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A calculation is made of the dependence of the frequency of energy exchange between N two-level atoms 
and a monochromatic field on the initial number of photons 110 in the resonator. If 110< N, the frequency is 
governed by the number of atoms, but if 110> N, it is governed by the number of photons; the frequency 
vanishes for 110 = N, revealing the unsatisfactory nature of the quasic\assical approximation. It is shown 
that one can use the anomalously high frequency of the supernutation, which appears in the 110< N case, in 
the measurement of short relaxation times and oscillator strengths of transitions which are in resonance 
with the field. It is also shown that oscillations of the 110 < N type (with full modulation of the field) can be 
obtained in a cw gas laser by a sudden increase in the resonator Q factor, and nutational oscillations 
( 110> N) can be obtained by a sudden increase in the pump power. 

PACS numbers: 32.1O.-f 

A monochromatic wave acting on a two-level system 
induces periodic oscillations of its population (nutation) 
of frequencyCl-4] 

w,=2dEIh=D,/;'" (1 ) 

where d is the matrix element of the dipole moment; E 
is the field intensity; no is the number of photons in the 
resonator; D '" 4d(1TWo/lW)I/2 (wo is the frequency of 
light and V is the resonator volume). It is usually as­
sumed that the field is sufficiently high and, therefore, 
its intensity is unaffected (E ~ const) even if the wave 
interacts simultaneously with many atoms. This is in­
deed true under conditions in the usual nutation experi­
ments when a high-power practically unattenuated light 
beam traverses a resonant medium. 

However, if the interacting light beam and the medi­
um form a closed system inside a high-Q resonator in 
the absence of pump radiation, both the frequency of en­
ergy exchange between the optical field and the atoms 
in the medium and the dynamics of the process may 
change considerably. This is due to the fact that, in a 
bounded volume, the initial number of photons no and 
the nunber of atoms N are finite and the energy losses 
due to the excitation of atoms have a slight influence on 
the field amplitude, so that the usual estimate of the nu­
tation frequency given by Eq. (1) remains valid only if 
no» N. However, if no 'f N, we cannot ignore the reac­
tion of the medium on the field. This point has been 
mentioned before (5 ,6] but its consequences have not yet 
been fully worked out. 

The chief consequence is that, if no < N, the depth of 
modulation of the field is equal to the field intensity and, 
if no« N, the frequency of energy exchange is propor­
tional to the square root of the number of atoms and not 
of the number of photons: WI'" D v'N » D..rn;, L e., it is 
considerably higher than one would expect on the basis 
of Eq. (1). This phenomenon, called supernutation in [7], 

can be observed by detecting the radiation leaking out of 
a resonator and it can,be used, like the conventional nu­
tation, in measuring the decay decrement of the process 
in the form of the relaxation times of the atoms. 

We shall describe the state of a system of atoms us­
ing the concept of the energy (effective) spin R. [8] The 
energy of the system is 6' a '" nwo Rs '" - nwo R cos cp, 
where R is the maximum projection of the spin (R:s N/2), 
R3 is the projection of the spin on the "energy axis," cp 
is the angle between the spin direction and the energy 
axis, and Wo is the atomic transition frequency. It fol-
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lows from the equations of motion of the spin in a mon­
ochromatic field, which is in resonance with an atomic 
tranSition, [4] that cp '" 2de/n or 

~=Df;;, 

where n is the number of atoms in the resonator at a 
given moment. 

The law of conservation of energy 
n+lI,=n-R cos q:>=const 

(2) 

(3) 

makes it possible to allow for the reaction of the atomic 
ensemble on the field, and Eqs. (2)-(3) can be used to 
obtain the following coupled system of equations: 

~=Du, u=-'/,DH sin <p, (4) 

where u '" rn. If the decay due to the finite value of the 
Q iactor of the resonator is introduced into the system 
(4), this system transforms to the equations obtained by 
Fain. (9] 

The system (4) is identical with the equations describ­
ing the motion of a physical pendulum. Solving these 
equations, we find the oscillation frequency as a function 
of the total energy of the system on condition that we ini­
tially have n '" no and that all the atoms are unexcited, 
Le., we shall assume that R", N/2 and cp (0) '" O. We then 
obtain 

{ nDY':;:;-/2K(l' Nln,). n,>N 
w,= nDl'NI2K(l'n,IN). n,<N 

(5) 

Here, K is a complete elliptic integral of the first kind. 

The dependence WI (no) found in this way is shown in 
Fig. 1. It is worth noting that the nutation frequency 
vanishes at no '" N. This result demonstrates the lim­
ited validity of the classical description of the field in 
the vicinity of the Singularity no = N. A consistent quan­
tum calculation shows that WI passes through a minimum 
in this region but does not vanish. This can be .proved by 
considering a system composed of a quantum field oscil­
lator and two atoms described by the Hamiltonian 

(6) 

where /t+ and a are the photon creation and annihilation 
operators; R+ and R_ are the raising and lowering op­
erators. If we assume that, at t = 0, the oscillator is in 
the no-th excited state (no'" 1,2,3, ... ), we obtain peri­
odic oscillations with frequencies represented by cir­
cles in Fig. 1. At the minimum (no = N = 2), we have 
WI = nl372.' 
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FIG. l. Dependence of the nutation 
frequency on the initial number of pho­
tons in the resonator. The dashed line 
corresponds to w, = 2dE/h= Dylno. 

In the case of a system composed of three atoms or 
more, the solutions are no longer periodic for no 2: 3. [10] 

This essentially quantum result remains valid also for 
macroscopically large numbers N ::::; no' as also shown 
by Senitsky. [10] It is interesting to note that the quasi­
classical approximation is of a "spiky' nature (Fig. 2). 
in the range I no - NI «N. The profile of a spike is 
nearly identical with that of a 27T pulse (the McCall- Hahn 
solution [11]) and the frequency can be obtained from the 
general formula (5): 

w, =rrDN'" In-' (iGN/ I n,-N I)· 

A similar expression was derived by Kazantsev and 
Smirnov [5] for the (no - N) > 0 case (to the right of the 
singularity). 

We shall now consider the limiting cases no ~ N. If 
no» N, we find that Eq. (5) gives the usual formula (1). 
This is supported also by a consistent quantum calcula­
tion of this case carried out in [12]. It also follows from 
Eq. (5) that, in the opposite case of no« N (weak oscilla­
tions), we obtain 

(7) 

i.e., the nutation frequency is much higher than that ex­
pected in the external field approximation (1) when w 1 

= D rn;. This excess of the oscillation frequency over 
the standard estimate (1), because of its dependence on 
the number of atoms, was called by us supernutation, [7] 

by analogy with superradiance. [8,13] 

Supernutation, like ordinary nutation, is not affected 
by the nature (classical or quantum) of the treatment. In 
fact, small oscillations correspond to low degrees of ex­
citation of the energy spin which then behaves as a har­
monic oscillator. [14] Assuming in Eq. (6) that 

k.~(2R)'!'b+, fL=(2R)")), R3=b+b-R, (8) 

where fl+ and b are the Bose operators, we can readily 
determine the frequency of energy exchange between two 
coupled oscillators, which is obviously governed by the 
change in the quantity M = a+a - fl+£. In the Heisenberg 
representation, we obtain the equations of motion which 
are encountered also in the exciton theory:l) 

It is clear from these equations that the oscillation fre­
quency is always D (2R)I/2, i.e., it is twice the coupling 
constant and is independent of the initial conditions. 

This conclusion, drawn from the quantum theory of 
radiation, is in exact agreement with the quasiclassical 
estimate (7) if we bear in mind that R = N/2. Moreover, 
in a linear description of an absorbing medium, which 
is equivalent to the description of Eq. (8), only this re­
sult can be obtained, [15] whereas, in reality, there is a 
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FIG. 2. Time dependence of the number of photons near the singu­
larity; w, = 27r/T, no/N = 0.99, T ,/T = 0.23. 

stringent condition which limits the validity of the gen­
erality of the nonlinear approach: no «N. This sets the 
upper limit to the power of the radiation that can cause 
supernutation. 

Since, in the supernutation regime, an atomic system 
is only slightly excited, this system can be described­
like the field-purely classically by the polarization in­
duced in the medium. On the other hand, nutational os­
cillations are a typical example of a nonlinear reaction 
of the medium to the field, due to the finite extent of the 
energy spectrum of an atomic system, which must be 
quantized to discern the effect under consideration. Only 
in the exceptional case when the number of photons is 
exactly equal to the number of atoms is it necessary to 
quantize both matter and field to obtain the nonzero re­
sult. 

As expected, in almost aU the experiments involving 
detection or use of energy exchange (oscillations) be­
tween a field and atoms, [16] the number of photons is 
less than the number of active atoms. Nevertheless, the 
proportionality of the oscillation frequency to the field 
is clear evidence that these oscillations are nutational. 
It is not clear whether this is due to the considerable 
length of the pulses interacting with the atomic system. 
The continuous arrival of new photons in a sample pre­
vents complete deactivation of the field oscillator and 
thus destroys the effect under consideration. Supernu­
tation in an illuminated target can be expected only if 
the length of the exciting 7T pulse is considerably less 
than the thickness of the sample and the extinction in 
the sample is sufficiently high for complete absorption 
of the light in a layer comparable with the pulse length. 
In this case, supernutation is manifested not only by 
temporal but also by spatial oscillations of the optical 
energy density. 

The experimental situation can also be reversed, as 
demonstrated recently by Feld et al. [17] when the popula­
tion is first inverted by simultaneous excitation of all 
the atoms, and photons are generated in the system due 
to superradiance resulting from an adjacent transition. 
Although in this case we have the extremal situation in 
which the maximum number of photons no is exactly 
equal to the number of active atoms, the radiation den­
sity rapidly decays because the system remains open 
and the oscillation regime is soon displaced to the left 
of the singularity into the supernutation region. This 
interpretation of the experiments of Feld et al., pro­
posed by Emel'yanov and Klimontovich, [18] requires 
only that the supernutation frequency be higher than 
the time necessary for a photon to escape from the 
sample. 

However, the most direct method for observing en­
ergy exchange oscillations between the field and the 
medium is the simple switching of a laser which in­
duces transient processes. We shall analyze the dy­
namics of these processes in the Appendix, bearing in 
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mind that they are of considerable interest as providing 
a means for measuring the relaxation times and oscilla­
tor strengths of the transitions resulting in laser action. 

APPENDIX 

We shall consider the possibility of a tranSition to 
nutational and supernutational oscillations from cw op­
eration of a single-mode laser. A laser can be de­
scribed in terms of the semiclassical theory by intro­
ducing relaxation terms in the system (4). We shall ex­
press the initial equations in terms of the variables Rl 
= - R sin cp and ~ = - R cos cp: 

lI.:=DuR.-R.h:, 
R.=-DuR,- (R.-R.) IT, 

~='/,DR,-'I'u. 

(lOa) 
(lOb) 
(lOc) 

The quantities Ro and the relaxation times of the popula­
tion T introduced in these equations are governed not 
only by the relaxation processes in the medium but also 
by the action of the pump radiation. Moreover, it is as­
sumed that the relaxation time of the polarization is also 
T (molecular laser case) and II is used to denote the re­
ciprocal of the photon lifetime in the resonator. 

An analysis of the stability of the cw solutions of the 
system (10) shows [19,20] that laser action is possible 
only if .,., = D2 Ro 7/211 > 1, where the steady-state values 
are 

n,=u.'=(1)-1)/D',', R,.=R.(1)-1) '''11), 

R,.=R'/1), R.=(R,.'+R,.')'I·=R'/1)'" 
(11) 

and the stimulated emission regime is unstable in the 
peninsular region shown in Fig. 3. 

We shall now demonstrate that stable emission 
should change to nutation as a result of a steep increase 
in the pump power, i.e., an increase in the value of Ro. 
lD. fact, nutation represents harmonic oscillations of the 
vector R(t) in the presence of a field of constant ampli­
tude and frequency WI = Du. A sudden change in Ro (at a 
moment to) alters instantaneously the steady-state solu­
tions of Eqs. (lOa) and (lOb): 

n .. '=(1)-1)"·R.'/1), R,.'=R.'/1) 

(in this case, .,., is defined in terms of Ro), but R(O) = Rs 
'* RS and nutational oscillations begin near RS 

R,(t) =R,.'+(R .. -R,.')cos oo,t+(R,,-R,,')sin oo,t, 
(12) 

R,(t) =R,,'+ (R,.-R,,') cos oo,t- (R,.-R,.') sin oo,t. 

Substituting the solution (12) by way of a trial in the 
system (10), we readily show that it satisfies this sys­
tem provided 

00,>'1', oo,>11T, u.'>IR.-R.'I'l-"·' 

lD. view of Eq. (11), these conditions are equivalent to 
the following: 

980 

VT 

FIG. 3. Regions of unstable 
laser action, nutational oscilla­
tions, and oscillations accom­
panied by full modulation of 
the field. The hyperbolas a and 
b correspond to A = 50 and 
A= 300. 
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'l'f.>'I", 'l 'I. > 1, 1)'''I2v-r> 11-R.'lIl.l. 

The first two conditions can be satisfied simultaneously 
only in the region identified by the horizontal shading in 
Fig. 3. The nutation freq uency is W 1 = .,.,1/ 2/ T. 

Dynamic oscillations with full modulation of the field 
can be obtained as a result of a sudden increase in the 
resonator Q factor, i.e., by replacing II with "l < II. We 
shall find the conditions under which such oscillations 
occur by rewriting the system (10) in terms of the vari­
ables cp, u, and R (replacing II with "l): 

R. . DR. ( ) <jJ=Du+'Rr siucp, u=-TSIllCP-\',u, 13 

R=- ll+R.coscp. 
T 

The required oscillations are those which hardly affect 
the relaxation processes and which are, in fact, de­
scribed by the system (4) and not by (13). Thus, we 
must require that the relaxation terms in Eq. (13) af­
fect only slightly the quantities u, cp, and R during one 
oscillation l/wl> Le., we must postulate the inequalities 

R 
'1',<00" 1q,-Dul= R~lsincpl<oo" 

(14) 

~=~11 + R. coscpl < 00" R , R 

from which we can deduce-because Ro/R(O) = Ro/Rs 
= .,., 1/2 > I-only two ineq uali ties: "l « W 1 and W 1 T » .,., 1/2. 

If these two conditions are satisfied, it readily follows 
from (4) that the frequency of dynamic energy oscilla­
tions 

oo,=nD(2R.)'''/2K(l'n/2R.), no<2R, (15) 

differs from the frequency (5) by the replacement of N 
with 

(16) 

Moreover, no (representing the number of photons in the 
resonator for cp = 0) is not arbitrary but is given by the 
initial conditions (11): 

_ _~ R. 'l-1 =R [_1_+~+ 11- 1 ]. (17) n. -- R. + R,. + n. - 'I + + D" 2 0 'I. 2 
'l , 11 'r '1 '1 I]\'T 

The condition for full modulation of the field no < 2Rg, 
which is the condition of validity of Eq. (15), is evidently 
equivalent to the following relationship between the laser 
parameters before switching: 

(18) 

We can easily show that this condition is definitely sat­
isfied if the inequalities (14) are obeyed. lD. fact, using 
Eqs. (15) and (16) and .,., = D2RoT/211, we find that, far 
from the singularity no = 2Rg, the condition (14) reduces 
to 

(19) 

and hence we obtain Eq. (18). 

Thus, oscillations with full modulation of the field 
(far from the Singularity no = 2Rs) can be obtained if 
"l « WI - .,.,1/4(II/T)1/2 and the inequality (19) ar~ sati~­
fied. The condition (19) corresponds to the regIOn With 
vertical shading in Fig. 3. It is important to note that 
these oscillations are of completely different origin from 
the oscillations with a slight deviation from steady-state 
conditions investigated by Kazantsev [21] at the limit of 
the instability region. 'lD. the oscillations under discus­
sion here, the deviations are large: there is full modu-
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FIG. 4. Oscillation frequency 
w" supernutation frequency 
DV2Rs, and reciprocal of the 
photon lifetime in a resonator v 
plotted as a function of VTl for 
A = \0 3 : a) WIT; b) DTy'2Rs"; 

c) VT. 

lation of the energy of not only the field but also of the 
atomic system. 

The above treatment allows us to examine in detail 
the dependence of the frequency of the oscillations re­
sulting from the switching of a laser (extra pulsations 
of the radiation [22]) on the initial laser characteristics. 
It is sufficient to note that there is a one-to-one corre­
spondence between the quantities % and no, used to de­
scribe the oscillation frequency in Eq. (15), and the laser 
parameters v T and TJ; this correspondence is established 
in Eqs. (16) and (17). Therefore, every point in Fig. 3 
corresponds to a definite frequency because a formula 
similar to Eq. (15) also exists in the no> 2Rg case 
[Eq. (5), in which N is replaced with 2%J. 

We shall now consider the change in the frequency in 
that section of the region where the solutions are defined 
and which corresponds to a change only in the initial Q 
factor of the resonator (Le., to different values of v) 
when all the other laser characteristics are constant: 

'l=AI2V1:, A=D'T'Ro=const, T=eonst. (20) 

This section corresponds to the hyperbolas in Fig. 3. 
When the condition (19) is not obeyed (this means that 
A1/ 2» TJ3/4), it is not possible to have oscillations ac­
companied by full modulation of the field, so that we are 
only interested in the case when A 1/2» 1. In this case, 
the change in the frequency is of the form shown in Fig. 
4. 

A comparison of Figs. 1 and 4 shows that there are 
two zeros of WI in the latter case. This is due to non­
monotonic variation of the ratio no /2% when TJ is in­
creased along the hyperbola (20). As long as the excess 
over the laser threshold is slight, the number of photons 
no decreases faster than Rg = Ro / TJ 1/2, but then no begins 
to fall more slowly and even to rise. Consequently, the 
oscillation regime is displaced from the singularity to 
the range of full mOdulation of the field and then returns 
through the singularity, approaching the usual nutational 
process. 

Thus, the region between the two zeros of Fig. 4 cor­
respond to full modulation of the field and the rectilinear 
asymptote WI = 7]1/2/ T to the usual nutation. Almost 
throughout the region between the two zeros, the curve 
W I (7]1/2) is close to its limit, which is the supernutation 
frequency D(2Rg)1/2 = (2A)I/2/T7]1/4, which (in these co­
ordinates) is not constant because of variation of Rg. 
Actual detection of oscillations of this frequency re­
quires that the rate of dissipative processes be much 
lower than WI and, since v l' WI' as can be seen from 
Fig. 4, a sudden increase in the Q factor is not only the 
means but the condition for observing the effect in ques­
tion. 
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tion to this point. 
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