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Nonlinear vacuum effects in the interaction of a photon with the field of a classical plane electromagnetic 
wave are discussed within the framework of operator diagram technique. The amplitude for the scattering 
of a photon by the field of a wave of general form is obtained. The case of a monochromatic plane wave is 
analyzed. A new representation is obtained for the probability of the creation of a pair of particles by a 
photon. The propagation of a photon in the field of the wave is investigated. 
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1. INTRODUCTION 

An operator diagram technique has been formulated 
in[11 for quantum electrodynamics in external fields 
based on the operator representation of the Green's 
function for a charged particle in a field. This means 
that the contribution of a particular diagram can be 
taken in the form which coincides with the form in 
which it is recorded for free particles, but in which the 
operator for the momentum of the particle is replaced 
according to PJ..l. = i a J..I. - P tJ. = ia J..I. - eAJ..I." An essential 
element of this approach is an appropriate transforma­
tion of the operator expressions entering into it after 
which the calculations turn out to be not complicated. 
Thus, an advantage of the technique being developed is 
both its universality, and also the relative simplicity of 
calculations. In[i,2] phenomena were investigated in a 
homogeneous and constant in time electromagnetic field, 
in[3J the specific features of investigating phenomena in 
the field of a plane electromagnetic wave were eluci­
dated on the example of calculating the mass operator 
for a charged particle. In the present paper the same 
technique is applied to the study of the interaction be­
tween a photon and the field of a plane electromagnetic 
wave, and for this the contribution of the polarization of 
the vacuum by the external photon in the field of the 
wave is investigated to the first order in a. The corre­
sponding physical realization is the interaction of an 
external photon with the field of a laser wave, when the 
latter can be represented as a classical electromagnetic 
field of the form 

(1.1) 

where q; = KX = KOX o - K ·x, I/!l, 1/!2 are certain functions, 
and 

(1.2) 

Phenomena in the field of the wave (1.1) are character­
ized by the invariant intensity parameter 

(1.3) 

with the expansion in series in powers of ~ i,2 being an 
expansion in terms of the number of interactions with 
the field of the wave (1.1). In the region where ~ f,2« 1 
perturbation theory is applicable, while for ~~,2 ~ 1 the 
interaction with the field of the wave must necessarily 
oe taken into account exactly. We note that there exist 
lasers for which ~ ~,2 ~ 1. The imaginary part of the 
amplitude of elastic scattering of an external photon in 
the forward direction is related to the total probability 
for the creation of a particle-antiparticle pair by a pho-
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ton in the field of the wave. This problem has been 
studied in a number of papers(4-6]. In the present paper 
we have obtained a new representation for the probabil­
ity of pair creation which is expressed in the case of a 
circularly polarized monochromatic wave by a single 
integral. Knowing the amplitude for the interaction of a 
photon with the field (1.1) enables us to solve the prob­
lem of the propagation of a photon in the "medium" 
represented by the field of the wave l). 

In Sec. 2 we obtain the amplitude for the scattering 
of a photon by the field of the wave (1.1), we calculate 
the final form of the amplitude for the case of a mono­
chromatic wave, we obtain different representations for 
the probability of creation of a pair of particles by a 
photon, and we trace out the transition to the case of a 
constant crossed field. In Sec. 3 we discuss the speCific 
features of the propagation of a photon in the field of a 
laser wave. 

2. SCATTERING OF A PHOTON BY THE FIELD OF A 
PLANE ELECTROMAGNETIC WAVE 

The amplitude for the scattering of a photon of mo­
mentum k, by the field of a plane wave (k , + wave 
- k2) taking into account the polarization of vacuum by 
spinor particles has the form (cf., (1.14) of reference[ll) 

T~e,,(k,)e;,(k2) T""(k" k,), 

(2.1) 

T,.(k" 1£,) =- _e_'_ S d"x sp (x I ~ 1,e-""x ~ 1,ei/",< I x), 
(2n) 1 P-m P-m 

where I x> is the eigenvector of the operator for the X 
coordinate. Since a change in kl is determined by the 
interaction with the wave, then we always have k2 = kl 
+ CK, where c is a scalar. Taking into account this and 
the relations (1.2) we have 

xk,=xk,~xk, a,kl=a,k,~a,k, a,kl=a2k,~a2k, (2.2) 

Le., when the scalar products for the vectors kl and k2 
are the same we shall use the notation k. 

We construct the vectors 

At= (k/ t )' , 

(xk)l'-at' 

x'k,'-k,"(xk) 
A,I4= , 

(xk)l'kt' 

A zl1= 
(k/,)' ' 

(xk)l'-a,' 

A,'=A,'=A3'=A.'=-i, 

where 
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(2.3) 

(2.4) 
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The sets 

represent orthonormalized sets') in terms of which any 
vector of the problem can be expanded. 

The amplitude TiJ.II (kl' k,) (2.1) is gauge-invariant 
(strictly speaking, after regularization has been carried 
out). Then in virtue of the foregoing it can be expanded 
in terms of the vectors (2.3) 

The coefficients in front of the other possible combina­
tions constructed from the vectors A~ vanish in virtue 
of the Furry theorem. The further problem consists of 
evaluating the coefficients CI - C5' We make use of the 
fact that in the expression Jd~Sp(x 1 •.• 1 x) one can 
cyclically permute the operators within the brackets, 
and we move in (2.1) the operator P + m towards the 
right hand eigenfunction. After this we move the opera-

-iklX ikaX: tor e to the left, and the operator e to the 
right, taking into account the fact that they are displace­
ment operators in momentum space, and then we move 
the matrix yll to the right; 

~ .. 1 
P'(k"k,)=---S d'xCXP{i(k,-k,)x}SP( x 1----,----

(2,,)'· (P+k,)'-m' (2.6) 

x 1" p'~m' (P+m) [2P'+fk,+ (m-~) 1'JI x). 

In the expression obtained above the term with (m - P) 
within the square brackets is brought to the form 

_e'_ S d"x exp{i(k,-k,)x}Sp [(x ·I-~ _1_·1 x)1"1']' (2.7) 
(2,,)' P'-m' 

using which it is not difficult to show (cL, below), that 
this term does not depend on the field of the wave. In 
carrying out the regularization it drops out, and there­
fore in future we shall not write it out. In the remain­
ing expression we carry out the exponential parametri­
zation of the propagators; 

P'(k" ko)=_e_' - SW dt SOO dscxp (-im'(s+t)}T"', (2.8) 
" (2,,)' 0 0 

where 
T"'= S d'xexp{i(k,-k,)x}Sp<xlexp{it(P+k,)'} 

'1" cxp{iSP'} (P+m) (1'k,+2P') Ix>. 
(2.9)' 

For transformation of the terms appearing in (2.9) we 
utilize the formulas of (A.26), (3.7) of reference[3}, and 
then 'I'iJ. II can be rewritten in the form 

T"' = S d'x cxp{i(k,-k,) x} <xlexp{it(P+k,)'}exp (isP'}B"'lx>. (2.10) 

where 

B"'=Sp [1"(He+,za) (P+m) (1'k,+2P') (Hr~;')], 
er+ (s) 

e+(s)= 2(xP)' r+(s)=1jJ(cp+2(xP)s)-1jJ(cP), (2.11) 

er- (t) 
r(t)= - 2x(P+k)' r-(t) =1jJ(cp-2x (P+k)t)-1jJ(cp). 

These formulas can be utilized directly for a linearly 
polarized wave. However, they can also be used in the 
general case of elliptical polarization, with the under­
standing that the compact form of recording has been 
utilized; alji = aIljil + aa/!" i.e., ar = aIrl + azr,. 

For the evaluation of the coefficients CI - C5 in (2.5) 
one can contract the tensor TjJ.II (k h k,) (2.8) with the 
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pair combinations of the vectors AJt - A~ (2.3). In this 
case in virtue of the gauge invariance of TiJ.II (kl, k,) the 
terms in the vectors A~, A~, containing kl, k2' will 
vanish on contraction. All the remaining terms in the 
vectors A~ - A~ contain either fJt,~, or KiJ., which vanish 
on contraction with KiJ.. This means that in the trace of 
BiJ.II appearing in formula (2.10) one can omit all the 
terms containing KiJ.' KII , and this enables one subse­
quently to utilize the essentially Simplified expression 
for BiJ.II ; 

B"'=4{2P"P'+P'k,'+P'kt-g"'(k,P) +(e+(s) +e-(t)) [g"'(Ptk) (2.12) 
-kt(P!),+P"(kf)'J- (e+(s) -e-(t)) [(Pf)"(2P'+k,') + (kf)"P']) 

where one should interpret all the combinations in the 
following manner; e±f = e~fl + e~f,. 

We now take into account the fact that the tensor Bflll 
contains the operator piJ. in vector form, and also in the 
combinations (KP), (fP)iJ. and (k,P). In accordance with 
the foregoing when the tensor BiJ.II is contracted with the 
vectors (2.3) expressions such as (KP) and (fP)iJ. are 
formed. The scalar product (KP) commutes with all the 
operators of the problem and, consequently, can be re­
garded as a c -number. The combinations (fP) iJ. also 
commute with one another. Therefore, in fact the tensor 
BiJ.II(2.12) contains the single operator term (k,P) which 
we can investigate separately, taking for it the initial 
expression 

. 1 i ' 
Sd'X(X I (P+k,)'-m' P'-m' (k,P)exp{i(k,-k,)X} Ix) (2.13) 

Utilizing the identity 

2(k,P) =[ (P+k,)'-m'J-(P'-m')-k,', 

we rewrite (2.13) in the form 

1 "1 1 
- Sd'x(x I {[ (P+k,)'-m'] 
2 (P+k,)'-m' P'-m' 

- (p'-m')-k,'}exP{i(k,-k,)X}'1 x). 

(2.14) 

(2.15) 

We transform the first term in the figure brackets in 
(2.15) by taking into account the fact that 

[(P+k,)'-m']exp{i(k 2-k.)X} =exp{i(k,-k,)X} [(P+k,)'-m'], 

and utilizing the possibility of cyclic permutation of 
operators. After this transformation the first and the 
second terms in the figure brackets in (2.15) cancel, and 
this means that we can replace in BiJ.II of (2.12) the 
quantity (k,P) by -kU2. After this there will be no 
operator terms remaining in the expression for the 
tensor BjJ.II, and this essentially Simplifies the calcula­
tion of the average (x 1 •.• 1 x) in formula (2.10). 

We transform the expression 

I=<x I exp {it (P+k,) '} exp lisP'} I x> 
=(xlexp {ik,X}cxp {itP'}exp {-ik,X}exp lisP'} Ix>. 

(2.16) 

by utilizing the result of the unfolding of the exponential 
operator expressions (cL, (A.20), (3.7) of[3}); 

1=( x I exp {it j :: [a(P+k) -ea'r-(ty)]' }exp {it (P+k,).L'} 

o (2.17) 
I d 

xexp {isPl'}exp{ is S a: [aP-ea'r+ (SY)]'} I x), 
o 

where the notation of (2.11) has been utilized. It is con­
venient to conduct the further investigation in the 
"special" reference system, where the vector K is 
directed along the 3 axis, i.e., KO = K3, and the vectors 
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ai, a2 lie in the plane of (1.2). We introduce the vari­
ables 

X O_x3 XO+x3 
i)-=-_-, v=--_-, 

1'2 l'2 

and then have 

fJ 
p'l=i-, 

fJv 

<p=l'2 x<{}, p O=po=(p.+p,)/l'2, (xP) ="1'2 XOp" 

P'=p'=(P.-p,)I'IZ, Po'-P,'=2p.p,. 

(2.18) 

(2.19 ) 

Utilizing the completeness theorem (cf., (2.40) in[<'J) 

The first term vanishes when the field of the wave F = 0, 
while the second term (independent of the field when 
ki = k2) must be renormalized in the standard manner 
(cLpJ). After subtracting the term T~~O we obtain tile 
following expression for the coefficients c 1 - C 5 in 
(2.25) : 

. , ood . k'(1 U'»)} 
cn=- ;: I du I " f d'x eXP{i(k,-k,)x}exd -im', (1- '4';:; bn, 

-, , (2.27) 

<xIR(p) Ix)= I d'pR\p), (2.20) where we have gone over to the new variables 

we can calculate the average over the state which de­
pends on the 4-vecto~ xjJ.' component by component: Ix> 
= I v, J, xai, xa2). In calculating (J I ... I J> we must 
retain in tile average only the terms containing tile op­
erator Pi, since the operator (aP) does not act on I J> , 
wllile in the explicit functions of the variable J appear­
ing in the expression (these are the functions rl:) the 
state I J) is an eigenstate, i.e., exp{ if (J)} 1 ,,> = I J) 
exp{ if (J)}. Taking this into account we Ilave from 
(2.17), (2.20) 

< {} I exp{2it (p.+k,.) (p,+k,,)} exp (2isp.p,} h') 

n ( kht ) = -exp{2itk,.(p,+k,,)}6 p, + - . 
s+t s+t 

Tllen the calculation of the average <v I ... Iv) 
to integration over the o-function, in which 

s t 
2 (P+k) x-'>-2 (xk) s+t' 2(xP) ..... -2(xk)-;.tt, 

(2.21 ) 

reduces 

(2.22 ) 

and tile evaluation of the average over (xai), (xa2) is 
carried out directly in accordance witll formula (2.20) 
and reduces to Fresnel integrals. Finally we obtain for 
tile average (2.16) 

in2 

I=---exp{iftk,'}exp{i(s+t)~}, ~=~,+~" (2.23) 
(s+t) , 

wllere 

~I.,=e'a,\ t j dy ~,\(ftY)- (f dy ~,.,(fty) ) '], , , 
(2.24) 

st 
J.I=-. 

s+t 

In accordance witll tile arguments given above, after 
the replacement (k2P) - -k~/2 all tile operators ap­
pearing in tile tensor BjJ.v (2.10), (2.12), can be re­
garded as c-numbers. Tllen the evaluation of the aver­
ages reduces to taking quadratures of the same type 
which are encountered in evaluating the polarization 
operator in a-order for free particles utilizing the ex­
ponential parametrization of the propagators (cL, for 
examplepJ). In fact, for obtaining the result one should 
substitute into (2.10) the average (2.16). (2.23), and to 
carry out in the tensor BlJ.v the replacements 

, , 
P ...... R.=_k,,_t_ + ea,. I dy ~I (!Iy)+ea,. I dy ~'(flY), 

s+t 0 0 (2.25) 
i ( atlla1" a-/,a.,.'V) 

P'P' ..... R·R'+-- -,-+-,- . 
2 ( .• +t) a, a, 

Substituting the tensor TIJ.V obtained in this manner 
into (2.8) and contracting TlJ.v(kl' k2) with the appropri­
ate combinations of the vectors A~ - A~, appearing in 
(2.25), we obtain explicit expressions for tile coef­
ficients Ci - cs. The expression for the tensor 
TlJ.v (ki' k2) obtained in this manner must be regularized. 
In order to do this we represent it in the form 

T·' (k" k,) = (T"' (k" k,) - T ::0 (k" k,)) +T ::0 (k" k,). (2.26) 
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5+t=,;, v=(s-t)/(s+t), T. C.fl='I.:r(1-v') and 

b,=2S,s,m' [D'] dy~,(ftY)- ~~~: ] dy~,('1Y) ]e"', 
o " 

b,=2~,s,m' [D, j dy ~I (fty) - ~'~~; J dy !'1,(flY) ] e"', 
" 0 

(2.28) 
. k' - (-7++) (ei"-i), 

. k 2 

- (~++) (e"'-1), 

b,=_'/,l'k,'k,'(1-v') (e"'-1). 

Here 

(2.29 ) 

and the notation of (2.24) has been utilized. Since the 
coefficients bn are functions of cp = KX, then tile inter­
action of the photon desc ribed by the tensor TIJ.V (ki' k2) 
is in the general case inelastic (k i '" k2), Le., tile plane 
wave of the form (1.1) is an optically active "medium" 
for an external photon. 

In tile case of an elliptically polarized monochro­
matic wa ve when 

(2.30) 

the integrals appearing in bn (2.28) can be evaluated 
without difficulty. As a result we obtain for the coef­
ficient Cn in the expression for TIJ.V (ki' k2) - T~~O( ki' 
k2) (cf. (2.25» 

IX II SoodP { 2p [ k,k,(1-v') 
cn=-i(2n)'m'- dv ·-exp -i I I 1----:--.:---

n P A (i-v') 4m' 
-I 0 (2.31) 

+A (6.'+s,') ]}[ 6(k,-k,)d" + t 6(k ,-k,-2Xl)gn'],. 
1=-00 

'*' 
where 

( 1+v') 
d,=-d,=2p~,s,A, I-v' 1,(z)signA, 

d [A" ., £I'~S"](J () I'(») , 1+v' , = I", -Sill P 1-v' , z -i, Z +SI sin' p i-v' I,(z) 

1 (k'k' ilAI (1-v') ) -- -. + (/o(z)-e"), "m- p 
d .. =d,(S,'-;,'), 
k,k, 

d,=- 4m2 (I-v') (/0 (z) -e''') ; 

, [ i +v' . I ] ., 
gl =;IS2 2Aop 1-v' sign A-AI -;: ,I, (z), 
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g,'=g.'(A.~-A., z~z), 

[ ~ 'v'+~ , ] [ sin' p ] g,'= 6,'A,+sin'p-'--'- i'l,(z)+ £,'A,---(£,'-£,') i'-'l,'(z) 
1-v' 1-v' 

1 (k'k' iIAI(l-V'») -- --+ i'l (z) 4 m2 p I 1 

(2.32) 

Y k?k,' 
g,'=- 41n'(l-v') i'J, (z) . 

Here JZ(z) are Bessel functions, the following notation 
has been used 

A =~ (1- Sin'p) Ao=~ (Sin'p _ Sin2P) 
2 p" 2 p' 2p' 

2p(£,'-£,') xk 
A,=A+2Ao, z= tAI(l-v') A o, A=2m" (2.33 ) 

A 
y=2p(V+£,') tAl (i-v') ,. 

and the replacement T '" 2p/1 >-1 (1 - v 2 ) m2 has been 
carried out. The expressions for cn (2.31) are sums of 
two terms. One of them (with coefficients dn ) describes 
the elastic scattering of a photon by the field of the 
wave, the other (containing gn) describes inelastic scat­
tering accompanied by emission (absorption) of the 
"photons" of the wave. In the case of a circularly 
polarized monochromatic wave d '" ~~ '" ;2 the coef­
ficients appearing in (2.31) are essentially simplified. 
In this case the tensor Tj..!.v (2.5) has the form (we sub­
tract the tensor Tj..!.v for F '" 0) 

P'(k"k2)-T:~.", .' )+II"' «k k +2 ) II,o)/) (k,-k,) + II,_,/) (k,-k,-2x ,+)U ,-, x, 
i(2,,) , 

formulas (2.35), (2.5), (2.31), (2.34) we obtain from this 
for the probability of creation of a pair by an unpolar­
ized real photon (kf '" 0) in the field of a circularly 
polarized wave: 

f~ dp " 
x _{e-'Z, [1-2£' (2u-1)bin' p]-exp{-2ipuIIAt}} 

• p 

am' S~ dp 
=--4k' 1m -e-"{(1+2~' sin' p)'1[Ht') ('1) +iH;') ('1) J-2i£'Ht') 

, 0 p 

here 

(2.38 ) 

IJ<;\ is a Hankel function, and a replacement of the 
va~iables u '" 1/ (1 - v~) has been carried out. In a 
similar manner one obtains the probability of pair cre­
ation by polarized photons. Formula (2.38) is a new 
representation for the probability of pair creation ana­
logous to formulas (3.36) and (3.35) ofP ) for the proba­
bility of emission of a photon by an electron in the field 
of a wave. Utilizing the generating function for the 
Bessel functions and the power series expansion of the 
square of the Bessel function we obtain from (2.38) the 
well-known representation[5] for Wcr : 

am' \"""1 SUB du 
W"=_ ~ {21n'(z) 

4k,' • ,uYu(u-1) 
(2.39 ) (Un>!) 

+~' (2u-1) [l~+, (z) +1';_, (z) -21.' (z) ]}, 

II,~~= (A .. A,'-A,"A,V) 0.,+ (A .. A,'+A,"A;)a,+A,.A;a" (2.34) where 

where (cf., also (2.33» 

a , S' S~ dp { 2ip [ k k ] } 
0..=- 2" m'_,dv, p"XP - IAI(1-v') 1- 4~:(1-v')+2A~' w., 

l+v' 
wo=1;'A" IIl,=4£'A"p l_v,sign A. 

1 +v' [ k k, ] w3=2~'sin'p--.- 1+-'-. (1+v') (I-e'Y), 
l-u- 4m-

k' 
w,=-~(1-v') (1-e'Y). 

~m 

(2.35 ) 

Thus, from a circularly polarized wave only two pho­
tons 3) can be emitted (absorbed), and this is determined 
by the fact that the "photons" of the wave have in this 
case a definite chirality and transitions are possible 
both without a change in the chirality of the incident 
photon (l '" 0) and with a reversal of chirality (l '" ± 1). 
This can be seen from (2.34), since in the inelastic 
terms characteristic combinations of chiral eigenvec­
tors have been formed. 

We introduce the "diagonal" polarization operator 
II ~v (k l ) related to the amplitude for the elastic scatter­
ing of a photon in the following manner: 

T,."' (le" k,) =i(2,,) '6 (k,-/;,) IIr(k,). (2.36) 

Its imaginary part determines the probability of crea­
tion of an electron-positron pair by a photon in the field 
of a wave (cf., formula (3.14)[2): 

(2.37 ) 

where k~ is the photon energy. Taking into account 
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2~ ----­
z=-Y1+1;'Yu(u.-u), 

A 

nA 
u. = 1+s' ' 

the inequality un ~ 1 (2( Kk)n ~ 4m~ (1 + ~ 2» is the 
condition for the threshold of pair creation when n 
"photons" are absorbed from the wave taking into ac­
count the change in the mass of the particles in the 
field of the wave. 

The limit ~ » 1 corresponds to the transition to 
processes in a constant and homogeneous field E 1 H, 
I E I '" I H I, or, what is the same thing, a transition to 
the quasiclassical approximation for a photon propa­
gated in an external field. In this case l/J(qJ) '" qJ and it 
is convenient to use formulas (2.5), (2.27) for a linearly 
polarized wave (~2 '" 0). The polarization operator ob­
tained in. this manner in the quasiclassical approxima­
tion II(a) (cf., (2.36» can be utilized, in particular, for 

the car:ulation of pair creation by a photon. For exam­
ple, for unpolarized photons we obtain the probability 

w",=_C"'lmII::'= r:m' JdV(9-V')K,;.( 8 ),(2.40) 
2k,0 313 "k,' • 1-v' 3Xp(1-v') 

which depends on the single parameter Xp '" !;(Kk)/m2. 
This result agrees with the one obtained earlier in the 
quasiclassical approximation (cf .,[ 10J, p. 174). 

The calculation of the contribution of particles of 
spin 0 to the polarization of the vacuum is completely 
analogous to the one carried out above, while the calcu­
lations themselves are considerably simpler. The re­
sult can be represented in the form (2.5), (2.27), where 
the coefficients bn are given by 

b:o'=-s,£,m' f dy "',(ItY) [J dy "', (lty) -"" (It) ] e"', 

° ° 
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3. PROPAGATION OF A PHOTON IN THE FIELD OF A 
WAVE 

For an external photon the field of a wave can be re­
garded as a material "medium." The propagation of a 
photon in this medium is described by solutions of the 
Maxwell equations, which on taking into account the in­
teraction with the field of a plane wave can be written 
in the momentum representation in the form 

k,'e"(k,) = i(2~)' S d'k,T"'(k" k,)e'(k,), (3.1) 

where eiJ.( k) is the photon polarization vector. We ex­
amine this equation in the case of a Circularly polarized 
wave utilizing the tensor (2.34). The polarization vec­
tor in (3.1) can be expanded in terms of the orthonormal 
set k~/ffl,A~,A~,A~. Correspondingly, we obtain 
four solutions; one longitudinal one and three trans­
verse ones. The longitudinal solution can be written in 
the form 

e.'(k) =f(k) <5(k') k", (3.2) 

where f(k) is an arbitrary function. One of the trans­
verse solutions is 

e~') =/, (k) <5 (k'+a,)A,", (3.3) 

since (k2 + a!5) e~) = O. We seek the other two solutions 
in the form 

Substituting this expression into the equation, we find 
that the functions fA k), f3( k) satisfy the system of equa­
tions 

(k,'+a.,+ia,)j,+2a"j,+=0, 

2aoj,-+j,(k,'+a,-ia,) =0, 
(3.5) 

where the functions having the subscript ± depend on 
k, ± 2K, and the other functions depend on k,. This sys­
tem has solutions under the condition of vanishing of the 
determinant 

I k'+a,+ia. 2ao I = ° 
2ao+ (k+2x)'+a,+-ia,+) 4 ' (3.6) 

which represents the dispersion equation for these two 
solutions. 

The analysis of the solutions appears particularly 
simple in the domain 1 AI « 1, k2 « m2 (;2:5. 1), with 
this inequality being satisfied for lasers in the visible 
part of the spectrum, if the energy of the external pho­
ton k~ :s 1010 eV. In this region, the coefficients an 
(cf. (2.35» with an accuracy up to terms ~ A 2 have the 
form 

1 a , (xk)' 
cto=--£--, 

60" m' 

11 a (xk)' a3=--s2 __ , 
90" m' (3.7) 

a.=a,=O. 
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With the same accuracy the roots of equation (3.6) are 

k'=-a" (k+2x)'=-a,. (3.8) 

If we introduce the "index of refraction" for the wave n: 

k,'=klO'(1-n') , 

then we have from (3.8) for a photon incident in the op­
pOSite direction to the wave 

22 a ( F)' n'=1+-- -
451t Fo 1 

(3.9 ) 

where F is the intensity of the field of the wave, F 0 

= m 2/ e is the critical field. Thus, the index of refrac­
tion in this limit depends neither on the photon energy 
nor on the frequency of the wave. It follows from 
formula (3.9) that for A « 1 the effects will be quite 
weak. They will become considerably more noticeable 
when A":' 1. It is just the region relatively close to the 
threshold of the two-particle reaction that is of the 
greatest interest for the investigation of the effects of 
intensity in the field of the wave. The same conclusion 
follows also from an analysiS of the imaginary part of 
the forward scattering amplitude of (2.37) (cf. alsol 4-6). 

The authors are grateful to V. M. Katkov for valuable 
discussions. 

l) After the present work had been completed we became aware of the 
paper of Becker and Mitter P 1 in which the ~ame set of questions has 
been investigated using the explicit form of the Green's function for 
an electron in the field of the wave obtained by Schwinger [8]. The 
results of both investigations coincide in the overlapping region. We 
are grateful to V. 1. Ritus who drew our attention to [1]. 

2)Completeness relations hold, for example: 

gJlV = k,Jlk," _ '\I~IAlv-.\2J1..\2v-.\SII.\3v. 
k 12 

3)This circumstance has been noted by Becker and Mitter [7]. 
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