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An investigation is made of the role of long gravitational waves in the evolution of a homogeneous closed 
universe (model of type G31X in the Bianchi classification). It is shown that the metric of this model can 
be represented as a sum of a background metric, which describes a nonstationary space of constant positive 
curvature, and a number of terms that can be interpreted as a collection of gravitational waves of maximal 
length compatible with the space being closed. This decomposition of the metric is exact and the wave 
corrections do not have to be small. For this reason, the behavior of the wave terms can be investigated at 
all stages of their evolution: both in the epoch when the "energy density" and "pressure" of the 
gravitational waves make a negligibly small contribution to the the dynamics of the background universe 
and during the epoch when they make a decisive contribution. In particular, it is shown that in the 
vacuum stage, when the evolution of the background metric is determined by the "energy density" and 
"pressure" of the gravitational waves, the scale factor of the background universe may pass through the 
state of a stable regular minimum because the gravitational "pressure" is negative. 

PACS numbers: 04.30.+x, 9S.30.+m 

Usually, weak gravitational waves are considered; 
weak means that they are oscillating corrections to a 
background metric of space-time. Provided the length 
of a gravitational wave is small compared with the 
characteristic radii of curvature of the background 
space and the period of the wave is short compared with 
the characteristic time of variation of the background 
metric, gravitational waves are completely analogous 
to electromagnetic waves, for example. They propa­
gate with the velocity of light, are transverse, and a col­
lection of gravitational waves behaves like matter with 
equation of state p = E/3, etcY-3] Fundamental differ­
ences arise only in regions of space-time where these 
conditions are not satisfied. For example, one can 
then have the process of superadiabatic amplification 
of gravitational wavesy,5] The existence of these re­
gions is also a necessary condition for the approxima­
tion of weak gravitational waves to break down. In 
other words, in these regions of space-time the rela­
tive amplitude of the wave corrections is in general 
no longer small compared with unity. 

The main aim of the present paper is to study the 
role of wave corrections with allowance for their back 
reaction on the background metric and also during the 
stages in the evolution of the background metric when 
these corrections are no longer small. Concretely, we 
consider a metric that admits a three-parameter group 
of motions of the type G3 IX in the Bianchi classifica­
tion. We show in Sec. 1 that this metric can be repre­
sented as a sum of a "background" metric, which de­
scribes a nonstationary space of constant positive 
curvature, and a collection of terms corresponding to 
a number of gravitational waves with maximal wave­
length compatible with the space's being closed. This 
decomposition of the metric is exact, and the wave cor­
rections do not have to be small. For this reason, the 
behavior of the wave terms can be investigated at 
all stages in the evolution of the universe, and this 
enables us to elucidate, for a particular example, the 
properties of "strong" gravitational waves (which are 
defined in various different ways). 

The decomposition of the metric into a background 
metric and wave corrections is not completely unique. 
In the linear approximation in the amplitude of the cor­
rections, all definitions of a "gravitational wave" are 
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the same, but already in the second order important 
differences appear. At the same time, the properties 
of the "energy density" and the "pressure" of the 
gravitational waves and the evolution of the background 
metric depend on the manner in which the wave correc­
tions are separated from the background metric. Be­
low, the background metric is chosen in such a way that 
the "wave corrections" are eigenfunctions of the 
Laplacian operator. This choice has certain advantages, 
but it can also be criticized. 

In Sec. 2, we consider weak gravitational waves in 
the linear and quadratic approximation in the amplitude 
of the wave corrections. In the linear approximation, 
the waves give rise to an anisotropy of the deforma­
tion of the volume element without perturbing the 
density or velocity of the matter filling the universe. 
Perturbations of these quantities appear only in the 
quadratic approximation as a result of the nonlinear 
interaction of the waves. Generally speaking, the con­
tribution of the wave terms increases unboundedly as 
the singularity is approached, i.e., as the epoch in which 
the waves cease to be high-frequency waves is ap­
proached. 

There is however a set of initial data, which corres­
ponds to a special choice of the phase of the gravita­
tional waves, for which the wave perturbations are 
small right up to the singularity. The behavior of the 
solution in this "quasi-isotropic" regime is considered 
in Sec. 3. In the general case, the "energy density" of 
the gravitational waves is predominant near the singu­
larity, and this ensures the existence of the so- called 
vacuum stage, when the influence of ordinary matter on 
the behavior of the gravitational field is negligibly small. 

Finally, in the limiting case when ordinary matter is 
completely absent, the evolution of the background 
metric is determined by the "energy density" and 
"pressure" of gravitational waves by themselves. We 
show, in particular, that the background scale factor 
can pass through a state of a stable regular minimum 
during the evolution because the gravitational' 'pres­
sure" is negative (Sec. 4). 

The solutions of Einstein's equations for a homoge­
neous metric of type G3 IX have been studied by Belin­
skil, Lifshitz, and KhalatnikovlS ] in connection with the 
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problem of singularities, by Misner [7 ] in his mix master 
program, and also by Bogoyavlenskfi, S. Novikov, I. 
Novikov, Lukash and the authors.[8-11] The decomposi­
tion of the metric element employed here may help, on 
the one hand, in the physical interpretation of these 
solutions and, on the other, in the development of a 
theory of strong gravitational waves.I) 

1. DECOMPOSITION OF THE METRIC ELEMENT 

We consider a metric that admits a three-parame­
ter group of motions of the type G3 IX acting transitively 
on the hypersurfaces t = const. The metric has the 
form[l4] (the velocity of light is c = 1) 

ds'=dt'-l.b (/) e:') e;') dx' dx" (a, b, c, d=1, 2, 3), (1) 

where the Killing vectors ei (a) of the reciprocal group 
of motions are 

e:1l = (cos x', sin x' sin x', 0), e:') = (-sin x', cos x' sin x', 0), e:') = (O, cos x', 1). 

The v~ctors ei (a) satisfy the relations ei k (a) - ek,i (a) = 
C~ceitb)ek(c) with the following nonzero structure con­
stants: C2/ = -C321 = C312 = -C132 = C123 = -C213 = 1. 

The line element 

(2) 

with the special choice Yab = R2(t)1Jat/ 4 (where 1Jab is 
the unit tensor) describes a three-dimensional sphere 
of variable radius. A three-dimensional sphere of unit 
radius corresponds to the special case R = 1. 

It is easy to see that the metric element (1) can be 
rewritten in the form 

ds'=dso'-l'i •• G,~·) dx' dx". 

Here, dSo2 is the isotropic line element 

(3) 

dso'=dt'-'/,R'T)o.e,'O) e.(') dx' dx" (4) 

with scale factor R2/4 = Yab1Jab/3 == y/3, and G~~b) stand 
for the six tensors 1 

the "amplitudes" liab are related to Yab by 

l'i.b-'/,T)'bl'i=l •• -'/,T).bl (l'i~l'i.bT)·'). 

Only five of the tensors (5) are linearly independent 
since 1JabG~ab) == O. Without changing the form of the 
decomposiffon (3), one can always achieve that Ii = 0, 
which we shall assume in what follows. 

The decisive fact for understanding the metric (1) is 
that the functions (5) are tensor eigenfunctions of the 
Laplacian operator on the three-dimensional spherl:; o~ 
unit radius. In other words, each of the functions G~~b 
satisfies the equations 

G,~~:~I = _(n'_3)G,~O'), G,<"')·;. = 0, G,(Obl< =0 (6) 

for one and the same n, namely n = 3. [In Eqs. (6) all 
operations of raising and lowering indices and covariant 
differentiation are performed by means of the metric (2) 
with Yab = 1Jat/4]. The number n = 3 is the smallestll5 ] 
of the eigenvalues for the tensor f~~5tions, and one can 
therefore say that the functions Gi: describe the low­
est mode of characteristic tensor oscillations of the 
three-dimensional sphere. 

In the linear theory of small perturbations developed 
by Lifshitz, (15) tensor eigenfunctions correspond to gravi­
tational waves. In the case we are conSidering, the de-
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composition of the metric into an isotropic background 
and a set of tensor harmonics is not approximate but 
exact. This enables us to treat the correction terms 
to the isotropiC metric in (3) as gravitational waves ir­
respective of the magnitude of the amplitudes liab' Of 
course, the decompOSition of the metric into a back­
ground and gravitational waves is not completely 
unique. For example, one could separate out an iso­
tropic background by introducing a scale factor pro­
portional to the cube root of the volume element, and 
regarding all that remains as gravitational waves. This 
decompOSition is the same as (3) in the linear approxima­
tion in the small perturbations of the isotropic metric. 

The differences between the definitions of the scale 
factor, and, therefore, the wave parts appear already 
in the quadratic apprOXimation, and they lead to differ­
ent quantities for the "energy density" and "pressure" 
of the gravitational waves. We shall use the decomposi­
tion (3) because we feel that it corresponds better to 
the intuitive notion of free gravitational waves as char­
acteristic oscillations of the background geometry in­
dependently of the amplitude of the oscillations. 

It is interesting that the metric (1) can also be re­
garded as a combination of vector harmonics of the La­
placian operator on the three-dimensional sphere of 
unit radius. Indeed, each of the vectors e~a) satisfies 
the equations 1 

e,~O).;'= _(n'_2)e:O), e:;O)f=O 

for the smallest eigenvalue, namely, n = 2, for vector 
functions. According to Lifshitz, [l5) from a vector 
spherical function Si one can construct a tensor Sik, by 
means of which the perturbation of the metric can be 
expressed in accordance with the rule Sik = Si;k + Sk; i' 
In the special case n = 2 this tensor is identically 
zeroY5] A nonzero tensor can be constructed by using 
a quadratic co,m,bination of eigenvectors. Such a com­
bination is (e.ta)ek(b) + ek(a)ei(b))/2, which has the 
form of the p~larization tensor for a circularly polarized 
wave, and it occurs in the metric (3). 

Finally, the line element (1) can be represented in 
the form of an axisymmetric background metric ad­
mitting a four-parameter group of motions and a set 
of vector and tensor harmonics of the Laplacian 
operator constructed by means of the background 
metric. If the direction defined by the third frame vector 
is taken as distinguished direction, the decompoSition of 
the metric takes the form 

ds'=dso'-{jp,G,<:') dx' dx'-ap,S::') dx' dx" (p, q, r, s=1, 2), (7) 

where the background metric is [Yu(t) = ydt) = a2/4, 
Y33(t) = c2/4] 

The functions GH~q) and sf~3) are determined by means 
of the Laplacian operator constructed with the metriC 
dl2 in (8); the same metric is used for all operations of 
covariant differentiation and raising ~n~ lowering of 
indices. The tensor eigenfunctions G.~q can be ex­
pressed by means of the relations 1 

and they satisfy the equations 
Gi(:~~' =-VGi~P'l), Gi~~q) It =0, Gi(P91 i =0; 

v=4 (4/c'-4Ia'+3c'/2a'). 
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From the vector eigenfunctions e(P), which satisfy 
the equations 1 

~=4 (1/c'-1Ia'+c'/2a') , 

one can construct components of "solenoidal" tensors 
in accordance with the usual rule[15]: 

which leads to the concrete expressions' 

The scale factors (1/4)a2 and (1/4)c2 of the background 
metric and the amplitudes Opq and Up3 can be expressed 
in terms of the components Yab(t) of the original metric 
in accordance with the equations 

1/,a?=1/2lPqllpq, 1/,C2=,,{33. 

0,,-1/ ''1v, (0,,1],') =1 VI- I / ,'1 v, (1,,'1 "), 
1 "=0,, (i-c'/a') , 1" =-0" (1-c'/ a'). 

The physical advantage of the decomposition (3) over 
(7) is that, as follows from Einstein's equations in va­
cuum, the evolution of the background in (3) is en­
tirely determined by the existence of sources in the 
form of the wave terms (there is no solution of the 
equations of gravitation for the background metric in 
the absence of sources!). At the same time, the back­
ground metric in (7) can also exist as a solution of the 
vacuum Einstein equations in the absence of sources, 
i.e., for opq == 0 and up3 == O. 

Note that other homogeneous metrics admit a de­
composition into a background and a set of eigenfunc­
tions of the Laplacian operator constructed from the 
background metric. [16] The background metric is dis­
tinguished by the condition that it admits the larger 
group G. (or G6) acting on the hypersurfaces t = const, 
the given group G3 being a subgroup of this group (for 
the types of metric for which the larger group exists). 
A decomposition of this kind and an interpretation on 
this basis of homogeneous type G3 IX metrics were 
considered by Lukash. 117 ] 

2. WEAK GRAVITATIONAL WAVES IN A MATTER· 
FI LLED UNIVERSE 

USing the representation (3), let us consider weak 
gravitational waves in a matter-filled universe. For 
SimpliCity, we assume that the equation of state of the 
matter in the universe is p = E/3. In the limiting case 
oab == 0, we obtain from Einstein's equations the standard 
solution for a closed universe: 

(9) 

where the time 1) is related to t by dt = RFd1). The com­
ponents of the four-velocity of the matter are Uo = 1, 
ui = Paei(a) = O. 

To treat the general case of the metric (1), we in­
troduce the notation 

(10) 

Here, Kab' q, vo, va are functions of the time. If they 
are equal to zero, we come back to the Friedmann 
solution (9). By means of (10), we readily find R2 and 
oab in the decomposition (3): 
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where K = 1)abKab . 

We are interested in small corrections to the solu­
tion (9) in the linear and quadratic approximation in 
the small amplitude of the perturbations, and we there­
fore assume that the corrections can be represented in 
the form 

'XlIl,=X ab(l)+XUV{:!)' q=fjO)+Q(2h 

CO=U O(l)+VO(2), V a=Vfl (l)+U a (Z). 

Einstein's equations for arbitrary metric (1) have 
the form 

d+d",d"'='/,e (1-4u,'), (11) 

d"bC".,'=_'/,WOp,·, (12) 

d", +dd",-2d"d,:-i'",,=I/,e (1",,-4p,p,.) , (13) 

where the point denotes d! dt; dab = YaV2, d = dabyab; 
Pab are the components of the three-dimensional Ricci 
tensor.2) The Einstein gravitational constant is as­
sumed equal to unity. 

We also write down the solution of one of the equa­
tions of hydrodynamics that is a consequence of the sys­
tem (11)- (13): 

e"u"VI1I =collsl=k. (14) 

The constant k has the physical meaning of the entropy 
of the matter in unit co moving volume. 

Introducing a small perturbation of the Friedmann 
solution, one will in general also introduce a small 
change in the constant k. However, we are interested 
in the behavior of an anisotropic model that has the 
same value of the entropy density as the isotropic 
model, i.e., we shall require that the constant k keep 
its Friedmann value. 

Substituting (10) into Eqs. (11)- (13), we can find the 
corrections to the Friedmann solution (9). It must be 
borne in mind that some of the solutions obtained may 
be "fictitious," i.e., they may not correspond to a real 
variation of the gravitational field but merely to small 
transformations of the coordinatesY5,lG] We are in­
terested in perturbations that leave the coordinate 
system synchronous and the metric homogeneous. One 
can show3 ) that these conditions are satisfied by the 
class of small transformations 

where ~i are Killing vectors of the given group and '11°, 
kC, mC are arbitrary constants. Concretely, for type 
G3 IX fields fictitious perturbations of the isotropic 
metric are due sOlell) to a)shift in time and have the 
form ogik = Yab1)oei ek (b , i.e. 

Therefore, this perturbation mode can be eliminated by 
a small transformation of t. 

The solution of the system (11)- (13) in the linear ap­
proximation can be written in the form 

1 '"l)' '1 _ C 1 cos 11 
'Y.aiJ(l) = -.-(a .... 1J cos ,-J1l+jJab SlIt .111) + -. -,-llub, 

Sl n '1 slIr 11 

where the constants Cl'ab and f3ab are related by the 
conditions 

11""a",,=O, ll""~,,',~(). (15) 
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The term C1 cos 1)1)atl sin21) is a fictitious perturbation 
of the metric 4R-2/iYab (a = b) and can be eliminated by 
a transformation of the time coordinate. Therefore, 
the solution can be written in the form 

4 1 
-2 8'b(J)=X'b{l) = -.-(a" cos 3'1+~'b sin 3'1), (16) 
Rp sm,] 

where (}lab and i3ab are related by the conditions (15). 
Hence K(l) = 0, and therefore in (14) we also have q(l) 
= o. 

Thus, in the linear approximation only the metric is 
perturbed, and the corrections, as one would expect, 
correspond to gravitational waves of the maximal pos­
sible wavelength A = 21TR/n, where n = 3. The waves de­
form space, causing anisotropy in the expansion, but 
the volume of each element of space does not change. 
The matter remains at rest, distributed uniformly in 
space, and there is the same law of variation of the 
density with time as in the unperturbed solution. The 
mode i3ab cos 31)/ sin 1) corresponds to perturbations 
of the metric that remain small during the whole of the 
evolution. The mode (}lab cos 31)/sin1) gives rise to cor­
rections that diverge near the singularities (1) - 0, 1) 
- 1T). 

The waves are standing, circularly polarized 
waves, as can be seen from the coordinate expression 
and from the invariant definition[20 1: The Weyl tensor 
with allowance for the wave terms always belongs to the 
Petrov type I classification (the Weyl tensor of the 
background metric is of type 0). 

Not all of the constants in the solution (16) are 
"phYSically" arbitrary since they can be changed by a 
transformation of the coordinates that does not affect 
the form of the metric. This transformation reduces 
to an orthogonal transformation of the matrix Yab.[lOl 
Without changing the Friedmann part of the matrix Yab, 
it mixes up the corrections and contains three arbitrary 
parameters (three Eulerian angles). In particular, us­
ing it one can reduce Yab to diagonal form at any fixed 
time or make equal to zero three of the coefficients 
(}lab (a '" b) or i3ab (a '" b). Of course, (}lab (a = b) and 
i3ab (a = b) then change. Ip the particular case when 
(}lab and i3ab satisfy the conditions 

(17) 

where (}lad = (}IbC1)ab1)dc, the matrix Yab can be reduced 
to diagonal form for all times at once. As follows from 
Eqs. (12), this case is realized when there is no motion 
of the matter, i.e., in the approximation under consid­
eration when Va(2) = O. 

In the quadratic apprOXimation, there are perturba­
tions of the density and the velocity of the matter, which 
can be described as the back reaction of the gravitational 
waves on the background metric. Contracting Eq. (13) 
with Yab and subtracting (11), we obtain an equation 
that contains E on the right-hand side. We write this 
equation in the form 

~. (( :: )' +R') = E+e,. (IS) 

Here, d/dO = Rd/dt, and Eg is the energy density of the 
gravitational waves and it consists of the terms that 
remain after the left hand side of Eq. (IS) has been 
separated. 

In the first nonvanishing approximation, Eg contains 
quadratic combinations of the small quantities Kab. After 
simple calculations, we can find4 ) 
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where 

1 [ Rp' ,] E, = - Epsin' I"] 4x.'+/L'+4-(x.'} , 
24 Rp 

"I:=)(,,2+)(222 +X3/+2"'122+2x132+2"'232, 

J..t2=Xlt'2+Xn'2+X33'2+2xl/2+2xu'2+2xu'2. 

(19) 

For a slowly varying metric of the background, when 
one can ignore the last term in (19), Eg is an essenti­
ally positive quantity. 

The gravitational influence of Eg means that E and R 
differ from their Friedmann values: E = EF(1 + q(2)), R 
= RF(l + K(2Y6). In order to find K(2) and q(2) explicitly, 
we use Eq. (IS), the second approximation of Eq. (14): 

q(,)+'/,X(,)_I/,x.'=O 

and the approximate equation d1)/dO = 1 + K(2Y6. For 
K(2) we readily obtain the equation 

,1 ) 2 + sin' I"] , 1 '+ 1 ( ')' Ctgl]X(2)+-.-(1+coS'1"] %(')= ., x. +-8 IL -2 ctgl"] X. . 
Sill' I"] 2 Sill '1 

Using the result of integration of this inhomogene­
ous equation, whose right-hand side is a combination 
of the known functions Kab(l), we write down the final 
expression for q(2j= 

cos I"] 1 ( 1 ') cos I"] I I"] I Q(2)=C""-'-'---6 1'+-2 P -.-,-In tg -2 Sill '1 sm I"] 

( 3 2 8 11,) 1 + 8 0 - -p'+-r'--m'+-I" -- -wctg'1 
4 3 3 2 sin' '1 3 

1 cOST] (1 1 ) - - (p'-r'+2I'-2m') -.-.- - -;:- cos 5'1 + - cos 3'1 
:1 sln211 V 3 

1 cos Tj ( 1 _ 1. ) 
--(s'-2n')-.- --;:-sinClI"] +-sm3Tj . 

3 sm' Tj" 3 

Here, we have introduced the notation 
, '\"1 , ., _ '\"1 R' '-2 '\"1 A P = ~ CX aa , 1 - ~ paa , S - .LJ CXaapaa, 

, a , 

1'=a,,'+a,,'+a23', m'=~I2'+~"'+~23', n'=2 (a,,~,,+a,,~,,+a23~23). 

The constant Cl(2) has appeared as a result of integra­
tion of the homogeneous equation for K(2) and is associa­
ted with a small (of second order) transformation of the 
time coordinate. 

The perturbation of the velocity can be found from 
Eq. (12): Vc(2)1RF = Kc/S, where Kc is the constant 
quantity defined in (17). This velOCity is solenoidal 
since the divergence of the three-velocity reduces to the 
divergence e(i )'i and is identically zero for the metric 
(1). a , 

Finally, we give the result of integration of the 
equation for Kab(2)' For SimpliCity, we assume that (}lab 
and i3ab with indices a '" b are equal to zero. Then 

1 1 ( , 1,) 
X aa (2) = 3 X(2) + 2 X M (1) - 3 x 

+ 40 _._1_ [(3a,,'-p') <D, +(3~,.'-r') <D, + (3a"~,, - ~s,) <D,l (20) 
9 sm '1 -

+ _._1_(a"(2) cos 3Tj+~,,(,) sin 37]), 
sm Tj 

where 
<D,=1/2 '1 cos 3Tj-sin 31"] In sin Tj+'/18( -9sin 5Tj+52sin 3Tj-30sin '1), 

<D,=I/"1 COo 3'1+1/ •. ,(9 sin 51"]-4 sin 31"]-18 sin Tj), 

<D,=-Tjsin :lTj-'/, •. (-geos 5Tj+ticos 3'1+18cos '1), 

(}Iaa(2) and Baa(2) are arbitrary second-order constants 
that satisfy the conditions 1)ab(}lab(2) = 0 and 1)ab,Bab(2) = 
O. 

The energy density Eg of the gravitational waves, 
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which causes the scale factor to deviate from RF, leads 
as a result to a perturbation of the matter density q(2)' 
This perturbation does not depend on the coordinates. 
The density of matter is the same at all points of 
space, but its law of variation with the time differs 
from the Friedmann law. The corrections Eg/ EF 
and q(2) increase as the singularities are approached. 
The term with the greatest divergence in q(2) has the 
asymptotic behavior 11-2 In 11 as 11 ~ 0 and is caused 
by the divergent mode <l'ab cos 311/ sin 11 in the perturba­
tions of the metric. For a special choice of the 
initial data, Qlab = 0, which corresponds to a particular 
choice of the phase of the gravitational waves, and Egi 
EF and all the corrections to the Friedmann solution 
remain small during the complete evolution right up 
to the singularity. Therefore, for Qlib == 0 the divergent 
terms in q(2) have the dependence 4 15 (31/3 m2 - 3r2)/ 
112 as 11 ~ O. The term C1(2) cos 11/sin2 11 has the same 
asymptotic dependence on the time. Choosing the con­
stant C1(2) appropriately, one can eliminate the di­
vergence in q(2)' The same is true of Xaa(2) in (20) 
subject to the additional condition <l'aa(2) = O. 

Similarly, one can eliminate the divergent terms in 
all the following approximations. This is proved in Sec. 
3 by the direct construction of a class of quasi-iso­
tropiC solutions that differ little from the Friedmann 
solution as 11 ~ O. 

3. QUASI-ISOTROPIC SOLUTION 

Note that the elimination of the divergent terms as 
11 ~ 0 requires the vanishing of the coefficients Qlab in 
all approximations, and this is equivalent to the as­
sumption that there are no (solenoidal) velocities of the 
matter. In this case, as we have noted above, the ma­
trix Yab can be reduced to diagonal form for all times 
at once, i.e., if the matrix is reduced to diagonal form 
at a particular time, it remains diagonal subsequently 
by virtue of Einstein's equations. Suppose 

We write the functions a, b, c, q in the form of series 
in even powers of 11 (because the perturbation of the 
metric and the density in the neighborhood of 11 == 0 
found in the previous section are expanded in even 
powers of 11): 

00 00 00 

b = ~ bn'1,n, C = 1:Cn'1", q = ~ q.'1'"' 
n=O 

(21) 

Substituting the expansions (21) into Eqs. (11) and (13) 
and comparing terms with equal powers of 17, we obtain 
a system of equations that relate the unknown coeffici­
ents. In the principal approximation (~11-2), 

'1,=0, (22) 

from which we see that (E - EF)/EF ~ 172 as 17 ~ O. 

With allowance for (22), Eq. (14) leads to the rela­
tions 

a,+b,+c,=const=A" q"+'/,(cn+b.+cn) =0 (n=1, 2, 3, ... ), 

The constant Ao must become zero if we require that 
the entropy density preserve its Friedmann value. 

Expressing qn in terms of an, bn, cn and substituting 
this relation into the expansions of the equations (13), 
we obtain a system of three algebraic equations for de­
termining an, bn , cn in each approximation in 172n. Each 
n-th term of the expansion can be expressed in terms 
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of a combination of the preceding terms by means of 
the equations 

4 (n'+n+'/,) an+ (2n+"I,) Un + (2n+'/3) c" 
=Fn1(an_l 1 "" ao; bn~h"" bo; en_\, ... , co), 

(2n+"/3) an +4 (n'+n+'/3) bn + (2n+'I,) en 
=Fn~ (a»_ 11 ... , ao; b'~-l' ... ,Oil; en-I! ••• , ell), 

(23) 

(2n+"I,) a" + (2n+"I,) b"+4 (n'+n+'/,) en 
=Fn 3 (a n _ I , ••• , all; Un-il"" U(J; en-h"', Co). 

The functions Fn can be reduced ultimately to combina­
tions of the initial data ao, bo, co. The determinant of 
the system (23) is nonzero for all n == 1, 2, .. , . Thus, 
there always exists a nontrivial solution of this sys­
tem provided that not all ao, bo, Co are equal to zero. 

There are recursion relations that enable one to ex­
press the coeffiCients an, bn, cn in terms of the fore­
going coefficients. We shall merely give as an example 
the explicit form of the first terms of the expansions: 

ql =1/3 (e-20a+e-21'o+e-2,'o) _1/6 (e ~(.!(lo-A,))+e~(~I'Q-'\n) +e~(:!r'I-A.,,)) -' /~, 

a, =' I ,-'I n (38e-'"''-10e-''"-10e-''''+2ge'(3''"''''''-1ge'I'""--''''-1\1e''' '"-'"') , 

The coefficients b1 and C1 are obtained from a1 by cyclic 
permutation of ao, bo, co. If the initial data satisfy the 
restrictions I ao I, I bo I, I Co I « 1, we obtain a solution 
that is nearly Friedmann as 11 ~ O. 

The energy density of the gravitational waves di­
verges as the Singularity is approached, although the 
relative contribution Egi E F tends to zero as 112 in the 
limit 17 ~ O. 

The region of applicability of the formal solution 
we have constructed is determined by the radius of 
convergence of the series (21). It is possible that there 
exist solutions which differ little from the Friedmann 
solution during the whole of the evolution between the 
singularities 17 = 0 and 11 = 1T. In this case, the dynami­
cal properties of the universe at all stages of the evolu­
tion are determined by the "ordinary" matter, and not 
by gravitational waves. 

Note that the class of quasi-isotropic solutions is 
distinguished by initial data that have measure zero in 
the set of all initial data for type G3 IX solutions. Never­
theless, according to the interesting arguments of 
Bogoyavlenskil and Novikovl8 ) quaSi-isotropic solutions 
are in a certain sense typical if one considers the 
evolution of solutions away from a singularity and not 
toward it. The quaSi-isotropic solution is particularly 
important in connection with allowance for a new 
physical effect- creation of particles in an anisotropic 
graVitational field. 121 ,22) 

4. GRAVITATIONAL WAVES IN VACUUM 

In the general case, the gravitational-wave correc­
tions and the energy density of the gravitational waves 
diverge near the singularity, ensuring the existence of 
the so-called vacuum stage, [19) when the gravitational 
influence of the ordinary matter is unimportant. We 
shall consider the limiting case when there is no 
ordinary matter at all, i.e., we consider the solution 
of the Einstein equations for the metric (1) in vacuum. 

The decomposition (3) leads to the following state­
ment of the problem. An harmonic of an external wave 
field (the gravitational field in the given case) is put 
into the isotropic universe (4) and the problem is to 
elucidate its behavior and find the gravitational influ­
ence it has on the evolution of the scale factor R(t). 
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This formulation of the problem in the case of other 
fields (scalar, electromagnetic) presupposes the con­
struction of a gravitational "source" in the form of the 
energy- momentum tensor of the corresponding field 
and, possibly, averaging of this source over the spatial 
coordinates in order to obtain quantities that depend 
only on the time, which is assumed by the symmetry 
properties of the metric (4). The equations of gravita­
tion then establish a connection between the Einstein 
tensor calculated in accordance with the metric (4) and 
the energy-momentum tensor of the corresponding 
field. The absence of sources is compatible only with 
the metric of a flat universe, R = const. 

In the gravitational case which we now consider, 
the concept of an energy-momentum tensor is absent, 
and we are therefore forced to construct a source by 
writing down the Einstein equations for the metric (1) 
in vacuum and decomposing them into two parts. On the 
left, we shall have the Einstein tensor for the metric 
(4); on the right, all the remaining terms, which appear 
as a source.5 ) The homogeneity of the metric (1) en­
sures that the effective energy and pressure densities 
depend solely on the time. 

As we have already noted above, in the vacuum case 
the matrix Yab can be made diagonal. We introduce the 
notation 

Then Einstein's equations can be written in the form 

!, (H'+1) = - { (a~+ci~+~¥) + ~2 e-'(·m1> . 

11. H' 2 {.. H 
Ii + 2 R' + R' = - a +R(4a+~+'()"+ci(a+~+y)" 

+ ~, e-'('H+Tl [e,a - (e,e-e'T) ' - e'(aH+1> 1 }"'" -f(e,-p,< .... )" 

(24) 

(25) 

(26) 

Two further equations can be obtained from the last 
equation by cyclic permutation of t~~ functions QI, {3{ y. 
These equations determine (Eg - Pg2 )/2 and (Eg _ Pg3))/ 
2. By' virtue Qf Einstein's equations, we must have Pg(l) 
~ Pg(2) = Pg~3) == Pg. A consequence of the above system 
IS tlle equatIOn 

6~ = -2{ (a+~+'(r' + 2~(a+~+'(r -(ci'+~'+i") }""'-(e,+3pg). 
R R . (27) 

If the function R is to be identical to the scale factor 
of the metric (4), QI, {3, and Y must be related by 

e'"+e'~+e"=3" (28). 

If Einstein's equations are satisfied, then Eg is equal 
to the essentially positive quantity on the left-fumd side 
of (25), and therefore Eg > O. As regards the pressure 
Pg, it can in general take values such that Eg + 3pg < O. 
This inequality is a necessary condition for the exist­
ence of a regular minimum of the function R(t), i.e., of 
an instant of time to at which simultaneously 

R>O, H=O, 11>0. (29) 

We shall show that a stable regular minimum at some 
time to is possible. 

By virtue of the constraint (28), we can assume that 
the model is described by three independent functions: 
R, QI, {3. At the initial time, we must specify the values 
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of the functions themselves and their derivatives and 
they must satisfy the relation (25), i.e., only five'quanti­
ties remain independent. If we specify (29) at the initial 
time, not more than two parameters remain independent. 
Suppose these are the initial values Qlo and {3o. The na­
ture of the connections between the initial data may be 
such that one cannot find any Qlo and f30 compatible with 
(29); a regular minimum is then absent. If the set of 
Qlo and f30 contains a region (which does not reduce to a 
point or line) of values compatible with (29), a regular 
minimum is pOSSible, and it is stable. 

Using (25), (28), and three equations of the type (26), 
we can reduce the question of the existence of a regu­
lar minimum to the question of the existence of solu­
tions for & and i3 in the following system of equations: 

. 1 
a'e2a+~'e'e+ci~[2(e'a+e'e)_31+ R' e- Z(,+" A,=O, 

a'e'a (3-e,e) +A'e" (3-e,a) +2ci"e,(aH) _ ~ e-'(aH) A (30) 
P P R' , 

where 

3 11. 
= "ZR(3-e,a-e,e) > 0; 

A, =9+4 (e'a+e'e+e"+'~-3e'a-3ez,), 
A,=3A,+12e'(·+M (3-e'"-e'e) " 

A fairly cumbersome investigation shows that for 
every a/R ~ 0 there exists an entire region of QI and {3 
values for which the system (30) can be solved. This 
region contains QI and {3 values satisfying the inequali­
ties 

A,>e,a (3-2e,a) +2e'~ (3-e'~), A,;;'O, 

but the region is not restricted to these values. The 
restrictions are satisfied, for example, by QI and {3 satis­
fying e2Q1 « 1, e2{3 « 1. Thus, the model allows the 
existence of a stable regular minimum of the scale fac­
tor R(t). 

Note that if the function R(t) were chosen propor­
tional to the cube root of the volume element constructed 
in accordance with (24), i.e., subject to the condition QI 

+ {3 + Y = 0, then, as readily follows from (27), a regu­
lar minimum of this scale factor would be impossible. 

The solutions of Einstein's equations in vacuum for 
a type G3 IX metric have been studied in detail in [6,11). 
The evolution of the solutions in the direction of the 
singularity is made up of successive periods (called 
eras) during which two of the three functions Y11, Y22, 
Y33 OSCillate, and the third decreases monotonically. 
On the transition to a new era, two other functions be­
gin to oscillate, and one of those that oscillated de­
creases. Each era is described by a sequence of succes­
sive "Kasner" epochs, and the transition from one 
epoch to the next is made in accordance with a definite 
rule. 

Using the ready solution and the representation 
(25)- (28), we can calculate R2, Eg, Pg and find the 
corresponding equation of state. It is curious that 
the critical times in the evolution of the solution such 
as, for example, the era transitions coincide with the 
critical times in the changing equation of state. A typi­
cal element of the solution is the Kasner epoch during 
which with high accuracy 

(31) 

where 
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u 
p, = - 1+u+u' ' 

1+u 
p,= 1+u+u' ' 

u(Hu) 
p, = 1+u+u' ; 

the constant u can lie in the range 1 :S U < "". 

The solution (31) is obtained by neglecting terms 
without derivatives on the left-hand sides of Eqs. (25) 
and (26). The transition to a new Kasner epoch is ac­
companied by a reduction of the parameter u by unity. 
At the end of each Kasner epoch (which corresponds to 
t - 0) we have approximately R2/4 ;:; t2Pl/3 and, calcu­
lating Eg and Pg, we find 

Thus, we always have Eg 2: 0 and Pg :S O. As u - "", 
the exponents Pl, P2, P3 tend to the set (0, 0, 1) char­
acteristic of a flat universe, and Eg and Pg vanish in 
this approximation. The value of u decreases on the 
transition to new Kasner epochs, and as a result the 
equation of state relating Pg to Eg also changes: 

p/E,=-'I, (u+l +l/u)-1. 

An era ends when u = 1, which corresponds to attain­
ment of the critical equation of state Pg + 3Eg = O. 

In conclusion, we note that the monotonic nature of 
the Taub solution[14] (two of the three functions /'11, /'22, 
/'33 are equal), as opposed to the oscillatory solutions 
in the general case of a type G3 IX metric, can be under­
stood on the basis of the fact that in the Taub universe 
the number of independent states of the gravitational 
waves is one less .6) As a result, there is a distin­
guished direction along which the waves do not prevent 
the monotonic collapse of the volume element. This 
can be seen particularly clearly by separating a back­
ground metric that admits the group G4• In this case, 
the Taub metric does not contain gravitational waves 
at all, whereas the general metric of type G3 IX ad.,. 
mits a standing gravitational wave along the distin­
guished direction. 

IlThe main results of this paper were reported at the Third Soviet 
Gravitational Conference [12] and at the 64-th Symposium of the 
International Astronomical Union [13]. 

2)For the explicit form of P ab see, for example, [18]. 
3)We are indebted to M. Oemyanskii for assistance in the analysis of this 

question. 
4)The prime denotes differentiation with respect to the time 1/. 
5)Oecompositions of this kind have frequently been studied, the first 

time by Einstein himself. Usually, they are considered in a scheme of 
successive approximations, although attemps have also been made to 
do this in an exact theory [23] (see also 125]). 

6)We recall Wheeler's [24] characterization of the Taub metric as a uni­
verse with a standing gravitational wave. 
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