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The interaction of an ion-acoustic soliton with a monokinetic (one-velocity) charged particle beam is 
investigated. An integrodifferential equation for the soliton amplitude is obtained in the quasi
hydrodynamic approximation. An effect of transient amplification is described which depends on the initial 
conditions and which leads to the formation of a stable soliton in the beam-plasma system. Estimates for 
the effect are presented for a laboratory plasma. 
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The possibility of amplifying particle-like waves
solitons-in a beam-plasma system has aroused consid
erable interest recently. Such processes are usually 
investigated for electron waves-so-called Langmuir 
solitons-as well as for charge-density solitons ampli
fied by an electron beam [1-4J. In addition it is of consid
erable interest to investigate the beam amplification of 
ion-acoustic solitons, which seem to play an essential 
role under astrophysical conditions [5J and have recently 
been observed in laboratory experiments [6J • We note 
that the interactions of such solitons with a beam may 
lead to a pulsed acceleration of heavy particles (cf. [7J). 

We consider the amplification of an ion-acoustic soli
ton by a monokinetic beam of charged particles in a non
isothermal plasma. The problem is solved in the quasi
hydrodynamic approximation, when all particles of the 
beam interact coherently with the wave. As a result we 
succeed in describing a peculiar effect of "transient" 
amplification related to the process of establishment of 
stationary excitations in the beam. The amplitude of the 
established soliton in the plasma-beam system turns out 
to be dependent on the whole prehistory of the process. 

The initial system of equations has the form 1) 
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where v, vs , p, ps are the deviations of the velocities and 
ion concentrations of the plasma and beam particles, 
respectively, from the equilibrium values 0, Vo, No, Ns ; 
q; is the potential of the electric field; e/m, elM are the 
specific charges of the beam particles and the plasma 
ions; in the first equation (1) we have expanded, as 
usual, the distribution function exp(-eq;1 KT) in powers of 
q; up to the quadratic term (K is the Boltzmann constant). 

First of all we reduce the system (2) to one simplified 
equation describing the space-time variations of the 
potentiaI2). We shall assume that Ns « No; then the 
structure of the nonlinear wave is defined by the under
lying plasma and the beam plays the role of an amplifying 
factor. In addition, in the quasihydrodynamic approxima
tion one may neglect the nonlinearities of the perturba
tions of the beam (the limits of applicability of this ap
proximation are indicated below). Since we are interested 
in waves propagating with a velocity close to V 0 it is 
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convenient to change from the variables x, t to ~ = x 
- V ot, Xl = x; then the system (2) can be easily solved 
with respect to the beam variables 

__ , e.N. ,,' XI' 1/ , 

f'.(£,x )=---I I'I'1l dx, dx" 
In,Vo 

° 0 

" 
e. I ' v. = -- 'l'i dx,. 

m.Vo 
° 

Here it was assumed that Ps (Xl = 0) = v S (Xl = 0) = 0, 
Le., that at the input the beam is not modulated. 

(3) 

(4) 

Taking (3) into account, the system (1) easily reduces 
to a Single integro-differential equation in analogous 
variables 

(5) 

where we have introduced the dimensionless variables 

q>.=e'l'/xT, x.=x'Qo/C" t.=Qot, 
C.'=xTIM, 1=!il • .'/Q,', Qo'=4nN.e'IM, 

O)o/'=41tN,e2 /m" ;=xa-ta. 

In the sequel we shall omit the index a. 

In the linear approximation for monochromatic waves 
(5) leads, of course, to the well known dispersion relation 
for ion -acoustic waves in a beam -plasma system [9J • 

For y = 0 the equation (5) coincides with the Korteveg
de Vries equation and has the particular solution of 
soliton form: 

(6) 

Since in our case y « 1, we shall look for an approxi
mate solution for q; in the form (6), where the amplitude 
is a function of the slowly varying quantity x and the 
phase Ax/3 is replaced by J Adx/3. 

The method for the determination of an approximate 
equation describing the variation of the wave [1OJ reduces 
here to the simple prescription: multiply (5) by q;(~, x) 
and integrate with respect to ~ from -00 to 00. As a re
sult of this we obtain the following equation for the soli
ton amplitude: 

dA "i I~ I" I"' m. a; = - A"' 'I' (£, x) dx, dx, 'I'm (£, x,) ds, 
o • 

(7) 

For the initial stage of the process, when the varia-
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tions of the soliton amplitude are smail, the solution (7) 
has the form 

A (z)-A."'-yO.03z'YA.(A./3-6). A,ElA (0). 

Consequently, for the natural condition 05 > Ao/3 there 
occurs an amplification of the soliton which ab initio has 
a nonlinear character. Moreover, analyzing the right
hand side of (7), it is easy to show that the solution of (7) 
is a stationary soliton with arbitrary A = const (such 
solitons are discussed in more detail below). From these 
limiting cases one can see the general character of the 
process: a sudden amplification followed by the approach 
of A to a (nonuniversal) constant. However, detailed 
quantitative results could only be obtained by means of 
a computer. 

Some results of the computations are shown in Figs. 
1-3. Depending on the velocity of the beam the soliton 
is either amplified or attenuated and in both cases 
saturation is reached. As synchronism between the beam 
and the soliton is approached the amplification factor in
creases and within the framework of the quasihydro
dynamic approximation it can attain considerable values. 
As the difference 05 - A/3 decreases further it becomes 
necessary to take into account kinetic effects (particle 
capture). and extrapolation to this region gives reason to 
believe that the amplification may be considerably lar
ger. 

In analyzing the results obtained here the question 
may arise as to why already in the linear approximation 
in the beam variables the amplification process stops 
and the soliton amplitude becomes constant. We note, 
first of all, that this final stage of the evolution of the 
initial disturbance can be described starting directly 
from Eqs. (1) and (2) by looking for solutions which de
pend on the single running coordinate ~ 0 = x - ut, where 
u is a constant velOCity (cf. [11]). This solution satisfies 
the equation 

where 

u.- (u.'+2cp) 'I, 
p.= (u.'+2cp) 'I, • 

cp 

«Il'+cp),/+IIlI) (b'+cp)'" • 
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(8) 

(9) 

(for simplicity we have assumed that es /ms = Ie I/M). 
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FIG. I. The dependence of the soliton amplitude on the coordinate x 
for different synchronism parameters 6; r=O.OI. 

FIG. 2. The dependence of the amplification coefficient Astl Ao (Ast 
is the stationary value of the amplitude, Ao=0.03 is the initial soliton 
amplitude) on the synchronism parameter 6; r=O.OI. 
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FIG. 3. The variation of the soliton amplitude A as a function of the 
coordinate x in the presence of damping (an additional term -vA in 
(7»; the damping coefficient v=10-3; r=O.OI; 6=0.3. 

The equation (8) has a solution in the form of an isolated 
wave-a soliton-which for small cp coincides with (6), 
and according to (9) yields for ps small values, as indi
cated above. Consequently there exist nontransient pulses 
with constant amplitude. If however the initial distur
bance of the beam does not correspond to the stationary 
solution (9), there will be energy exchange between the 
beam and the potential wave, leading to amplification or 
attenuation of the wave. 

In the linear approximation the excitations of the 
beam can be classified into natural excitations, traveling 
with velocity Vo, and forced excitations, corresponding 
to (9). Over a time of the order A-1i2 (o5 - A!3) the natural 
wave travels out of the region occupied by the pulse and 
there remains the stationary wave (9), the form of which 
does not change. Thus, the amplification has a transient 
character and lasts for a limited time. In fact, the ampli
fication occurs on account of a linear mechanism, the 
nonlinearity being due only to the character of the ampli
fied pulses (the dependence of their duration on the 
amplitude). It is for this reason that the asymptotic 
value of the soliton amplitude is not a universal quantity 
(as it is in the self-oscillation regime) but depends on 
the prehistory of the process. If one takes damping into 
account the asymptotic value of the soliton amplitude will 
always be zero, however over finite intervals a consid
erable amplification may be maintained. 

In conclusion we estimate the magnitude of the ampli
fication for a plasma system with the follOWing param
eters: No ~ 108 cm-3 ; NglNo ~ 2 x 10-2; T ~ 104 K, 
lel/M = lesl/ms (ion beam), Vo ~ 1.3Cs (05 ~ 0.3), Cs 
~ 106 cm/s; then for an initial amplitude of the soliton 
of ~3 x 10-2 V there will occur an amplification over a 
distance of ~ 10 cm to an amplitude -6.6 x 10-2 V. At 
the same time the width of the soliton decreases from 
1 to 0.7 cm. For these parameters the beam current is 
-1j.LA!cm 2 and the power ~1 j.LW/cm2 • 

The authors are indebted to A. A. Andronov, A. G. 
Litvak and V. I. Reutov for useful discussions. 

l>We assume that T»Ti (T, Ti are the temperatures of the electrons and 
ions); in the sequel we assume that Tf'O. In this approximation the 
particles captured by wave are not taken into account. which is valid 
if ms(Vo-u)2/2>es.,o, where u is the velocity of the soliton (cf. 
[8 D. One may neglect the thermal spread in the beam if 
(Ns/No)l!3(Vo/VTs»>1 (where VTs is the thermal velocity of the beam 
particles). 

2)The Fourier method which was used with success in the analysis of 
amplification of Langmuir solitons [1 I is not effective in this case ow
ing to the nonresonant character of the process, as well as due to the 
smallness of the dispersion (in the stationary "videosoliton" con
sidered here all Fourier harmonics propagate with the same velocity). 
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