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A consistent nonlinear theory of parametric excitation of waves is constructed on the basis of the exact 
interaction Hamiltonian of parametric waves (6), in which the interaction of these waves with thermal 
waves is treated microscopically. A justification is given for the procedure of diagonalizing the Hamiltonian 
de ;nt and the phenomenological introduction of damping into the canonical equations of motion for ak, 
which forms the basis of S-theory [B. E. Zakharov, V. S. L'vov, and S. S. Starobinets, Usp. Fiz. Nauk 114 
609 (1974); Fiz. Tverd. Tela (Leningrad) 11, 2067 (1969); Zh. Eksp. Teor. Fiz. 59, 1200 (1970)]. A study is 
made of the effects that arise when one goes outside the scope of S-theory; in particular, a study is made 
of the distribution of nk., in 00, k space, (ak.,a*k'.,) = nk.,ll(k-k')o(oo-oo'), in a wide range of 
variation of the pumping amplitudes. It is shown in particular that at a certain supercriticality, which is 
near the threshold value, there is a phase-transition type phenomenon-the precipitation of a "single­
frequency condensate", in which all the parametric waves oscillate with the same frequency equal to half 
the pumping frequency: A nk., a: o(oo-oop /2). At large supercriticalities, the integrated amplitude of the 
single-frequency part of the parametric turbulence of the waves appreciably exceeds the integrated 
amplitude of the many-frequency parametric turbulence. These phenomena must also occur for other 
methods of excitation of turbulence of waves near the surface of constant frequency ook = const. 

PACS numbers: 03.4D.Kf 

Great interest is now concentrated on phenomena 
accompanying the paramagnetic excitation of waves in 
ferro magnets , [1-4] antiferromagnets, [5,6] plasmas, [7] and 
other nonlinear media. In a number of important cases, 
the dispersion law "'k of the waves is a nondecay law, 
and the external field, the pumping, can be assumed to 
be spatially homogeneous and monochromatic: 

h(r, t)=h(t)=hexp(-iwpt). (1) 

In the construction of a nonlinear theory of para­
metric excitation of waves in this situation, Zakharov, 
Starobinets, and the author[8,9] proceeded from the 
classical Hamilton equations of motion for the complex 
amplitudes ak of traveling waves: 

Oak 6JIiC 
i-=-. (2) at 6a. 

The Hamiltonian of the problem 

(3) 

includes interaction of the waves with the pumping: 

de p='/, J [h(t) Vkaka-k+ c.c.]dk (4) 

and their interaction :l<int with one another. In the case 
of a nondecay dispersion law, the pumping gives rise to 
the excitation of waves in the neighborhood of the "re­
sonance surface" 

It is obvious that the interaction of these "parametric 
waves" is described by the four-wave Hamiltonian 

(5) 

de,.,='/, J T"."a,·a;a,a,6 (k,+k,-k,-k.) dk, dk, dk, dk,. (6) 

The main approximation made in [8,9] is analogous to 
the BCS approximation in the theory of superconductivity 
and consists of a reduction of the interaction Hamilton­
ian to a form diagonal in the wave pairs a±k. It corres­
ponds to the replacement of the exact problem by the 
problem of the interaction of pairs of waves. The justi­
fication for this is the "pairing" - the phase correlation 
of waves in pairs, which arises as a result of the pump­
ing and leads to the exchange of energy between pairs 
already in the first order of perturbation theory in :l<int. 

Another important approximation consists of the phe-
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nomenological allowance for the interaction between 
the parametric waves and the "thermal bath" of the re­
maining waves through the addition of a "dissipative" 
term to the canonical equations (1), The theory based 
on these assumptions (which we have called S-theory 
[10]), enables one to describe in detail the behavior of 
the waves above the threshold of parametric excita­
tion; it is in good qualitative and quantitative agree­
ment with a number of experiments on parametric 
excitation of spin waves in ferro- and antiferromagnets 
(see the review(41, and also [8-19]). 

At the same time, there are experimental results (for 
example, the "hard" excitation of parametric waves[20]) 
and there could be new accurate experiments (for ex­
ample, investigation of "noise" emission at frequencies 
near ",/2, "'p, 2",p) whose interpretation requires one 
to go beyond the framework of S-theory. The point is 
that S-theory describes correctly only the integral 
characteristics of the system of parametric waves 
and, for example, does not take into account at all the 
finite width of the distribution of the parametric waves 
in k, '" space. In S-theory 

(7) 

However i a priori one could imagine completely dif­
ferent behaviors of parametric waves, resulting in dif­
ferent broadening of the distribution (7) without a 
change (accurate to small parameters) in the integral (in 
the modulus k and "') magnitude of nk",. 

The limits of applicability of S-theory also remain 
obscure. The procedure for diagonalizing the inter­
action Hamiltonian can clearly provoke serious objec­
tions on first examination. For if one adds formally to 
the equations of S-theory the collision term of the 
kinetic equation [which is formally of second order in 
:l<int (6) 1 and substitutes into it the singular distribu­
tion (7), it is not small, but infinite. The point is that 
the kinetic equation is valid if the wave packet has a 
large frequency width, which guarantees randomization 
of the phases, whereas the distribution (7) of S-theory is 
a single-frequency distribution. 

In this connection, we encounter fundamental ques-
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tions that take us outside the scope of the theory of 
parametric excitation of waves: Can single-frequency 
turbulence of waves be weak and how can it be de­
scribed? Can one retain the single-frequency nature of 
the turbulence in the presence of many-frequency ther­
mal noise and, if yes, why? What are the criteria for 
randomization of the phases for singular distributions 
concentrated on a surface or even a line in k space? 

These and other questions are considered in the 
present paper. In it, for the case of parametric excita­
tion, a consistent nonlinear theory is constructed for 
single-frequency and many-frequency weak turbulence 
of waves on the basis of the exact Hamiltonian of the 
problem (2), (4), (6), in which the interaction of para­
metric waves with thermal waves is treated microscopi­
cally.t) We use the canonical diagram technique devel­
oped by Zakharov and the author, [22) which generalizes 
the technique which Wyld[23) developed for problems of 
hydrodynamic turbulence. The weakness of the inter­
action of parametric waves relative to their dispersion 
TN(kaw/ aktI enables us to use only a selective sum­
mation of diagrams that do not renormalize vertices 
in the Dyson equations, and obtain for the binary cor­
relation functions nkw and Okw: 

(a •• a:·.,) =n •• 1I(k-k')6 (Ill-Ill') , 

(a.,.a.·.·) =0 •• 6(k+k') 6( III + Ill' -Illp) , 

closed integral equations that generalize the equations 
of S-theory (Sec. 1). 

(8) 

Let us describe qualitatively the picture of the 
phenomena found by the analysis of these equations. In 
the absence of pumping, the waves relax to thermody­
namic equilibrium: nkw - nkwo, Okw - O. Under the in­
fluence of pumping (even below the threshold) the 
waves are heated in the neighborhood of the resonance 
surface; with increasing h there is narrowing of the 
packet (nkw - nkw 0) with respect to wk and w around 
wpl2. At a super criticality h* somewhat higher than 
the threshold value hI there is a phase-transition type 
phenomenon- "precipitation of a condensate" in w 
space: On the background of the many-frequency turbu­
lence described above there arises a new wave packet 
that oscillates with a well defined frequency w = wph: 

op(k, w)'='0 •• =os(k)6(1ll-1ll/2)+o,(k, w). 
(9) 

Here, the subscript S is appended to the single-fre­
quency, and the subscript t to the many-frequency part 
of the parametric turbulence of the waves. The theory 
of many-frequency turbulence for h < h* is constructed 
in Sec. 2; parametric turbulence of waves for h > h* is 
considered in Sec. 3. In particular, it is shown that 
with increasing super criticality the integrated magnitude 
of the single-frequency part of the turbulence, NS, in­
creases (for h ~ hI [(kawk/ ak)'Yk-I]1/2 in accordance with 
S-theory), while the many-frequency part Nt decreases, 
so that Nt « NS already when h "'" 2h1. Note that the 
distribution 

n,(k)= J n,(klll) dill 

with respect to the modulus of k is a Lorentz function, 
and the distribution ns(k) is the square of a Lorentz 
function with a common maximum on the resonance sur­
face, which is renormalized by the interaction, and the 
same width II, which increases with increasing super­
criticality approximately as h3/2 and at the limit of ap­
plicability of S-theory, i.e., for 
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h=hs""h, [ (killll./ilkl 1k -']"'. 

reaches the value Akawki ak "'" 'Yk' 

It must be emphasized that in this paper we have re­
stricted ourselves to studying spatially homogeneous 
and stationary turbulence, for which (akwak' I) ex: Ii 
x (k- k/)6(w - w'). Of course, in a spatialIy't{omogene­
ous system when the external conditions are stationary 
such solutions always exist, although they may be un­
stable. Such an instability does indeed arise in some 
cases, as is shown in [243, and its development leads to 
autO-OSCillations, which can be observed experimentally. 
[18,19) 

We shall assume that the coefficients of the Hamil­
tonian are such that the instability against breakdown of 
spatial inhomogeneity does not arise. It is then natural 
to assume that the parametriC turbulence after the 
pumping has been switched off relaxes to the homoge­
neous stationary state (9), which is the state investi­
gated in this paper. 

1. BASIC EQUATIONS 

We obtain averaged equations that describe para­
metric turbulence of waves by means of the canonical 
diagram technique. [22,23,25) For this, into the equations 
of motion (2) and (3) for aq = akw it is necessary to in­
troduce a small damping 'Yk ° of the waves and a Gaus­
sian random force with Langevin correlation function 

(/,1,.')=F,6(q-q'), Fq=l.'Thllllk (10) 

(T is the temperature of the medium) and represent the 
solution of (2)-(3) in the form of a formal series in 
powers of fq/ To take into account the pairing (uq ~ 
0) it is necessary, as in [25), to introduce, besides the 
normal Green's function Gq, the anomalous Green's 
function Lq : 

..... =G,=(lla,) ..... +-=L =(~) 
61, ' '61,+ , 

-=Gq·, ++=Lq·, 

where + denotes the transition to the adjoint and the 
substitution q = q == - k, wp - w. 

(11) 

Summing, as usual, the reducible graphs, we arrive 
at the system of Dyson equations for Gq, Lq and nq, Uq: 

Gq [ Ill-Illk-~q+il' ']-L, +II,=i, 

-G,IIq ++L, +[ Illp-Ill-lllk-~,+-i1kol =0; 
nq=Gq[ (Fq+(tlql G;+ '¥ qLq +] 
+Lq[ '¥ qG;+ (Fq++(tl,+)Lq+], 

Oq+=Lq+[ (Fq+(tlq)G;+ '¥ qLq+] 
+Gq +[ '¥ ,Gq'+ (Fq++(tlq+)Lq +]. 

(12) 

(13) 

Here, ~q, IIq , cPq , and >¥q denote the sums of irreduci­
ble diagrams; ~q and cPq are normal diagrams, i.e., they 
preserve the direction of the arrows; IIq and >¥q are 
anomalous irreducible diagrams. 

The diagrams of cPq and 'liq , in contrast to the dia­
grams for ~q and IIq, can be cut into two parts only 
with respect to the dashed lines fq . We expand the ir­
reducible diagrams in powers of the matrix element 
T12 ,34 of the interaction Hamiltonian: 

r~= 2 V+ 48 + 2 e + 4 e + 

+46+ 4 8+ &+ ... 
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n~-hl't+ D + 4 e + ... +.fi+ "', 
1f>q-2~+'~+ &+ ... , (14) 

~=4-e+2e+~+··· 

Subsequently we shall show that for not too large super­
criticality the diagrams of (14) containing three or more 
vertices T can be ignored. This means that we obtain 
closed nonlinear integral equations for Gq, Lg and nq, 
O"q. We write down analytically the relations (14): 

1:.=2 S Tk1<,n.,dq'+2 S Tt"" {Tt",,[G,·n,n. 

+n, (G,n.+n,G,) J +2T t',"[o,· (o,G.+£,n.) 
+£,·o,n.]}1l (q+q,-q,-q.)dq, dq, dq., 

II.=Pt+2 J Tt1 ,,,{Tt1 ,2J[ 0,' (0,£.+0,£,) +L,'o,o,J 

+2TtI, •• [n, (G,o,+G,o,) +G,'n,o,J}1l (q+q,-q,-q.)dq, dq, dq., 

Pt=hV.+ S S .. 'o,' dq', 

(15) 

where 

Further, 

1l>.=2J [ITt1 ,,,I'n,n,n.+Tt1 ,,,T :"" 

)(0,' (n,o,+o,n.) J<'>(q+q,-q,-q,) dq, dq, dq.. (16) 

'¥ .=2 J [T:",,ot'o,o,+Tt,,.,Tu,.,n, (o,n,+o,n,) Jil (q+q,-q,-q,)dq, dq, dq •. 

In the absence of pumping, when IIq = 0, Lq = 0, and 
Uq = 0, the system of equations obtained here goes over 
into the kinetic equation for waves of [21,22). This means 
that the system of interacting waves evolves to thermo­
dynamic equilibrium: 

nk=~nk .. dw ....... nko=T/;;;k' (;jk=cok+Re~ _. (17) 
ko tok 

i.e., to the Rayleigh-Jeans distribution. At the same 
time, as is shown in (22], 

, 1 ,,(tnt' (18) 
nil:. =-; (ro-oh)Z+1,,'1 

where Yk = Yko - 1m ~k,wk is the decay rate of the 
waves due to their interaction with one another. In 
equilibrium, 

Il>t.""«l •• '=,,(tnt'ln (19) 

and this function is virtually independent of w. 

Under the influence of the pumping, the waves are 
heated in the neighborhood of the resonance surface: 

n. (kOl) ""nt.-nt.'>O. 

if I w - wP/21 and I Wk - wP/21 are less or of the order 
of hV. The correlation functions np(kw) and O"p(kw) == 
Ukw characterize the parametriC waves. Generally 
speaking, the pumping also changes the amplitude of 
the "thermal" waves whose frequencies wand wk are 
not near Wp/2.(26] However, in a number of cases this 
does not occur and in this paper we shall for Simplicity 
assume that the thermal waves are in thermodynamic 
equilibrium. 
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2. MANY-FREOUENCY PARAMETRIC TURBULENCE 
Of WAVES 

In this section, we shall study the parametric tur­
bulence of waves at small supercriticality. For this, 
in the expressions for ~q, <Pq, IIq. and \{Iq it is neces­
sary to substitute nkw = nkw + np(kw), Ukw = CTp(kw) and 
investigate the resulting expressions. The result ob­
tained in the zeroth approximation in np, up is known­
it is Eqs. (17)-(19). The equation 

iil t·=co.+2 S Ttt·n.'· dq' 

describes the frequency of the parametriC waves as a 
function of the temperature of the medium. We shall 
assume that this dependence is already included in the 
definition of wk, so that 

iil t =Olt+2 J T.t'n. (k' Ol')dk' dOl'. (20) 

The expreSSions (15) and (16) for Yk, <Pk, and \{Ik are 
quadratic in the coefficients of the interaction Hamil­
tonian T 12 ,34' This enables us in the first stage of the 
investigation to restrict their calculation to the 
zeroth approximation in the amplitude of the para­
metric turbulence. The limit of applicability of this 
approximation in the amplitudes np and up and the ef­
fects that occur at large amplitudes will be considered 
below. 

Substituting Yk and <Pko from (19) and \{Ik = 0 into the 
Dyson equations (12) and (13), we obtain 

n ... = "(tntOI [(iil.+W-Olp)'+"(.'+!P.I'J, 
n!~ •• ' 

(21) 

Note that these equations are integral equations in 
four-dimensional (k, w) space. However, USing the 
narrowness of the packets np(k,w) and op(k, w) with 
respect to wand Wk, we can reduce them to two-di­
menSional integral equations for quantities that are in­
tegral with respect to wand wk: 

N.(Q)=ko'S n.(kw)dcodx. 

~r(Q)=ko' S op(kw) dco dx. 
(22) 

Here, k,n is the radius of the resonance surface 2wk = "'p 
at the point with angular coordinate 0, /( is the devia­
tion of k from kn along the normal to the surface. For 
this it is necessary, ignoring the dependence of Yk and 
Pk on /(, to integrate (21) with respect to /( and w: 

Np(Q)= nk.'n,IP.I' • 
VgVg 

~p (Q) = ink."Tto"(.P. 
VgVg 

Vo'=,,(.'-IP.I'. 

(23) 

Substituting here ~p(o) into (15), we obtain a nonlinear 
integral equation for the self consistent pumping Po on 
the resonance surface: 

's k.,'''(o'Po· dfJ' P.=hVo+mno S •• , -.,....-'".....,,....---;-:-c-
Vo·(1.,'-IP.,I')'" • 

(24) 

which differs from the erroneous self-consistency con­
ditions obtained in (27). 

Solving this equation, we can determine from Eq. (23) 
the integral characteristics Np(n) and ~p(n) of the para­
metric waves on the resonance surface and, USing Eqs. 
(21), investigate the structure of the distributions nkw 
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and Okw near it. In particular, integrating (21) with re­
spect to w, we have 

(k) , IP.I' 
n. =n. (iilt-ro./2)'+v." 

(k) - ,P.(iih-ro./2+i"{.) 
o. -no (iih-ro./2)'+v." 

(25) 

Thus, the distribution of np(k) and o-p(k) with respect to 
the modulus of k has the form of a Lorentz function 
with maximum on the resonance surface and half-width 
Ilk· 

Equations (25) can be transformed identically to the 
form 

'Y.n.+ 1m (P.o.) =y.n.', 

[y.+i(iiI.-ro p I2) ]o.+iPknk=O. 
(26) 

These equations were written down for the first time 
earlier in (1OJ on the basis of intuitive arguments and 
investi~ted th~re in detail. E~uations (26) differ from 
the basIc equations of S-theory 9J only by the inhomoge­
neous term Yknko, which describes the influence of the 
thermal fluctuations on the system of parametric waves. 

It follows from Eqs. (26) in particular[lOJ that in the 
case of spherical symmetry and for h - hI > ~2hl (Le., 
above the formal "threshold" hN = y) 

[( h)' ]',. h' SN.=y - -1 ( 1+6' , ) 
h, 2(h'-h,')' , (27) 
v=~yh, (h'-h.') -'I,. 

Here, ~ is a small parameter of the problem, which 
characterizes the influence of thermal fluctuations: 

6= (2n)'k'Sn,v-', S=(4n)-' J S •• ·dQ'. 

Thus, the integrated amplitude Np differs little 
from the quantity predicted by S-theory. DOJ The funda­
mental difference from S-theory is the occurrence of a 
finite width of the wave packet nk with respect to the 
modulus k, this being due to the influence of the ther­
mal fluctuations of the medium. However, if h - hI 
» ehI, the width, as follows from (27), is small: " 
« y. 

In S-theory, the turbulence of parametric waves is 
described in terms of nk and Ok and the question of the 
distribution of nkw and Okw with respect to w simply 
does not arise. Nevertheless, clarification of the 
structure of this distribution is of considerable in­
terest and it has a direct bearing on the question of the 
noise of parametric amplifiers. In addition, it can be 
directly measured; for it follows from the expression 
(4) for the Hamiltonian of the interaction of parametric 
waves with the external field that the power Pw of the 
electromagnetic emission from a sample at frequencies 
w near the pumping frequency wp (with polarization 
parallel to Ho) is determined by the expression 

P.=A I J v.o.,o"dk r=A I J v.o. (~) dQr, 

where A is a constant. Integrating in (21) with respect 
to Ie, we obtain 

a (ro)- 2'I'y.V.~.(Q) , (28) 
• - {[ (x'-v.') '+41.'X'J'/+ (v.'-x') [ (x'-v.') '+4T.·x']"'P' ' 

where x = w - w/.2. We can see from this that for "0 
« yo the half WIdth of the distribution o-o(w) with re-
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spect to w is "02/2yO and, as one would expect, the 
maximum corresponds to w = wP/2. 

Let us consider why the parametric turbulence of 
waves has been found to be of a many-frequency kind. 
It can be seen from the Dyson equations (13) that 
the distribution nkw to within factors nonsingular in w­
the Green's functions- repeats the distribution with 
respect to w of 4>kw and >Vk"" which are the correlation 
functions of the random force. To calculate them, we 
used the lowest approximation in ~(kw) and o-p(kw) and 
found that >Vkw = 0, while 4>kw = 4>k is virtually inde­
pendent of w. It is easy to see that the corrections 4>k~ 
and 4>k~ to 4>kw ° calculated in the linear and quadratic 
approximations in np and o-p are also independent of w. 
However, the term 4>i:~ cubic in np(kw) has a sharp peak 
at w = wp{'2. This can be seen by substituting np(kw) ex 
Ii(w - w;'2) into (16), which gives <l>i:~ ex Ii(w - wP/2). 
This means that the width of the distribution <l>i:~ 
with respect to w is of the same order as the width of 
the distribution np(kw) with respect to w. Therefore, the 
results obtained above are true for amplitudes Np « N* 
for which 4>k~ «<I>k' For h > h*, when N > N*, the 
spectrum of the random force <l>kw is far From the value 
<l>ko of thermodynamic equilibrium, and is almost com­
pletely determined by <l>i:d,. 

We show that in this case the system of parametric 
waves is unstable against collapse in w space. The 
point is that a random contraction of the packet np(kw) 
with respect to w gives rise to a contraction of the 
spectrum of the random force <l>kw, and this, in its turn, 
enhances the contraction of the packet np(kw), and as a 
result the function <l>kw becomes even narrower in w 
space, etc. This process continues until the widths of 
the distributions np(kw) and<l>kw with respect to w is 
zero. This process cannot broaden the packets np and <I> 
with respect to w. This is prevented by the Green's func­
tions, which have a small width in w: Awex V/2y. It is 
important that this width Aw does not depend on the 
structure of the distributions o-p(kw) and np(kw) with re­
spect to w and is determined solely by the integrals of 
them with respect to w. 

Thus, for some supercriticality h = h*, when <l>k~P/2 
:::::l <l>ko, single-frequency turbulence arises, Le., the cor­
relation functions np(kw) and o-p(kw) take the form (8). 
Substituting np(kw) from (21) into Eq. (16), we obtain 
for <l>kw the estimate 

111;') -T'N' Ik' , kepl2- p1 v. 

Equating <l>i:d,P/2 and <l>ko = ynko/lT and substituting 
successively nkw from (21) and" and Np from (23), 
we obtain 

( 8ro / ) 'I. (h'-h,)lh,"" k-ak 1 6'1,. 

Assuming for ferromagnets ~ :::::l 10-3 - 10-2 and 
y(k8wW 8kti :::::l 10-3 - 10-4, we obtain h* - hI :::::l (0.1 
- O.Ol)hl , i.e., a "phase transition" occurs when the 
"formal" threshold hI = y/V has been slightly ex­
ceeded. 

(29) 

3. THEORY OF SINGLE·FREQUENCY TURBULENCE 
OF PARAMETRICALLY EXCITED WAVES [lI] 

1. Basic Equations 

We shall show below that at small supercriticali­
ties, when h - hI » h - h*, the amplitudes of single-fre-
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quency turbulence ns(k) are appreciably greater than 
those of many-frequency turbulence: 

n.(k) = J n.(kw)dw. 

Therefore, at these supercriticalities it is natural to 
calculate nS(k) and as(k) in the zeroth approximation in 
nt(k), and then calculate nt(k), assuming that nS(k) and 
as(k) are given. 

In the case of single-frequency turbulence, the Dy­
son equations (12) and (13) simplify to the form 

ns(k) =( I Gk 1'+ ILk I ') «l>k+2ReG.L.'V k, 
(30) 

Here, Gk and Lk are the values of the Green's functions 
Gq and Lq for w = w/2: 

(31) 

and q,k and >¥k are determined by the equations 

«l>k .. =«l>kll(w-wp I2), 'V k.='V kll(w-w/2). 

It follows that the distributions nS(k) and as(k) have the 
form of the square of a Lorentz function with peak at 
2wk = wp, in contrast to the corresponding distributions 
nt(k) and at(k), which have the form of Lorentz functions. 

Using the narrowness of the packets, we can, as be­
fore, integrate the Dyson equations (30) along the nor­
mal to the resonance surface and obtain equations for 
the integral quantities NS(n) and ~S(n) [see (23)]: 

:nk.'r. 
N.(Q) = --,-(r.cD.+ 1m no'V .), 

VllVg (32) 
r .~., (Q) +iII.N 8(Q) =0. 

Using the notation 

N(Q) =:nk.'(l).lv.v., f(.Q) =:nk.''V .Iv.v. (33) 

we can transform these equations identically to the form 

r.(N.(Q) -N(Q) )+Im[IIo(~s(Q)-f(Q» 1=0 (34) 
r.~s(Q) +iII.N.(Q) =0, 

which differs from the stationary equations of S-theoryl91 

1.Ns (Q) + 1m P"~s (Q) =0, (35) 
'Y.~s(Q) +iP.Ns(Q) =0 

by the renormalization of the damping of the parametric 
waves and the pumping: rn = yn + ••. , IIn = Pn + ... , 
~nd al~ by the presence of the additional "noise" terms 
N and ~. 

ExpreSSions for these quantities can be obtained by 
substituting into (15) the correlation functions nkw and 
O"kw in the form 

As before, it is easy to show that the basic quanti­
ties are the terms of the zeroth and the third order in 
US and as' The terms of zeroth order are important be­
cause the integral amplitude of the thermal waves is 
much greater than that of the parametric waves, while 
the terms of the third order are important because they 
have a "resonance" nature: The number of I) functions 
in the integrals is greater than the number of integra­
tions. As a result 
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2n S [ ,~,'n,~, ] n.=p.+- T.,,,,--+ ... 
kovc \'z 

x ll(n+n,-n,-n,)dQ, dQ,dQ" 

Nn= k2n S [IT.""I'N,N,N,+ ... ]Il(n+n,-n,-n,)dQ, dQ, dQ." 
nUn 

- 2n S ' ~n= -k - [T .,,2J~'·~2~'+ ... ]6 (n+n,-n,-n,) dQ, dQ, dQ,. 
uUa 

(36) 

Here we have omitted terms of the same order; their 
structure can be readily understood by comparing (28) 
and (15). We have nj 0= k/ lim I and the indices 1, 2, 3 
replace kl' k2, k3, the angular coordinates of kl' kz, k3 
on the resonance surface, Nl = NS(n1), etc. Thus, we 
obtain the closed system of integral equations (34) and 
(36) for NS(n), ~S(n), r(n), and II(n). 

Let us turn to an investigation of its solutions. 

2. S-Theory 

We show first that Eqs. (34) and (36), which de-
scribe single-frequency turbulence of parametric waves, 
admit, like Eq. (26) for many-frequency turbulence, a 
passage to the limit of the equations of S-theory. Indeed, 
omitting in (36) the terms that contain NS and ~S to 
powers higher than the first, we obtain rn = yn, IIn = Pn, 
q,n = >¥n = N(n) = ~(n) = O. The following results are 
then obtained: 

a) the damping of the parametric waves is not re­
normalized and can be calculated from the ordinary 
kinetic equation for the waves in the absence of pump­
ing;2) 

b) for self-consistent .pumping; the ordinary expres­
sion (19) of S-theory is obtained; 

c) NS(n) and ~S(n) are nonzero only for the directions 
n for which vn = 0 [see Eq. (32); this means that the 
distribution of the surface waves in k space is singular, 
ns(k) ~ 0, only on a resonance surface satisfying the 
condition of external stability in S-theory: 2wk = wp, 
and then only at its pOints where Yn = I PI]; 

d) NS(n) and ~S(n) at these pOints are determined by 
Eqs. (34), which go over in this approximation into Eq. 
(35) of S-theory. 

3. Fine Structure of the Distribution ns(k) and limit of 
AppHcabHity of S-Theory 

At first glance it might appear that our approxima­
tion "linear in T 12 ,34" in Eqs. (36), which leads to S­
theory and, in particular, to singular Green's func-
tions in which v = 0, is incorrect. Indeed, the contribu­
tion of the following ~T2 diagrams calculated by means 
of it differs, as can be seen from (36), by the factor 
rTN/ vkv, which is not small but in fact diverges. We 
shall show that nevertheless S-theory does correctly de­
scribe the integral quantities NS and ~S and the struc­
ture of the distributions NS(n) and ~S(n) if the super­
criticality is not too large: h < hs, where 

Indeed, from (36) we obtain the estimate 

iVINs"" I~ II I ~s I "" (TNsl'/vkv. 

(37) 

(38) 

Hence and from (32) and (33) we obtain an estimate for 
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v which, in accordance with (30), characterizes the 
width of the distributions ns(k) and OS(k) with respect to 
k: vLl.k = v, where 

(39) 

At the same time, we have assumed that r ~ y and I ~S I 
~ NS' Let us show that these relations are satisfied for 
h « hs when v «y. Indeed, it follows from (36) that 

1--""--",, - <1 "t (TNs) , (V)' 
r vkv "t . (40) 

Further, it can be seen from (32) that rJ~S I III INS' 
Bearing in mind that V = r2 - In 12, we obtain 

1l:.1 v' 
1-N.""2f<1. 

(41) 

Further, from (38) and (39), 

~ "'" I ~ I "" (~)' "'" (-1. h'-h,') '1,. 
l; ~ "t kv h,' 

(42) 

From (36) and (39), 

I II-P I "'" (~)'"" (-1. h'-h,') '''. 
II "t kv h,' 

(43) 

The relations (40), (42), and (43) mean that the rela­
tive deviation of the coefficients of Eqs. (34) from 
Eqs. (35) of S-theory is small in the parameter (V/y)2 
and, therefore, the results of S-theory differ from the 
exact results by a quantity which is small in the same 
parameter. In particular, it follows from (39) and (41) 
that for h < hS the phase correlations in pairs are pre­
served almost completely. 

In [21] it is shown that the. estimates (38)- (43) are 
valid right up to h = hS' when v ~ 0.5y. 

4. Role of Higher Diagrams. 

Hitherto we have restricted ourselves to conSider­
ing irreducible diagrams proportional to T and T2 in the 
series (14) for ~q, nq, ~q, and wq . Estimating the dia­
grams a:T3 , T\ etc, in the interaction, we can readily 
show that they can be arranged in a series in accord­
ance with the parameter ~ = rTN/vLl.kv. Here, Ll.k is 
the maximal size of the distribution of the waves in k 
space. For h ~ hs, substituting here (39) and (40), we 
obtain 

N, "" (~) 'I. "" (kV) 'I. (~) 'I,. 
Ns '6 S'N.' '6 "t h'-h,' (44) 

At large supercriticalities (h » hs) it follows from (32), 
(33), (38), and (40) that 

(45) 

i.e., ~ = TNsI LI.kv. Therefore, as long as the nonlinear 
shift of the frequency TNS is much less than the dis­
persion Ll.kv of the waves, all the necessary diagrams 
have been retained in Eqs. (34)-(36). For a wave packet 
concentrated near a point in k space, the diagram method 
developed here does not apply. 

5. Fluctuations of Single-Frequency Turbulence 

To conclude this section, let us consider many-fre­
quency turbulence of parametriC waves far from the 
"phase transition" for h - hI »h* - hI' We shall show 
below that then Nt « N*, where N* is an amplitude of 
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NS for which ~k) p/,2 ~ ~k)' In the case Nt « NS one 
can calculate nt~) as the nonlinear reaction of the sys­
tem of parametriC waves to a many-frequency random 
force with Langevin correlation function ~k = yny! 1T. 

Then for nt(kw) and O't(kw) the results obtained for 
small supercriticality are valid: Eqs. (21), (23), (25) 
and (28), in which vn is now determined by the single­
frequency turbulence and is given in order of magnitude 
by Eq. (39). In particular, for the ratio Nt/NS we ob­
tain the estimate 

("tTN) 'I. ("t )',. 
;,,=---.;; - <1. 

(L\kv)'" L\kv 
(46) 

Hence and from (29) it can be seen that Nt ~ NS ~ N* for 
h = h*, and our treatment is invalid. The investigation 

" of the nature of the "phase transition" at h = h* is a 
complicated problem. The possibility cannot be ex­
cluded that there is a "phase tranSition of the first kind 
which is nearly one of the second kind", i.e., at h = h* 
the single-frequency turbulence arises abruptly. The 
discontinuity is small and Ll.NS cannot exceed N*, where 

SN'''''s'l, (kv) '1",(,". 

For h - hI »h - hl*' the amplitude of the single­
frequency part NS of the parametric-wave turbulence 
increases in accordance with S-theory, and the many­
frequency part Nt decreases in accordance with Eq. 
(46). 

When the super criticality is not small, i.e., h - hI 
~ hI, the many-frequency part of the parametrically ex­
cited turbulence is a negligible part of the single­
frequency part and can be regarded as fluctuations on 
the background of the latter. 

In addition, the amplitudes and phases of the single­
frequency part of the turbulence fluctuate with frequen­
cies of order (h2y2 - y2)1/2. These fluctuations are the 
thermally excited collective degrees of freedom of the 
system of parametriC waves considered in [17-19,24]. 
These collective oscillations may be unstable, and they 
are then excited spontaneously. The resulting auto-os­
cillations have a noise nature in a number of cases. 
They can be regarded as giant fluctuations that break 
up the single-frequency turbulence and lead to strong 
many-frequency turbulence with characteristic frequency 
~(h2y2 _ y2)1/2 of the motion, which agrees with the 
width Ll.wk of the excited region in k space. 

I am sincerely grateful to Y. E. Zakharov and S. S. 
Starobinets for their constant interest and numerous 
helpful discussions. 

1) A preliminary communication with some results of this paper was 
published in [21 ]. 

2)This result disagrees with the opinion of Tsukernik and Yankelevich 
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