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Several methods o~ exciting the high vibrational levels of molecules located in an electromagnetic field are 
proposed ~~d conSidered. These. n:'e~hods are: 1) the action of a set of phased pulses (an analog of Veksler's 
phase-s~blhty method for re1atlVlstIC charged particles), 2) periodic radiation-frequency modulation (the 
modu1at~on frequency. is equal to the frequency of the anharmonic shift), 3) amplitude-frequency 
modulatIOn. T~e. ~onslder~d m.ethods allow the neutralization of the anharmonicity of the molecules and 
ensure the feaslblhty of high Vibrational level excitation. It is shown that an important role in this may be 
pla~ed by the cohere~t e~ec~s of the interaction between the field and the medium. The conditions under 
whl~h the. molecule dlstnbutlon over the vibrational levels can be inverted as a whole (overexcited state) 
are m~estlgated. In each of the cases considered, the solutions to the problems are presented in a closed 
analytlc form. 

PACS numbers: 32.20.Pc 

1. INTRODUCTION able objects in which to realize selective oscillation 
The problem of laser application in chemistry has pumping [12, 27-31J is not accidental. The point is that 

attracted the attention of researchers for a relatively molecules of this type1) possess anomalously low an-
long time [1-5J. During the last five-year period an in- harmonicities (a~cOrding!? [28J, the anharmonicity of the 
tense develofment of this field has taken place (see the V3 mode of Bel3 1S 1.6 cm ). Furthermore, these mole-
reviews [6-10 ). Laser separation of the isotopes of a cules are characterized by a high density of the rota-
number of molecules has already been accomplished with tionallines (~103 lines/cm [32J). High-intensity fields 
an exceptionally high enrichment factor {3 ~ 102_103[ll,12J r107-109 W/cm2) considerably broaden the rotational 
The experimental successes achieved were foreordained . lines (up to ~ 1 cm -1), allow us to "shut off" the an-
in the first place, by the feasibility of selective excitatio~ harmonicity and, thus, force a significant fraction of the 
of a chosen vibrational branch of molecules by resonance molecules in the lower states to participate in the ab-
infrared laser radiation and the high spectral density of sorption of the laser radiation. It is precisely these 
the radiation. factors that characterize the experiments on the separ­

ation of the isotopes of boron [30] and sulfur [12J . 
The theoretical problems connected with the vibra­

tional kinetics of molecules under nonequilibrium condi­
tions created by resonance laser radiation have been 
studied in quite a number of papers [1, 13-23J. The analysis 
carried out in the majority of these papers [12-20J is 
based on the solution to a set of equations of the balance 
type ~or the population of the vibrational levels (Le., for 
the d1agonal elements of the denSity matrix). Also, 
traditional methods were used [24-2SJ . The approach 
based on the balance equations is clearly valid if the 
relaxation time T2 is shorter than the duration of the 
radiation pulse. 

Some distinctive features of the coherent interaction 
of radiation with a gaseous medium were considered 
. [1, 22,23J Aka' .. [IJ 1n • S ryan 1n h1S paper estimates on the 
basis of the harmonic-oscillator model the amplitude 
and buildup time of the vibrations of isolated molecules 
located in high-intensity resonance fields In the 

[DJ • paper by one of the present authors and Savva, the 
kinetics of the excitation of an anharmonic oscillator 
under conditions when the electric field is in resonance 
with the frequency of some transition of the molecule is 
investigated. Goodman, Stone, and Thiele [23J have con­
sidered the quasi-stationary regime of excitation and 
decay of molecules stimulated by "truncated" harmonic 
oscillators. In [22,23J, numerical methods were used. 

One of the main obstacles to the selective action of 
laser radiation on a chosen vibrational degree of free­
do~ of a molecule is the molecule's anharmonicity, 
Wh1Ch does not allow a sufficiently efficient excitation of 
the high vibrational levels. In this connection, the choice 
by experimenters of the molecules BCb and SFs as suit-
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In the usual cases the anharmonicity is high (2w x 
> 10 -1 '> 100 -1 e e ~ cm;,(., cm for bonds with light atoms), and 
the tendency towards selective oscillation excitation 
meets with serious difficulties. Therefore, the propOSi­
tion of new methods that allow the "neutralization" of 
anharmonicity as a negative factor is a matter of great 
urgency. In this connection, let us mention Lugovol and 
Strel'tsov's paper [33 J, in which, for the purposes indi­
cated, a method of adiabatic scanning of the laser­
radiation frequency is proposed2). 

In the present paper we propose and consider several 
methods for the selective excitation of the high vibra­
tionallevels of molecules by resonance laser radiation: 
1) the action of a set of "1T-pulses" (Sec. 3), 2) frequency 
modulation (Sec. 4), and 3) amplitude-frequency modula­
tion (Sec. 6). In all the indicated case, under certain 
conditions, an important role is played by the coherence 
effects of the field-molecule interaction. The solution to 
the pertinent problems is representable in a closed 
analytic form. Furthermore, we present exact solutions 
to the problem of the excitation of a harmonic oscillator 
in the presence of relaxation (Sec. 2) and a problem 
whose formulation is based on the balance equations in 
the case of arbitrary field modulation (Sec. 5). 

2. EXCITATION OF A HARMONIC OSCILLATOR BY 
RESONANCE RADIATION 

Let us conSider the simplest system: a harmonic os­
cillator of photon energy Ilwo, excited by the resonance 
electric field E = Eo cos wt. The Hamiltonian can be 
written in the form 
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fj~liwo~-E(t) ~. 

where ~ is the operator of projection of the dipole mo­
ment of the molecule along the direction of the field, 
nWoE is the Hamiltonian of the isolated harmonic oscilla­
tor, and to the operator E corresponds a matrix with 
elements E'k '" (i - l)oik (i, k'" 1, 2, ... ). It is assumed 
that the fieid induces a high-frequency polarization only 
between neighboring pairs of vibrational levels. 

The equation of motion for the dipole-moment opera-
tor can be derived in the conventional manner [34J : 

d'ji, 2 dtl (' 1) - Wo [["" 1 -+--+ Wo +- !,~-E(t) ).tel!', 
dt' T, dt T,' t, 

where T2 is a phenomenologically introduced phase­
relaxation time and the square brackets correspond to 
commutation operations. Taking into account the connec­
tion between the squares of the matrix elements, 
Ilk+l,k '" kll~1' and the relation Sp(I'l[WEjMJ) '" 21l~1' we 

obtain for the observable quantity 

p ~ sp (p~) = L, (!'m+.mpmm+1 +).tm,m+,pm+"m) 

the equation 

ji + :, p+ ( wo' + ;,,) p~2).t"woQ cos wt, (2.1) 

where 11 '" Il21Eo/n is the Rabi frequency. For the opera­
tor E it is not difficult to obtain the equation 

de +£= E(t) (d ii + ~ ) 
dt T, nwo dt T, ' 

so that for the mean number of vibrational quanta 
10 '" Sp(pE), we I:we 

e Eo (p ) e+-~-coswt p+-
1', nwo 1', • 

where T1 is the energy-relaxation time. 

(2.2) 

In the case of small detunings JAJ/wo « 1, but under 
the condition T~woJA J »1, from (2.1) and (2.2) we find 
for the energy of the harmonic oscillator the expression 
(10(0) '" 0) 

e Q2 {~(1-e-'IT')+[ o.'+(T"12)-']e_'IT' 
2 (o.'+T,-') T, 0.'+,,, ' (2.3) 

-·e-'IT'(o.'+r,,-')-' [ (o.'+T,-',,,-')cos o.t+o. (T,-'-T,,-')sin Ml}, 
where A '" Wo - W and Ti~ '" Til - T~l. 

In the particular case when T2 «t and T2 « Tb the 
expression for the energy assumes a form obtainable 
from an analysis in which the coherence effects are 
neglected [16T: 

1 T, Q' 
e = 2 T, (o.'+T, 2) (1-e-'IT,). 

It can be seen from this that the energy in time reaches 
the steady-state level; at small t the energy E ~ t. 

In the opposite limiting case, when Til and T;/ - 0, 
from (2.3) we have 

1 Q' 
e ~2 D.' (1- cos 0.1). 

i.e., the vibrational-energy reserve varies periodically 
with the optical-beat frequency (see [35J ); at small t the 
energy E ~ e. 

3. EXCITATION OF A HARMONIC OSCILLATOR BY A 
SET OF PHASED PULSES 

For the excitation of the upper vibrational levels of 
molecules by resonance laser radiation, we can use a 
method based on the well-known principle of phase sta­
bility. The principle of phase stability (autophasing) 
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first put forward by Veksler [36J as a means of maintain­
ing indefinitely the resonance between charged particles 
and a high-frequency field in an accelerator of the cyclo­
tron type. 

A modification of this method in the case of the exci­
tation of anharmonic molecules by an electric field con­
sists in the following. If the frequency of the light pulse 
E '" Eo cos wt COincides with the transition frequency for 
the lowest pair of levels 1 and 2 (w '" W21), then, in the 
absence of relaxation, the populations of these levels will 
vary periodically in time with the Rabi frequency 1121 
-= EoIl 21 /fi[34]. At moments of time t '" Tl such that 
1121Tl '" (2n + 1)11 (n '" 0, 1, ... ), the system is completely 
inverted, i.e., all the molecules are in the upper level 2. 
Let us now assume that at the moment Tl the radiation 
frequency changed discontinuously and became equal to 
the transition frequency W32 for the higher-lying pair of 
levels. The molecules "trapped" in the resonance by the 
pulse will again begin to oscillate, but now between the 
levels 3 and 2 with frequency 032 '" EOIl32/n. The choice 
of the phase value at which the next pulse is switched on 
in accordance with the condition 032T2 '" 11(2n + 1) trans­
fers the molecules to a still higher level, etc. Thus, a 
set of phased pulses with frequencies W2l! W32, W43, ... 

allows, in principle, the excitation of high vibrational 
levels. 

Let us determine what fraction of the molecules can 
get into the upper levels of the vibrational mode. Let 
the external influence consist of a set of successively 
switched-on pulses. For the k-th pulse of duration 
Tk+l,k' let us write 

/!,\(t) ~E"o cos W'+I.,t, k~1, 2, ... , . 
t,_,<t<t" t, = L, 'I" To~to=O. 

In the interval tk - 1 < t < tk the population difference 
W k '" Pk+l k+l- Pk k and the population sum Vk 

Pk+ 1 k+ ~ + Pk k s~tisfy respectively the equations: , , 

1 1 
V,+-V,=-li", k=1.2, ... 

T, T, 
(3.1) 

Q,= E"!,.+,,. ~=~(~+~) 
n ' T" 2 1', T2 . 

It is assumed that the inequalities 

( 1 )',. 1 1 
2 Q.'+-- >-+-. 

T,T, T, T, 

are fulfilled. The conditions for the coherent phasing of 
the radiation pulses allow us to determine their dura­
tions: 

Q.'T.~2arc tg (T"Q.') +2nn., n,~O, 1, ... , 

1 1 l' 
Q,"=Q.' -t;( r,- T,) 

For the fraction of the molecules populating the k-th 
vibrational level at the moment of time 

we obtain the expression 

PAA~2'-'T,T,Q2!'( 1 +T,T,Q,,') -'(1 +exp {-T,IT,,}) 

Xexp {-I: T.!2T,} IT (exp {-'t/2T,} + exp {-'t/2T,}). 
i_2 i_Z 
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In the particular case when Tl = T2 = T (which is typical 
for experiments [37J) and nj == n, this expression as­
sumes the form (nk = 0) 

z' 
p .. = 1+z' chye-(2·-3)y (k;;;'2) , 

tA-l=2T(k-1)y, z=QT, y=arctgzlz. 

For x = 102, the characteristic time of occupation of, for 
example, the 10-th level ,,=,0.3T and the fraction of the 
excited molecules in this level "='e-O• 25. 

4. PERIODIC PHASE MODULATION AS A METHOD 
FOR REALIZING THE CASCADE POPULATION 
MECHANISM 

Let us consider the second method of exciting mole­
cules by laser radiation, which allows the neutralization 
of the effect of anharmonicity. 

Let us label the levels of the anharmonic oscillator 
as follows: 1, 2, 3, ... , N, N + 1; the energy of the 
(N + l)-st level coincides with the energy of dissocia­
tion. The one-photon transition frequencies of such an 
oscillator can be written in the form 

Wm+'.m=W,,-(m-i)L'1w (m=1,2, ...• N), (4.1) 

where W21 is the frequency of the transition between the 
first excited and the ground vibrational levels and bow is 
the anharmonic shift (boW/W21 ~ 1). The characteristic 
property of the anharmonic oscillator in the approxima­
tion when the relation (4.1) is valid consists in the fol­
lowing: The difference between the frequencies of the 
transitions between neighboring pairs of levels does not 
depend on the number, and coincides with the frequency 
of the anharmonic shift 

To within the same degree of accuracy is valid the ex­
pression for the periods: 

(4.2) 

Notice that Veksler's idea is, in essence, based on the 
relation (4.2). This follows if T m+l,m is taken in [36J to 
be the time of the m -th cycle in the revolution of a 
charged relativistic particle around the magnetic field, 
so that (4.2) physically implies that the difference be­
tween the times of two consecutive cycles remains a 
constant quantity, not depending on the particle energy, 
i.e., on m. 

Let us consider the oscillations of the anharmonic 
oscillator in an electric field whose intensity is given in 
the form 

E (t) ='/2E o(e;(·'H>(tI)+c .c.), (4.3) 

where the carrier frequency w coincides with the fre­
quency of one of the transitions (e.g., for the lowest pair 
of levels 2 - 1), while the phase +(t) periodically varies 
in time, the frequency of variation being equal to the 
frequency, bow, of the anharmonic shift. Then, clearly, 
the oscillation spectrum of the field will contain the fre­
quencies of all the one-photon transitions of the mole­
cule. Thus, the periodic modulation of the phase at the 
anharmonicity frequency allows the realization of the 
cascade mechanism of population of the levels of the 
anharmonic oscillator. Let us write (4.3) in the Fourier 
representation 
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L\(i) 'Ut/Aw 

Cn =- S dtexp[i(cIl(t)-nL'1wt)]. 
2n 

o 

(4.4) 

In the particular case when the modulation is sinusoidal, 
Le., when +(t) = <5 sinbowt, for the spectral amplitudes 
we have: en = I n (<5), where I n is a Bessel function. 

The process of excitation of molecular vibrations in 
the presence of a field is described by the equation for 
the denSity matrix 

. ({}p I)-PO) --,Ii -+-- =[Hp], at T 
(4.5) 

where the Hamiltonian operator in the dipole approxima­
tion has the form 

H=iio-E(t) ~, 

the eigenvalues of the Hamiltonian Ho being the energies 
of the levels of the anharmonic oscillator; Po is the 
equilibrium density matrix; and T is a phenomenologic­
ally introduced relaxation time (for the diagonal elements 
T = Tb while for the off-diagonal elements T = T 2). For 
simplicity, we shall assume that each individual transi­
tion (m + 1 = m) is affected only by the resonance spec­
tral component from the expansion (4.4): 

Em+,. mIt) ='/2EoCm (exp (iWm+1. mt}+C .c.). 

Then to the Boltzmann equation (4.5) will be equivalent 
the following system (we are considering one-photon 
transitions): 

iii (pmm+ (pmm-I),m) IT,) =Em+l, m (t)A m +l, m-Em, m-' (t)Am. m-' (1-I),m), 

ili{Pm. m+,+pm.m+.IT,) =-liWmH. mpm, mH-Em+ l , mit) fLm, m+, (pm+!, m+1 - pmm), 

iii (PmH m+Pm+l. miT,) =liWmH mpmH, m+Em+!. mit) fLm+'. m (Pm+!. m+l-Pmm), 

A m +l, m=llm+t, mpm, mol I-!lm, m+lpm+I, m, (4.6) 

m=1,2, ... ,N. 

The system (4.6) is of order 2N; it is assumed that the 
equilibrium value of the diagonal element Pll of the den­
sity matrix is equal to unity, while the equilibrium values 
of the remaining elements are equal to zero. If in (4.6) 
we set E 1 (t) = Eo(t), then this system describes, in m+ ,m . '1 particular, the excitation of a truncated harmomc OSCI -
lator. 

It is convenient to carry out the subsequent analysis 
for a renormalized density matrix. Let us introduce the 
quantities 

m 

Ym =1- Ep;;{t), m=1,2, ... ,N. 
i_I 

The quantity y has a simple physical meaning: It is the 
fraction of the ~olecules populating the levels starting 
from the (m + l)-th to the (N + l)-th (Le .• up to the dis­
sociation level). 

It is not difficult to show that the system (4.6) can be 
reduced to the following system (in the computations the 
second harmonics exp(2iwm+l mt) were naturally [34J 

neglected): ' 

fim+ (~+~)!im+-1-ym= Qm'{I),m+Ym_,-2Ym+Ym+1). 
T, T, T,T, 2 

m=l, ... ,N; Ym(O) =Ym (0) =0; YO=YN+I=O; (4.7) 

Qm=EoCmfLm+,. mlli. 

The system (4.7), which describes the oscillations of 
N coupled oscillators, is often encountered in physics, 
and the methods for its solution have been well studied. 
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In the present paper we restrict ourselves to the case 
when nm = no 3). Following the well-known methods 
(see, for example, [38J), let us introduce the "collective 
coordinates" 

( 2 )",N mkn 
z.= N+1. 1: YmsinN+1.' k=1,2, ... ,N, (4.8) 

m_' 
with 

( 2 )'" N mkn 
Ym= N+1 1:z, sinNTI' m=1.,2, ... ,N. (4.9) 

.-, 
Then we obtain for the zk the set of decoupled equations: 

z.+(~+~)i.+'(V.,+_1._) z.=9.o' f., 
~ ~ ~~ 2 (4.10) 

z.(O) =i.(O) =0, k=l, 2, ... , N. 

Here we have introduced the notation 

kn ( 2 )'1. kn 
V.=2"·9.osin 2(N+1.) • f. = N+1 sin N+1.· (4.11) 

Solving (4.10), and substituting the result into (4.9), we 
obtain 

1 N • mkn. kn 9..' 
Ym=-~ sm-sm-(-) FA(t) 

N+1~ N+1 N+1 00.' ' .-, 
00.' [ t (1 1.)] F.(t)=1.--exp -- -+- COS(oo,t+<p.), 
00. 2 T. T, 

(4.12) 

, , 1 (1. 1 )' " 2 + 1 / ' 
00. =v, -7 r.- T. • 00. =v. T,T.' COs <p,=oo. 00" 

k=1,2, ... ,N. 

The diagonal elements of the density matrix, Pmm, are 
determined by the relation 

1. ft (. (m-1)kn ,mkn ) 
Pmm=Ym-,-Ym=N+i f::: sm N+1 -sm N+l 

Xsin ::1 ( ~:, )' F.(t) (m=1, 2, ... ,N+1). 
(4.13) . 

For the mean number of vibrational quanta (per os­
cillator), we have 

N+1 N 1. N kn 9.,' 
e=.E(m-1)Pmm= 1:Ym=-1:(1-(-O')cos-- (-) f\(t). 

m~' m~' N+1. A_' 2(N+1) 00', 
. (4.14) 

The physical structure of the found relations is clear: 
The formulas (4.12)- (4.14) are superpositions of the 
eigensolutions of the problem. If the condition w' 
> 1/2(1/T1 + 1/T2) is fulfilled, then the solutions ~ave the 
character of damped oscillations. The latter are due to 
the coherent mechanism of interaction between the field 
and the medium. The spectrum of the pulsations is given 
by the formula for wk (k = 1, 2, ... , N). In the particular 
case when T1 = T 2, the frequencies wk = vk (see (4.11)). 

As t - 00, the amplitudes of the pulsations decrease, 
and the solutions reach the steady-state level. Using the 
conventional techniques of operational calculus, we can 
show that the steady-state values of the corresponding 
quantities have the form 

sh(N+1-m)a sh(a/2) (. 3 ) 
Ym,o = sh(N+1.)a ' pmm" = 2 sh(N+1)a ch N + 2 -m a, 

m=l, '"., N+1, (4.15) 
1. sh(Na/2) cha=1+ __ 1_ 

eO=2 sh(a!2)ch«N+l)a!2) , Qo'T,T, . 

For strong fields, for which {3 = n~TIT2 » 1 (O' - 0), we 
have 

Ym,,=(N+1-m) (N+1)-', Pmm,o=(N+1)-', Bo=2-'N, (4.16) 

Le., the saturation regime" in which the oscillator-level 
occupation probabilities are equal, is realized. 
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For weak fields, for which [3 ~ 1, the dependences 
have the character of power functions: 

Ym,0"'(~!2)m, pmm,o"'(~!2)m-', e,"'~!2. 

In the purely coherent case, when vk » 1/T 1T2 and 
t ~ T2 < T1 (the phase and field relaxation times are 
large), the oscillator-level occupation probabilities and 
the mean number of quanta are determined by the rela­
tions 

N N 

dpmm = 1: U m. cos v.t, de = 1: V.cosv.t, 
k=l 

where we have introduced the notation 

dpmm=p",m (t) - (N+1) -', de=e (t) -2-'N, 

1 (mkn (m-1)kn) 
Um,= N+1 cos N+1 + cos N+l ' 

1. [( ). J 2 kn 
V. = 2(N+1) -1 -1 ctg 2(N+1) . 

(4.17) 

(4.18) 

The first relation in (4.7) generalizes the well-known 
solution, given in Landau and Lifshitz's book (34J , for a 
two-level system (exact resonance) to the case of an 
arbitrary finite number of levels. It can be seen from 
(4.17) and (4.18) that the probabilities Pmm oscillate 
about the value (N + lf1, while the number of quanta 
oscillates about the value 2-1N. Notice that the spectrum 
of the pulsations in the mean reserve of quanta contains 
frequencies with only odd indices. 

In the opposite limiting case, 

4(T22V.2+T2!T,)~1, T2~l, (4.19) 

the role of the coherence effects are not important. In 
this case the function Fk(t) in (4.12)-(4.14) assumes the 
form 

F.(t) =1-exp [-T,-'t(1.+T,T,v.') J. (4.20) 

In the following section we show that the relation (4.20) 
is immediately obtainable from the usual balance equa­
tions for the diagonal matrix elements of the denSity 
matrix. Consequently, the conditions (4.19) are the con­
ditions of applicability of these equations (for a constant 
field amplitude). 

5. APPROACH BASED ON EQUATIONS OF THE 
BALANCE TYPE 

The balance equations for the probabilities of occupa­
tion of the oscillator levels, Pm = Pmm, are usually 
written in the form 

pm+T,-' (pm-8m,) =Om[m(pm+,-pm) -Om-,[m-, (pm-pm-,), 

N+' (5.1) 
m=1,2, ... ,N, 1:Pm=l, pm(0)=8m,. 

For the stimulated-transition cross sections, am 
= am +l,m (exact resonance), and the spectral intensi­
ties, 1m = Im +l,m, we have the relations 

om=4nT2(t)m+t.m f.t!+1.m , I _ C E~+l,m I _ T2 (Em+t,ml-lm+l,m)' 
lie m-Tn !iffim+I,m' am m-T h . 

Let us solve the system (5.1) in the general case, when 
the spectral amplitudes of the field depend on the time: 

Em+!. m (I) =Em,g(t). 

Introducing, as in Sec. 4, the quantities Ym' we obtain 
from (5.1) the set of equations: 

m=1,2, ... ,N. 

Let us restrict ourselves to the case when Om 

A. N. Oraevskir et al. 
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= Em OiJ.m+l,m /n == no. Then the solution to the system 
(5.2) is formally given by the expression (4.9), the col­
lective coordinates zk satisfying the equations 

z. Qo'T, 
i. + r;-(l+v.'T,T,g'(t»= -2- f•g'(t) , 

z. (0) =0, k=1, .. , N. 
(5.3) 

Let us recall that vk and fk are defined in (4.11). The 
Eqs. (5.3) can easily be solved; substituting zk (t) into 
(4.9), we find the dependence of Ym on the time. This 
dependence has the form (4.12), where for Fk(t) we 
should set 

, 
F.(t) =T,-' (Hv.'T,T,) exp {-1jl. (t)} S dt' g'(t')exp{1jl.(t')}, 

o 

1jl.(t)=T,-' ( t+V.'T,T,j g'(t')dt'). 
o 

(5.4) 

The forms of the expressions for the probabilities Pmm 
and the mean number, E, of oscillator quanta are similar 
to (4.13) and (4.14), but under Fk(t) we mean (5.4). 

In the particular case when g(t) = 1, (5.4) coincides 
with the relation (4.20), obtained upon going over to the 
incoherent case. 

If the spectral amplitudes of the field vary periodic­
ally in time, i.e., if g(t) = cos vt, then, in the absence of 
collisional relaxation (TI - 00), we have 

N N 

L1pmm= LUm.exP{-1.(t)}, L1e = L V.exp{-1.(t)}, .-, (5.5) 
1 , ( sin 2vt ) 1.(t) = -v. T,t 1 + -- . 
2 2vt 

It follows from the second relation in (5.5) that an ap­
proach that does not take the coherence effects into ac­
count gives for the vibrational-quanta reserve E a value 
< 2-IN, since Vk < 0 (see (4.18)). This means that at any 
moment of time the probability of occupation of the lower 
half of all the levels exceeds the occupation probability 
for the upper half. In the follOWing section we show that 
in the case of the periodic amplitude modulation the co­
herence interaction mechanism can play an important 
role even for sufficiently large times (t »T1, T2). 
There then arise effects that, in prinCiple, cannot be des­
scribed in the framework of velocity equations. 

6. THE COHERENCE EFFECT OF INVERSION OF THE 
DISTRIBUTION OVER THE LEVELS OF THE 
ANHARMONIC OSCILLATOR 

It follows from the analysis carried out in Sec. 4 that, 
in the interaction of an anharmonic oscillator with a 
field whose frequency is periodically modulated in time 
(see (4.4)), the maximum attainable photon reserve is 
equal to N/2. In the coherent case this is the mean value 
about which the oscillator energy pulsates. If the coher­
ence effects are not important, then E - N/2 for high­
intensity fields (Le., we have a saturation regime). 

The question arises whether we can, in prinCiple, 
create conditions under which the mean number of quanta 
will exceed N/2. In this case we have in mind the over­
excited state of the quantum oscillator; to such a state 
corresponds an inverted distribution over its levels. It 
is a priori clear that the coherence field-medium inter­
action mechanism should be the basis of the method for 
the possible realization of the corresponding conditions. 

The coherence effects manifest themselves in, in par­
ticular, the fact that the variation of the level-occupation 
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probabilities has a pulsating character. In the case of a 
two-level system the pulsation frequency coincides with 
the Rabi frequency of the given transition; in a multilevel 
scheme there appears a pulsation spectrum. The idea 
underlying the proposed method of inverting the distribu­
tion over the oscillator levels consists in the following. 
Let us assume that the amplitude of the field (4.4) varies 
periodically in time with the frequency v: 

(6.1) 

Then the Rabi frequencies corresponding to the various 
transitions of the anharmonic oscillator will be modulated 
with the same frequency. By chOOSing in some manner 
the frequency and depth of the modulation, we can effect 
a parametric excitation of the oscillator. The situation 
here is entirely analogous to, for example, the process 
of oscillation buildup by a pendulum with a pulsating 
point of suspension (the Kapitza pendulum [39J ): The 
appropriate set of modulation frequencies stabilizes the 
new (dynamical) equilibrium state of the pendulum. In 
the case of the coherent excitation of the oscillator by 
the field the analog is the overexcited state. 

In the presence of the amplitude modulation (6.1), the 
set of equations similar to (4.7) assumes the form 

.. +(~+~_ g(t) ) . +~, i..._ g(t) ) 
Ym T, T, g(t) Ym T. \ T, g(t) Ym 

(6.2) 

= ~o' g'(t) (<'I,m+Ym-.-ZVm+Ym+,). 

Notice that the variation of the amplitude of the electric­
field intensity leads not only to the modulation of the 
Rabi frequency, but also to the modulation of the "coeffi­
cient of friction." 

The solution to the system (6.2) can be written in the 
form (4.9), the zk satisfying the equations 

z" + (~+..!.. _-.t) i. + [~(~_.1. ) + v,'g'(t) ] z. =~j.g'(t). 
T, T, g T, T, g 2 (6.3) 

Below we consider the case when TI = T2 = T. It can be 
shown that the system (6.3) then admits of an exact solu­
tion for an arbitrary function g(t): 

z.=a.[ l-G.(t)], k=l, 2, ... , N, 

_tIT ~ 

G. (t) =e-'IT cos -c. (t) + _e_ S cos [-c.(t) -T. (t') je"'IT dt', (6.4) 
T 0 

, 
T.(t)=V. Sg(t')dt', 

o 

1 ( 2 ),/, kn 
a. = '2 N+l ctg2 (N+1) . 

Using the found zk(t), we can determine Ym(t) from 
(4.9), so that for 6P mm and 6E we can write the expres-
sions 

N N 

L1pmm= ,EUm.G.(t), L1e= Lv.G,(t). (6.5) 

Let us now consider the case of the periodic modula­
tion of the amplitude of the field intensity, g(t) = cos lit. 
If the period of the modulation T = 21T/V is shorter than v . 
the relaxation time, i.e., if Tv« T, then for the times 
Tv « t « T the averaging of (6.5) over the period Tv 
yields 

<pmm>= (N+1)-' + t Um.I, (:' ), 
k=t (6.6) 

<e>=2-'N + t V.I, (:' ) . .-, 
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For example, for a two-level medium (N = 1) we have 

from which it can be seen that in certain amplitude­
modulation frequency ranges where the Bessel function 
Jo is negative the occupation probability for the upper 
state exceeds %. A similar situation for N = 5 and N = 10 
is illustrated by Figs. 1 and 2: The overexcited state of 
the oscillator (the mean number of quanta >2- 1N) is 
realizable in certain intervals of q = no/v. 

For large times, t »T, the function Gtt(t) entering 
into (6.5) and (6.6) has the form 

G.(t)=P.(t)cos (:. sinvt ) +Q.(t)sin (:' Sinvt), 

{1 I,. (v./v) 
p. (t) = Jt..J [( (cos 2nvt+2nvT sin 2vT), 

n~-oo 1+ 2nvT)'] 
(6.7) 

Q() ~ 1,.+, (v./v) . 
• t =2 Jt..J [1+ «2n+1)vT)'] [sm(2n+1)vt-(2n+1)vTcos(2n+1)vt]. 

11=0 

Thus, the coherence interaction mechanism gives rise 
to undamped oscillations in the diagonal elements of the 
denSity matrix for times t exceeding the relaxation time 
of the system (cf. the result of Sec. 4), the pulsation fre­
quencies being multiples of the modulation frequency v. 

Averaging (6.7) over the period Tv' we obtain 

(G.(t»= ~ J.(v./v) =~/i,(~)L"(~), 
n~oo [l+(nvT)'] shnx v v 

(6.8) 

where x = (!lTr1 and i is the imaginary unit. In the par­
ticular case when the modulation period is shorter than 
the relaxation time, i.e., for x « 1, (6.5) reduces to the 
form 

(0 (n 
!i,a b 

1.0 

o 10 20 30 "0 50 60 70 10 20 30 40 50 
~~Qo/v ~~ Qolv 

FIG. I. Dependence of the vibrational-photon reserve per oscillator, 
(€), averaged over the pulsation period of the field, on the parameter 
q = no/v (T1 = T2 = 00; the case when nm = no): a) N = 5; b) N = 10. 
The dashed lines correspond to an energy level (€) = 2- 1N. 

(Pnn) ( Pnn ) 

f.e : 1.0 

o.~ o.~ - b 

06 0.6 

0" 0.4 

0.2 

J 5 6 n q 10 n 

FIG. 2. Distribution function over the vibrational anharmonic­
oscillator levels, (Pnn), averaged over the field-pulsation period, for dif­
ferent values of the parameter q = no/v (T 1 = T 2 = 00; the case when 
nm = no)' (a) N = 5: I) q = 1,2) q = 10,3) q = 30, 4) q = 60; 
(b) N = 10: I) q = 1,2) q = 20, 3) q = 50. 
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<pmm(OO) >=(N+1)-' + t Um.]o' C'), 
"=1 

It follows from (6.9) that (E(oO) is less than 2- LN. 

If the modulation law is given by the relation 

g(t) =1 +1 cos vt, 

(6.9) 

then, for the function ~(t) entering into (6.5), it is not 
difficult to derive the expression (T v = 271/V « t « T) 

G.(t)= t 1.( 1 :.) cos(v.-nv)t. (6.10) 

Thus, in the case under consideration the spectrum of 
the pulsations consists of the combination frequencies 
vkn = vk ± n (k = 1, ... , N; n = 0, 1, 2, ... -). Let us as­
sume that for certain nand k the condition vk = nv is 
fulfilled, Le., that 

-, v i2'. kn (6 11) 
q •• = 0 0 =--;sm 2 (N+1)' • 

then, as follows from (6.10), the constant component for 
the probabilities Pmm and the number E of quanta shifts. 
To the dynamical equilibrium state then correspond the 
quantities 

pmm= (N+1)-'+ (N+1) -'I.(n1) 

( mkn (m-1)kn) 
x cos N+1 + cos N+1 ' 

(6.12) 
~=2-'N+2-' (N+1)-1 

kn 
X«-1)~-1)]n(n1)ctg' 2(N+1) 

It can be seen from the second equality that for even k 
the number of quanta E = 2-1N. If k = 1, 3, 5, ... (k :s N) 
and the modulation-depth parameter y lies in a range 
where the Bessel function In(ny) is negative, then 
E > 2-LN and, thus, the overexcited state is realized. In 
Fig. 3 we schematically show the regions of the modula­
tion-amplitude parameters (y, no/v) where such a state 
arises, 

7. CONCLUSION 

In the present paper we have considered a number of 
methods of exciting the high vibrational levels of mole­
cules: a set of phased pulses (an analog of Veksler's 
phase -sta,bility method), the periodic modulation of the 
electromagnetic-field frequency, and amplitude-frequency 
modulation. Under certain conditions, the coherence 
effects of the field-medium interaction may play an im­
portant role in all these cases. In particular, the ampli­
tude-frequency modulation method allows, on account of 
the coherence mechanism, the production of an anomalous 
state of the oscillator, when the distribution over the os-

FIG. 3. Schematic representation 
of the regions of the field-amplitude­
modulation parameters (y, no/v) 
where the overexcited oscillator state 
is realizable; qnk -1 = y'2 sin k1l' 

n 2(N + I) 
n = 1,2,3, ... ; k = 1,3,5, ... 
(k<;; N). 
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cillator levels turns out to be as a whole inverted. The 
methods proposed in this paper are unified by one qual­
ity-the possibility of neutralizing with their aid the os­
cillator anharmonicity and, consequently, by the feasi­
bility of the excitation of high vibrational levels. 

In conclusion, let us note that consideration has been 
given in this paper only to the fundamental aspect of the 
problems. A more complete analysis should take into 
account a number of effects connected, in particular 
with rotational relaxation, level degeneracy, etc. ' 

tlIn [16] attention is drawn to quite a number of other molecules 
possessing low anharmonicities (wexe ~ I em-I) and low values of the 
rotational constant (Be ~ 0.1 em -1). 

2)Let us also mention the paper presented by Askar'yan and Namiot at 
the joint seminar of the Oscillation and Quantum-Radiophysics Labo­
ratories of the P. N. Lebedev Physics Institute of the USSR Academy 
of Sciences in April 1975. In this paper the cascade mechanism of 
excitation of a multilevel system was studied. 

3)The solution to the problem for arbitrary nm is extremely unwieldy 
and, therefore, it is not given here. 
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