
Coherent scattering of 'Y quanta by a hydrogen-tikeatom 
A. I. Mikhallov and S. G. Sherman 

Leningrad Institute of Nuclear Physics, USSR Academy of Sciences 
(Submitted June 18, 1975) 
Zh. Eksp. Teor. Fiz.69, 1888-1892 (December 1975) 

The differential and total cross sections for the elastic scattering of a photon by a hydrogen-like atom are 
derived, correct to terms of order (aZ)2 inclusively, in the energy range w> maZ-(w is the energy of the 'Y 
quantum, m is the electron mass). The formula for the differential cross section is valid 'for small 
momentum transfers to the nucleus, q- maZ, in which case the cross section is maximal. 

PACS numbers: 03.50.Jj 

1. INTRODUCTION 

The differential cross section for the coherent'scat
tering of photons (CSP) by the electron shell of an atom 
(Rayleigh scattering) was first calculated by Franz [IJ 
in the nonrelativistic approximation and with the utiliza
tion of the free Green's function, i.e., without taking into 
consideration the binding of the electron to the nucleus in 
the intermediate state. In this approximation the CSP 
cross section was expressed in terms of an atomic form 
factor. 

The coherent scattering of y rays by the K electrons 
of heavy atoms was investigated by Brenner, Brown, and 
Woodward. [2J They calculated the differential cross sec
tion for the scattering of y quanta with energy w = 0.32m 
(m is the electron mass) by the K shell of mercury atoms 
(QlZ = 0.6). The calculation was numerical with the bind
ing of the electron to the nucleus taken into account in 
the intermediate state and with screening taken into con
sideration. 

By utilizing the Coulomb Green's function an analytic 
expression was obtained by Gavrila [3J for the cross sec
tion for CSP on the hydrogen atom in the nonrelativistic 
region, and an expression for the relativistic region is 
given in [4J to the lowest-order approximation in QlZ. The 
formula derived in [4J is valid for arbitrary scattering 
angles, i.e., for arbitrary momentum transfer to the 
nucleus. In the high energy region (w ~ m) Goldberger 
and Low [5J derived a formula for the amplitude of the 
forward (q = 0) elastic scattering of photons by the 
K electron of an atom, correct to terms ~ (QlZ)5 inclus
ively. 

The CSP by a hydrogen-like atom is investigated in 
the present article in the region of relativistic energies 
(w ~ 71 = mQlZ) and small momentum transfers to the 
nucleus (q ~ 71). Such values of q give the major contri
bution to the total cross section. Formulas are obtained 
for the amplitude, differential and total cross sections 
of the process with relative accuracy of order (QI Z) 4, 
which allows one to utilize them for calculations in the 
case of scattering by intermediate and heavy ions. In 
contrast to previous articles, here potential scattering 
in the Coulomb field of the nucleus (Delbrlick scattering) 
is also taken into consideration, since its contribution to 
the amplitude is of the same order as the contribution 
from the Coulomb corrections which take into account 
the binding of the electron to the nucleus in the initial, 
final, and intermediate states. 

2. AMPLITUDE OF THE PROCESS 

Correct to terms ~ (QlZ)2 inclusively, the wave func
tion of an electron in the 1s state has the following form 
in the momentum representation: 
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<flis> =N,{,(1 +~.) I +a (ln~+ j ~,)} 
2m '~o 2lj. f.. 
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(1 ) 

where f = a . f and (II denotes the Dirac matrices: 

( 1+1 ) 'h lj'I' ( lj' ) '/' ( 5 ) 
N= rrr(1+21) r(1+a)"" -;- 1+ g a'Z'; (la) 

(fiV 18>= 4rt ~=(1-a'Z')'" 
'. (f-s)'+I!'" , 

a=1-1""a'Z'/2. (lb) 

Terms ~ (QI z)2f/2m are omitted in the wave function 
since the region f ~ 71 will give the major contribution to 
the matrix element. 

In the approximation under consideration the ampli
tude for scattering by a bound electron is represented 
by the two Feynman graphs shown in Fig. 1 (Plus two 
graphs with interchanged lines representing the initial 
and final photons). Let us show that the contribution lb 
from the graph of Fig, 1b is, in the region of small 
q ~ 71, (QlZ)2 times smaller than the contribution Ia from 
the graph of Fig. 1a. It is easy to estimate the ma.jor 
contributions from these graphs by using the explicit 
form (1) of the wave function (f 11s) : 

J d"f f+k,+m 
I.-alj" [(Hq)'+,]']'[f'+lj'J' (f+k,)'-m' 

_ alj.\J d"f _ alj'~=.!2.=r, 
m [(Hq)'+lj'J'(f2+lj')' m lj' m 

(r e denotes the classical radius of the electron, f = foYo 
-f· y), 

J d's s+k,+m J d'f aZ10 f+k,+m 
lo-alj'.\ [(s+q)'+lj'J' (s+k,)'-m' (f'+lj')' (s-f)' (f+k,)'-m' 

alj' J d's J d'f 
- --;;;" aZ [ (s+q) '+lj']' (f'+lj')' (s-f)' 

_ alj' aZ~ = .!2.(aZ)'=r,(aZ)'. 
m 2 11" m 

In similar fashion one can show that the contribution 
from the graph containing two Coulomb lines in the in
termediate state will be (QlZ)4 times smaller than the 
contribution from the graph shown in Fig. 1a. 

Just like the contribution from the graph in Fig. 1b, 
the graph representing the elastic scattering amplitude 
in the Coulomb field of the nucleus (Fig. 2) gives a con
tribution (~reQl2Z2) to the CSP amplitude. Since the 
graph shown in Fig. 2 does not contain the parameter 71 
(71 denotes the average momentum of the K-electron), . 
the parameters of the expansion with respect to q in the 
region of small q ~ 71 may be parameters of the type 
q/m and q/w. In the approximation under consideration 
it is necessary to retain only the leading term of the ex-
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FIG. I. Feynman graphs for the scattering of a photon by a bound 
electron (a line containing a circle represents a bound electron). 
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FIG. 2. Feynman graphs for potential scattering. 

pansion with respect to q. For this purpose we set q = 0 
(forward scattering) in the graph of Fig. 2. This is suffi
cient to obtain the differential cross section for CSP on 
an atom with relative accuracy ~ (0' Z) 4, but it is not 
sufficient to obtain the total cross section with the same 
degree of accuracy. 

Using Eq. (1) we obtain the exact expression for the 
graphs of Fig. 1 (taking the crossed diagrams into ac
count): 

A.=I.(,.,) +1.(,.,)=r, (e,c,):x; (q'~'jJ.' ) , { 1 

( 1 q'+jJ.' q'-jJ.' q) io[nX q] } 
+(aZ)' 1 +-In--. -+--arctg- +-- 1(" 

2 1-" 2ql-' jJ. "m (2) 

1-" 
Ab=Ib(,.,,+lb!,.I)=-r, (e,e,) (aZ)'-:;--+ " (3) 

q" I-' 

Here el and e2 are the polarization vectors of the incident 
and scattered photons, q = kl - k2 is the momentum trans
fer to the nucleus, J.1. = 21], n = kl /w = nl + n2, U denotes 
the Pauli matrices, and Xl and X: are the spin functions 
of the electron in the initial and final states, normalized 
by the condition XiXi = 1. Terms of order q2/mw are 
omitted in the imaginary part of the amplitude Aa since 
their contribution to the differential cross section turns 
out to be a quantity of order (q2/mw)2 ~ (O'Z)4. 

The amplitude Ae for CSP by a bound electron is the 
sum of expressions (2) and (3): 

( 1-" ) 2 
A,=A,+Ab=r,(e,c,):x; q'+I-" 

{ q' 1 (q'+I-" >< 1--+-(aZ)' In--
4m' 2 fL' (4) 

q'-I-" 'q' ) iO[nX q]} 
+-,-, -arctg- +-4- x'· 

q I-' I-' m 

If one sets q = 0 in expression (4), Ae = r e(e2' ell 
x [1 - (1/2)(0' Z)2), which coincides with the formula der
ived by Goldberger and Low, [4J if only the terms ~ (O'Z)2 
are retained there. 

The amplitude Ap(w, q) for potential scattering con
tains real and imaglnary parts (the latter differs from 
zero only for w > 2m). The zero angle scattering 
amplitude, A,.,(w, 0), was derived by Bethe and 
Rohrlich [6J lnd has the form 

Ap=Ap(w, O)=r,(c,c.,) (aZ)'[a,(w, O)+ia,(w, 0»), (5) 

where adw, 0) and a2(w, 0) are real. Expressions for 
these quantities are also given in [7J• 

3. DIFFERENTIAL AND TOTAL CROSS SECTIONS 
OF THE PROCESS 

The differential cross section for CSP may be repre
sented as the sum of three terms: the terms correspond
ing to Rayleigh scattering and potential scattering, and 
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the interference term. Averaging over the initial states 
and summing over the final polarizations of the photons 
and of the electron, we obtain 

do = + .E 'A,+A"I' dQ=do,+doin,+do., 

( jJ.' )' { q' q' 
d(l,=r.' q'+[t' 1- 2w' - 4m' 

( q'+f.t' q'-[t' q )} 
+(aZ)' In--+--arctg- dQ, 

[t' q[t [t 

. ([t' )' doin,=r.'(aZ) 2 q'+[t' ·2a, (w, O)dQ, 

dop=r.'(aZ)'[a,'(w, q) +a!(w, q) ]dQ, 

where q2 = 2w2(1 - cos e), e is the photon scattering 
angle, dU = 211 sin e de = 211qdq/w 2, and q = iql. 

(6) 

(6a) 

(6b) 

(6c) 

Expression (6a) goes over into the formula derived 
in [4J if the terms ~ 0'2 Z2 are neglected. As is clear from 
Eqs. (6a) and (fib), the interference between potential 
scattering and Rayleigh scattering gives the same rela
tive contribution (~0'2Z2) to the cross section as the 
Coulomb corrections to the wave function and to the 
electron Green's function. The contribution du int of the 
interference term increases with increasing photon en
ergy w (adw, 0) ~ w/m for w »m) whereas the electron 
part of the scattering. dUe, remains constant (for q = 0). 

One should discard the purely potential part of the 
scattering, dup' in the region of small q ~ T] and medium 
energies w ~ m, but its contribution to the cross section 
increases with increasing photon energy (a2 will be 
~ (w/m)ln(2w/m) for w »2m [6, 7J). Furthermore, 
Rayleigh scattering and the interference part of the 
scattering fall rapidly with increasing values of q (for 
q ~ w ~ m we have dUe ~ r~«(}Z)B, dUint ~ ~(O'Z)6) 
whereas in the range w ~ m the potential scattering re
mains a quantity of order r~(aZ)4 for arbitrary values 
of q. 

Formulas (6a) and (fib) are only valid in the region of 
small q ~ T]; however, they may be used to obtain the 
total cross section since it is precisely this range of 
variation of q which gives the major contribution to the 
integral over the solid angle (or with respect to q). The 
major contribution to the total cross section from (6a) 
turns out to be a quantity of order uo(aZ)2, but the cor
rection terms in (6a) and the interference term (6b) are 
quantities of order UO(O'Z)4. The total cross section for 
potential scattering is of the same order, but for its 
computation one must know al(w, q) and a2(w, q) over the 
entire range of variation of q. Thus, the total cross sec
tion for CSP by a hydrogen-like atom has the form 

m' { ( 7 3n' m')} o,=oo(aZ)' 2w' H(aZ)' 6-16-;;- . , 

3m' 
Oin,=OO(aZ) ' 7"a, (w, 0), 

3 ,. d 
op=oo(aZ)'t; S q ,q[a,'(w,q)+a,'(w,q)], 

o w 

where U o = (8/3)11r~ is the Thomson cross section. 

(7) 

(7a) 

(7b) 

(7c) 

Formula (7) may be utilized in experiments for ex
traction of the purely potential part of the scattering, 
Le., for measurement of the Delbrlick scattering cross 
section. 

For the coherent scattering of photons on a neutral 
atom, the contribution of the Rayleigh scattering grows 
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with increasing Z; however, the relative contribution of 
the potential scattering decreases. 

In conclusion the authors thank V. G. Gorshkovand 
E. G. Drukarev for a helpful discussion. 
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