledge of the specifiC form of the electron 
dispersion law, the band structure, and the form of the 
wave functions, attest to the fact that more can be at
tained today on the basis of the classical crystal-polari
zation models. Therefore, in the present paper we de
velop a microscopic quantitative theory of nonlinear 
optical properties of crystals on the basis of the Born 
polarizable-ion model [11 J and the ideas of the shell 
model[lzJ. 

The equation obtained in the paper for the spectral 
components d a j3y does not contain a single macroscopic 
parameter, and allows the computation of the d a j3y for 
crystals if the coordinates of the ions (atoms), the 
parameters of the unit cell, the electronic polarizabili
ties, and the charges of the shells of the ions are known. 
This equation is used to investigate the magnitude, sign,' 
and temr 9rature dependence of d a j3y of the noncubic 
crystals AHzXO. (A = K, Rb, Cs; X = P, As), BaTi03, 
PbTi03, and LiI03 and the cubic crystals CuCI, CuBr, 
ZnS, ZnTe, and GaAs. Owing to the allowance for the 
microstructure of crystals, the equation for d a j3y im
parts all the characteristic features of the variation of 
the magnitude, sign, and temperature dependence of the 
d a j3y of the considered crystals, and also leads to im
portant information about the individual characteristics 
of the ions, information which can subsequently be used 
in the investigation of other nonlinearities. In particular, 
in the present paper the information on the individual 
characteristics of the ions is used in the computation of 
the electro-optical constants r aj3y of the linear electro-
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optical effect in the crystals KH2 PO., RbHzPO. and 
their deuterated analogs, as well as in the crystals 
BaTi03 and PbTi03 • 

The choice of the objects for investigation is not ac
cidental. All the crystals under consideration have im
portant practical meaning, and are interesting model 
crystals . 

2. THE MICRO-OPTICAL EQUATION FOR THE 
SPECTRAL COMPONENTS da i3'Y 

Let us consider a crystal conSisting of m (m:: 2) 
electrically different ions. The polarization of such a 
crystal can be interpreted in the following manner. 
When an ion is acted upon by an electric field, its elec
tron cloud becomes deformed, and it acquires a dipole. 
moment. If the field acting on an ion in the lattice is a 
high-intensity field, as in the case of the electric field 
of the light wave from a laser source, then the induced 
electronic dipole moment is not proportional to the 
field, i.e., 

11"'=11.' (Ii) +11" (nl)=xa,E,(w)+1:'TE,(w)ET(w), (1) 

where Jli(li) and Jli( nl) are the l;near and nonlinear 
dipole moments of the i-th ion, Kl is the linear suscep
tibility of the i-tho ion, E(w) is the electric field of the 
light wave, and Y~j3y is the lowest-order ionic non
linearity. By definition, the Y&j3y are directly connected 

with the spectral components d aj3 / 13J. 

From the point of view of the shell model[lzJ, the 
dipole moment (1) of the ion can be represented as 

11"'=x"'1l'=x"' (li)a'+x"' (nl)a'. (2 ) 

Here xi( li) is the linear part of the displacement of the 
charge ai of the shell of the i-th ion induced by the 
electric field, and xi( nl) is the nonlinear part of the 
displacement. 

It follows from (2) that the proqlem reduces to the 
problem of the determination of xl(nI), for which pur
pose it is necessary to solve a system of equations de
scribing the motion of the charge of the ion shells in the 
anharmonic approximation. Let us write this system of 
equations for the case of the zero wave vector and in the 
absence of light 'absorption by the medium in the form 
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H.ere mi is the mass of the i-th charge; R~i$ and 
C1kj3 are constants of non-Coulomb origin[ Ul, while 

a y "k 
ik f1k d f1 (h . th goq3 = (3aj3 oa(3 + a(3 an a(3y were (3aa 1S e 

Lorentz factor, which, according to its physical mean
ing, describes that part of the field acting on the lattice 
ions that is due to the medium outside the Lorentz 
cavity, and f~~ and f~~y describe the fields due to the 
medium inside the cavity) are constants of Coulomb 
origin; E(w) is the field from the external source; and 
a, (3, and y, which assume the values 1, 2, and 3, de
note the axes of the Cartesian system of coordinates. 

Let us find the solution to the system (3) under the 
assumption that the oscillations of the charge of the 
electron shells of the ions are normal-mode vibrations. 
Then we obtain for the displacement xi at the frequency 
w the expression 

'() 'E ( ) \""1 l.'(j)l.'(j) ( ') I '() 'E ( ) x,/ w =a l 
C1. OJ L...J = at - ctall 1 (i) ACta l II 0) • 

i (w' (j) -w') m (i) (4) 

Here w(j), li(j), and m(j) are the eigenvalues, vectors, 
and mass of the j-th vibrational mode. 

In order to get rid of the unknown parameters [i(j), 
w(j), and m(j) in (4), we used the connection between 
the shell model and the polarizable-ion model l14 ] in 
solving the system (3), i.e., 

x.' (li) a'=a.,',%','=aa,'A.,'E, (w). (5 ) 

In Eqs. (4) and (5), (Ii is the electronic polarizability of 
the i-th ion, while the tensor components Ak are found 
from the solution to the system of equations for the 
local fields: 

In the lowest-order nonlinear approximation the dis
placements will be proportional to both fik(3 and cik(3 , a yay 
i.e., to both the Coulomb and non-Coulomb parts of the 
anharmonic correction in (3). 

Let us assume that the optical nonlinearity of ionic 
crystals can be described by taking only the Coulomb 
anharmonicity into account, i.e., let us assume that the 
overlap forces do not. change during the generation of 
optical harmonics (C1~ = 0)0 Then the displacement 
of the i-th charge at ~h~rmonic frequency due to the 
anharmonic correction of Coulomb origin has the form 

x;(2w) =x.'(nl) = \""1 [ l.'(j)l.'(j)a' ] 
~ m (j) (4w' (i) -4w') 

x ~ J~:,a:, (w)A:,a:, (ol)A:,(a') -IE, (w) E,(W). 
2 

(6) 

From the point of view of the polarizable-ion model, 
the term enclosed in the square brackets in (6) is equal 
to (air1a i (2w)Ai (see (4) and (5». 

Thus, the polarization of the crystal at the frequency 
2w will contain only those terms that can be computed: 

m 

P.(2w) =d."E,(w)E,(w) = ~ N'xa' (2w)a' 

(7) 

The investigation of (7) leads us to an equation for the 
computation of the spectral components dCJ.(3y, an equa
tion that does not include a single macroscopic parame
ter and that satisfies the symmetry requirements for 
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third-rank tensors, since f~~y is an odd function of the 
ion coordinates: 

1 ~ _ i i ill It II kit" _1 _ 
da"=-;;- ~N'a.a(2w)Aa"fa"a"(w)Ae,a,,,(w)Ap,(a) (k-i,2,3, ... m). 

- bl (8) 

Equation (8) can be derived in a different way, USing 
the method conSidered in(14-17 1, where the electro-optical 
properties of crystals are investigated. In these papers 
the nonlinear terms are introduced into the polarization 
by taking multi pole corrections into account in the equa
tion for the local field. It is, however, difficult to under
stand from such an approach the degree of approxima
tion of the model; besides, an illusion is created that the 
nonlinear optical properties of crystals can be described 
under the assumption that the electric-field dependence 
of the displacements is linear in character. 

In the present paper, besides the d a (3y' we compute 
the electro-optical constants ra(3 from Eq. (1) Of(17], 
which equation was derived from the same position as 
the equation for d a(3y. 

Let us write the equation for ra (3y' as well as the 
equation that describes the low-frequency permittivity 
E(0)[171, and which will be required in connection with 
the computation of the ra (3Y' in the impliCit form 1): 

(9 ) 

(10) 

For the computations carried out in the paper, we 
shall also need the generalized Lorenz-Lorentz equa
tion, which is immediately obtained by taking (4) into 
account: 

m 

E.,(w)=I\.,+4J! ~Nia."(w)Aa," (11) 

To compute the material constants from Eqs. (8)
(11),. we must know the values of g~(3' f~k(3y' .CJ.~(3' ai, 
(~*) \ and we. The local-field coefficients g~j3 and 
f1k(3 for a perfect lattice are computed practically 
a y 'k 

exactly[llJ. Since, as a rule, the g~B for a ~ (3 make a 
negligibly small contribution to the linear dipole mo
ment in comparison with the contribution of g~~ for . 
CJ. = (3, we took only the diagonal tensor components A1 
and a1 into account in the computations. 

The electronic polarizabilities a~f.l were, if they 
were not known, estimated for the cations from refrac
tion data and for the anions from Eq. (11), using experi
mental values for E(3(3 ( w). 

The effective iO!l charge (e*)i = ezisi , where e is the 
electr.on char'ge, Zl is the number of valence electrons, 
and Sl is the parameter of the theory (the degree of 
ionicity). If we replace si by some macroscopiC quan
tity that is the same for all the ions of the lattice (phe
nome no logically, nothing prevents this), then in deter
mining (e*)i we can use the data available in the litera
ture on the degree of ionicity of the compounds (see, 
for example,[1l,181). In the opposite case, it is possible 
to choose the quantity si on the basis of an analysis of 
the structure in question and the data on the electro
negativity of the atoms[19,20J. T~ere are other ap
proaches to the estimation of Sl for the individual bonds 
in a lattice l101 . 

The ion-shell charge ai was assumed in our compu
tations to be equal to 
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(12 ) 

where Z~t is the number of electrons in the outermost 
shell of the neutral atom and ai is the screening con
stant. The second term in (12) takes account of the 
charge that an atom receives (gives away) as a result of 
a redistribution of the electronic charges in the c!,ystal, 
Le., it is the effective ion charge. The quantity a1 de
pends on the speCific form of the electron-density dis
tribution, and is different for the different types of ions 
entering into the crystal. Nevertheless, as a first ap
proximation, we can assume ai to be the same for all 
the ions and approximate it by the quantity a i = E(w)[ 10J. 

This approximation is applied in our paper to all the 
crystals, with the exception of the KDP group of 
crystals. In computing the electro-optical constants of 
the ferroelectric crystals KDP, RDP, DKDP, DRDP, 
BaTi03, and PbTi03 the frequency Wc of the soft lattice 
vibration mode was eliminated from (9) with the aid of 
(10). The quantity .:lEO = E( 0) - E( w) was assumed to be 
equal to the experimental value. 

3. THE KDP GROUP OF CRYSTALS 

A good verification of the theory is its applicability 
to the ferroelectric crystals AHaXO. (A = K, Rb, Cs; 
X = P, As). Let us restrict ourselves to the conSidera
tion of the nonlinear properties in the paraelectric 
phase. In this phase there are two nonvanishing com
ponents: dS12 and d231 = d12s '" d312 and two electro
optical coefficients: r 123 and r232. We shall compute 
only the constants dS12 and r 123. 

The theory should give the correct sign and order of 
magnitude of the quantities d a {3')' and ra {3y' reflect the 
nature of their variation within the isomorphous series 
of crystals, and, as applied to the crystals of the KDP 
group, also impart the variation of rO/{3y with tempera
ture and the dependence of ra{3y on the degree of deu
teration of the crystals of this group. 

The results of the calculations with Eqs. (8) and (9) 
are presented in Figs. 1-3. Also shown in the figures 
are experimental data. It can be seen that the theoreti
cal results are in qualitati ve and excellent quantitative 
agreement with the experimental data. The magnitude 
and sign of dS12 are predicted for a new crystal, CDP, 
of the KDP group. 

The theory leads to d3I2(KDP) = dsdDKDP), but to 
different r123 values for KDP type of crystals and their 
deuterated analogs (see Fig. 2 and the Table), which is 
in agreement with experiment. The differences in the 
r123 values for the crystals KDP and DKDP, RDP and 
DRDP arise from the differences in the soft-mode fre
quencies of the deuterated and undeuterated lattices, 
i.e., from the inequality of the values of .:lEO for these 
lattices. Figure 3 shows the theoretical and experi
mental temperature dependences of r12S for the crystal 
KDP. The only-to all intents and purposes- parameter 
determining the temperature dependence of r 123 is the 
variation with temperature of the soft-mOde frequency 
Wc. This dependence of Wc (IIC = Wc /21TC) is shown in 
Fig. 3. 

Thus, Eqs. (8) and (9) gave all the principal distinc
ti ve features of the nonlinear optical characteristics of 
the ferroelectric members of the KDP group. In calcu
lating these characteristics, the local-field coefficients 
were computed on a computer for the actual positions of 
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FIG. I. Dependence of d312 on the unit-cell volume for crystals of the 
KDP group: e) calculated from (8), X) mean experimental values 
[23,24). 

FIG. 2. Dependence of rl23 on 
the degree of dlmteration of the 
crystal K(DxHI-xhP04 : e) cal
culated from (9) for the clamped 
crystal, X) experimental values 
for the free crystal [25). 
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FIG. 3. Temperature dependence of the constants r123 and Vc of the 
crystal KDP. X), 6) calculated from (9) and (10); 0) experimental val
ues of rl23 for the free crystal [26]; 4) experimental values of Vc [27]. 

the ions of the KDP latticel21J . In going over to the 
other crystals of this group we took into account, using 
the data given in(22J, only the variation of the parame
ters of the unit cell. As the electronic polarizabilities, 
the degrees of ionicity of the ions, and the screening 
constants, we used the following values2): ~ = 0.5A3, 
a A = 1.3.\3, aO = 0.9As, sA = 1, sH = 1, sX = 0.3, SO 

= 0.55; aA = 2.25, aX = 1.3, aO = 4.4. 

4. TETRAGONAL BARIUM AND LEAD TITANATES 

The crystals BaTiOa and PbTiOs are isomorphous 
crystals, which belong at room temperature to the 
crystal class 4mm. From the theoretical point of view 
the nonlinear optical properties of these crystals are of 
interest in connection with the change in sign of the 
components d333 and r3S3 when we go over from BaTiOs 
to PbTiOpo,32 J. 

Our calculations showed that the primary source of 
such an unusual behavior of the sign of the nonlinear 
coefficients is connected with the fact that the static 
displacements undergone by the oxygen ions in BaTiOs 
and PbTi03 crystals during the phase transitions are 
oppositely directed[33J. This leads to different signs for 
the coefficients f~~s, with which d333 and r333 are con
nected by a linear relation. 
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FIG. 4. Temperature dependence of d333, r333' and Wc for tetragonal 
barium titanate. L», 0), e) calculated respectively from (8), (9), and 
(10); 0) experimental values ofrm - r113 [28]; X) experimental values 
of We [29); .... ) measured [3S). 

The coefficients f~~3 were computed for the actual 
positions of the ions of the BaTi03 and PbTi03 lat
tices[33J and the g1~ were assumed to be equal to their 
values in the cubic phase[34 j 

0 According to refraction 
data[19,20 J, O!Ba,:::j 1.7A3 and O!Ti,:::j 0.6A 3; O!°was com
puted from (11) for BaTi03, and is equal to 2.5 A 3. These 
same values were assumed for the ions of the PbTi03 
lattice. According to the numerous data available in the 
literature, the degree of ionicity of the crystals in ques
tion is equal to ~0.5. The values obtained in the calcu
lation for d333 and r333 are presented in the Table and 
shown in Fig. 4. As can be seen, there is qualitative 
and quantitative agreement between the theory and ex
periment. 

5. LITHIUM IODATE 

For the hexagonal crystal LiI03, let us restrict our
selves to the computation of the spectral components 
d3zz and d333 . The electronic polarizabilities for the 
extraordinary and ordinary rays are equal to: 0!~3 
_ • 3 I _ 1 0 3 Li _ 0 3 [36]. ° _ 0 3. -2.4A'0!33- .OA,andO!s3 -0.03A ,O!zz-1.6A, 

I 2· 3 Li ~ 3 A d' 0!22 = 1. 5 A , and O!~Z = 0.03l\.. ccor mg to the data 
of the same paper, the degree of iOnicity of the com
pound Lil03 is roughly equal to 0.3. Let us attribute 
this value to the 1-0 bond (which then makes the dom
inant contribution to dO!/3Y) and assume the Li-O bond 
to be purely ionic. Then the charges of the shells of the 
ions in Lil03 will be equal to: aD = 6.8 e/a o, a I = 3.5 
e/aI, ali = 2e/a Li (in the case of lithium the next elec
tron sheath was taken into account). Let us assume the 
screening constant to be the same for all the ions and 
approximate it by the quantity (n~ + n~)/2 = 3.3[30J. The 
local-field coefficients were computed for the actual 
positions of the atoms of the Lil03 lattice. The results 
of the computation are presented in the Table. 

6. CUBIC CRYSTALS OF THE TYPE AB 

Comparison of the theoretical and experimental values of dai3'Y and 
rCX/3'Y for a number of crystals. 

Crystal 

RDP 
DHDP 
B.TiO, 
PbTiO, 
LilO, 

CuCl 
CuBr 
ZnS 
ZnTe 
GaA. 

I d.:z.;q-.(! 10-' cgs esu I rCL~Y' 10-1 cgs esu 

Calculated from (8) Experiment. [23.'4,3O.'LJ Calcul~t(~~ from I Experiment :[2',12) 

d3l2~+068 
d,,,~+0.68 
t1333=-tB.3 
d'33~+20.7 
d333~-03 
d",~-0.71 
d",~-0.21 
dm~-0.20 
d3l2~+O.36 
d3l2~+1.8 
d,12~+11.8 

d3l2~ \ 0.721 
d3l2~ 0.721 
d333~-16; -19 
d333~+20.0 
d:m=-O.!=l 
d:m =-1.t 
d3IZ =-O.23 
d3l2~-O.2:j 

d3l"~+0.58 
d312 =+2.2 
d.l I:.'=+6.5 

rI23=-2.:1 
rI23=-6.5 
r333=+4.0 
1'333=-2.3 

r,,,~\2.31 
r"3~ 6.81 
r333=+8.4 
r333=-1.8 • 

'The sign of the coefficient r333 (PbTi03) was measured by Yu. V. Shaldin. 

tion does not lie in a change in sign of the coefficients 
ds1z . 

The contributions of the ions A and B to the d31z of 
the crystal CuCI or ZnS have opposite signs. Which of 
the terms will predominate in the case of CuCI or ZnS 
depends on the values of O!i and ai . 

The electronic polarizability of the A ions was cal
culated from refraction data for these ions (see Table 
29 in[20J), and the polarizability of the B-type ions was 
calculated from (11). The degree of ionicity of the A-B 
bonds was chosen in accordance with the data on the 
electronegativity of these bonds in the lattice (see 
Batsanov's book[19 J) and Szigetti's data, which are also 
given in[19]. On the basis of these data the degree of 
ionicity of the Cu-Cl and Cu-Br bonds is roughly equal 
to 0.7, while for the other AB-type crystals conSidered 
in our paper it is equal to 0.5. 

The d312 values computed from (8) and the experi
mental values are presented in the Table above. 

The method developed for the computation of the 
dO!/3Y gives also in the case of crystals of the AB type 
results that are in qualitative and quantitative agree
ment with the experimental results (see the Table), the 
sign difference between the dO!/3Y values for CuCI- and 
ZnS-type crystals being due primarily to the charge 
difference between the shells of the Cu and Zn ions. 

7. CONCLUSION 

The above-described method of computing the spec
tral components dO!/3y and the electro-optical constants 
rO!/3y' which takes into account the nonlinear polariza
tion due only to the anharmonic terms of Coulomb ori
gin, gave results that are in qualitative and reasonably 
good quantitati ve agreement with the experimental data 
for simple, as well as complex, compounds. This ap
parently means that the Coulomb anharmonicity in ionic 
crystals makes the dominant contribution to the non
linear polarization, i.e., that the approximation con
sidered in the present paper is entirely admissible. 
For a more detailed investigation of this problem, it is 
advisable to compute the contribution from C1k(.l to 

O!I-'Y 
d()li3Y' even if for simple compounds of the type AB. 

From the point of view of the theory the crystals AB 
are of interest in connection with the different signs of 
the values of the only nonvanishing component d31Z for 
different members of the group; for example, d31Z(CUCl) 
< 0, while dSZ1(ZnS) > O[ 301. In contrast to the crystals 
BaTi03 and PbTi03, for the crystals CuCI and ZnS the 
local-field coefficients f~k/3Y are not only of the same 
sign, they are of the same magnitude as weU[14J: 

This shoUld, however, be done together with the refine
". ment of the scheme for the determination of the free 

parameters ()Ii and ai in Eqs. (8) and (9). 

Therefore, it is clear that the cause of the sign differ
ence between the dS12 values for the crystals in ques-
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A further quantitative verification of the theory would 
be the computation of the third-order susceptibilities. 
The point is that for these susceptibilities experiment 
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gi yes the absolute sign, while theoretically the sign of 
the third-order susceptibilities is determined only by 
the sign of the local-field coefficients f~~ye' since the 

ion-shell charge and the effective charge enter into 
equations of the type (8) and (9) in the quadratic form. 
The first estimates for the third- and higher-order 
nonlinearities for the crystals KDP and CaC03 were in 
agreement with the experimental results[37J. 

The author considers it his pleasant duty to express 
his thanks to S. A. Akhmanov for interest in the work 
and for a discussion of the results, and also to V. Ya. 
Ershov for carrying out the computer calculations of 
the local-field coefficients. 

1)The factor lX in the basic equation (1) in (17) should be replaced by 
the tensor Ai. In the limiting case of cubic diatomic crystals 
aOl.=Ai. 

2)The anisotropy of the electronic polarizability was neglected. 
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