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The question of the character of phase diagrams at the intersection of two second-order phase-transition 
lines is discussed. After an account of the results of the Landau theory, the question of the influence of the 
critical fluctuations is investigated for this case. The problem of the asymptotic symmetry of the 
Hamiltonian at the intersection point is solved by Wilson's method. A qualitative investigation of the 
renormalization-group equations makes it possible to describe the possible types of phase diagrams. The 
question of the intersection of the superfluid-transition line and the boundary of metastability of solutions 
of the helium isotopes is also considered. 

PACS numbers: 05.70.Fh, 67.20.Qc 

1. INTRODUCTION 

The temperature of a phase transition depends on 
different thermodynamic quantities: the pressure, mag­
netic field, concentrations, etc. Geometrically, we may 
imagine that the phase transition occurs on a surface in 
the multi-dimensional space of the thermodynamic vari­
ables. Cases in which such surfaces (lines), corre­
sponding to different phase transitions, intersect are 
possible. In the simplest case of two thermodynamic 
variables the intersection occurs at a point. For 
definiteness, in the following we shall speak of phase­
transition lines and their point of intersection. Inter­
sections of lines of first-order phase transitions had 
already been considered by Gibbs. Landau(l] considered 
the different cases of intersection of lines of phase 
transitions, in the case when at least one of them is a 
second-order transition. In this paper we shall be in­
terested in one of the cases considered by Landau-the 
intersection of two lines of second-order phase transi­
tions. The intersections of lines of ferromagnetic, anti­
ferromagnetic, ferroelectric and different structural 
transitions in solids can serve as examples. It will be 
shown that the fluctuation phenomena can substantially 
alter both the diagram of the state and the character of 
the critical phenomena. In the last section the closely­
related problem of the phase separation of a mixture of 
the helium isotopes is solved. 

2. INTERSECTION OF SECOND-ORDER 
TRANSITION LINES IN THE LANDAU THEORY 

Let rp and 1/1 be the order parameters associated 
with two second-order phase transitions. They may be 
many-component quantities. We shall denote the number 
of components of rp by n, and the number of components 
of 1/1 by m. In the vicinity of the point of intersection of 
the second-order phase-transition lines the thermody­
namic potential can be written in the form of the Landau 
expansion: 

CIl=CIl,+Sd'r{1/2c[ (vq»'+ (VI/l)']+r(<p'+I/l') +8 (q>'-I/l') (1) 
+'/ 2[A,q>'+A,I/l'+2A"q>'I/l']}. 

The number of fourth-order invariants in the Landau 
expansion may be large. For simplicity, in formula (1) 
we have written out the terms corresponding to maxi­
mum symmetry with respect to rotations of rp and 1/1 in 
the n- and m-dimensional spaces. The characteristic 
feature of the system in the vicinity of the point of inter­
section of the phase-transition lines is that in the ex­
pansion (1) there is a term >"12rp 21/12 describing the inter­
action between the order parameters rp and 1/1. 
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The quantities T and e are linear combinations of 
the thermodynamic variables, e.g., of the temperature 
and pressure. For T > lei we always have rp = 1/1 = O. 
The lines T = ± e (T > 0) are the second-order transi­
tion lines. Standard thermodynamic analysis of the ex­
pression (1) shows that the diagram of the states in the 
(T, e)-plane can be of two types, which are depicted in 
Fig. 1. In the case when the inequality >..f2 ~ >"1>"2 is 
fulfilled a diagram of the type I is realized. On the line 
T = + e (T > 0) a second-order transition to ,the phase 
rp = 0, J.ji "" 0 (the phase 1/1) occurs, on the line T = -e 
(T> 0) a second-order transition to the phase rp "" 0, 
1/1 = 0 (the phase rp) occurs, and on the line 

(l''f,-l'i,) 1:+ (l'~+l'i,) 6=0 

a first-order transition occurs between these phases. 

If A~2 < >"IA2, a diagram of the type II (Fig. 1b) is 
realized. On the lines 

(1.,-1.,,) 1:- (1.,,+1.,)6=0, (1.,-1.,,) 1:+ (1.,+1.,,)6=0 

second-order transitions to a phase with rp "" 1/1 "" 0 (the 
phase rp1/l) occur. 

3. INTERACTION OF THE FIELDS FAR FROM 
THE INTERSECTION POINT 

The interaction of the fields rp and 1/1 turns out to be 
important not only in the immediate vicinity of the inter­
section point. We shall consider, e.g., a small region 
about the line T + e = O. Near this line the field cp 
fluctuates strongly, and the fluctuations of the field 1/1 
can be neglected. The strong fluctuations of the field 
rp can lead to instability with respect to condensation 
in the field 1/1(2]. This means that in the vicinity of the 
line T + e = 0, where the fluctuations of rp are suffic­
iently strong, there is a line of first-order phase 
transitions. 

Insofar as the field 1/1 does not fluctuate, its effect on 
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the field cp can be taken into account by the replacement 
r + () - T + () + ;\121//. The singular part «I>s of the 
thermodynamic potential of the fluctuating field cp can 
be written in the form 

tIl .=-const·1 -r+e+l.u1jJ' I '-a/I.,. (2) 

In order to find the equilibrium value of I/! it is neces­
sary to minimize the thermodynamic potential «1>: 

1ll=1ll,(.+eH'121jJ') + (.-6)1jJ'+I.,1jJ'. (3 ) 

To clarify the physical cause of the instability, we shall 
estimate the effective coefficient A2 of 1/!4. This coef­
ficient is equal to 

1 d'lll. I I.,,' '\,=1.,+---,-, =I.,---C.(.+e), 
2 d(1jJ) .~. I., (4) 

where Cs is the anomalous part of the speCific heat. It 
can be seen from formula (4) that the coupling with the 
fluctuating field cp leads to an effecti ve attraction for 
the field I/! .. 

Investigation of the thermodynamic potential (3) 
gives the following conditions for the existence of a 
nonzero I/!: 

A12'/A,A,>A, A-1. 

In deriving this criterion we have assumed that a is 
small. 

(5) 

The conditions for the applicability of the theory de­
scribed are considered in detail in(21 by one of the 
authors. They have the form 

(6) 

It can be seen that the conditions (5) and (6) do not 
contradict each other. It also follows from the inequali­
ties (6) that the instability occurs only on a limited por­
tion of the line T + (J = 0. 

On decrease of the quantity T + (J < 0, the system 
again falls into the region of applicability of the Landau 
theory. In this region the phase I/! = 0, cp '" ° is realized. 
Therefore, there exists a second line of first-order 
phase transitions, delimiting the region cp = 0, I/! '" 0. A 
characteristic feature of the transition described is the 
sharp increase of the susceptibility with respect to cp 
before the first-order transition with respect to I/!. 

4. INTERACTION OF THE FIELDS AT THE 
INTERSECTION POINT 

At the intersection point «() = 0, T = 0), both fields, 
cp and I/!, fluctuate strongly. To construct a theory of 
such fluctuations we shall use Wilson's E-expansion 
method(31. We first conSider the problem of the de­
termination of the four-point amplitudes in four-dimen­
sional space. The equations for these amplitudes have 
the form 

-A,=4(n+8)A,'+4mA,,', A, (0) =A" 
-A,=4(m+8)A,'+4nA,,', A,(O)=A" (7) 
-Ji."=4A,,[ (n+2)A,+(m+2)A,+4A,,], A,,(O) =1.". 

Here the dot denotes differentiation with respect to the 
logarithmic variable ~ = -In (maxh, (J, k2}); AI, A2 
and A12 are the renormalized values of the interaction 
amplitudes 1l • 

Equations (7) are homogeneous. It is therefore con­
venient to change, e.g., to the variables A 2 = Al Z, A12 
= AID. Then, for various nand m, we obtain different 
but topologically equivalent pictures of the phase planes. 
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Such a picture is depicted schematically in Fig. 2. 
There are fi ve special points. The points 1 and 2 are 
unstable centers, corresponding to AI"" 0, A2 = 0, Al2 
= ° and Al = 0, A2 "" 0, A12 = 0, i.e., corresponding to 
the symmetries SO( n) and SO( m), respectively. The 
central point 3 is the stable center. The pOints 4 and 5 
are saddle pOints. All trajectories that start inside the 
region bounded by the separatrices (1; 4), (1; 5), (2; 4) 
and (2; 5) terminate at the center 3. 

All trajectories starting outside this region move 
away to infinity. In these conditions the stability condi­
tions are violated and a first-order phase transition 
occurs. Depending on the values of n and m, the points 
3,4 and 5 correspond to different symmetries. For 
n + m < 4 the point 3 corresponds to the full symmetry 
SO(n + m) (AI = A2 = Ad, the point 4 corresponds to 
decoupling of the fields, i.e., to SO(n) E!3 SO(m) (A12 = 0, 
(n + 8)Al = (m + 8)A2), and the point 5 does not corre­
spond to any symmetry higher than the symmetry 
SO( n) x SO( m) of the initial Hamiltonian. The separa­
trix 4-3-5 is determined for n = m by the equality Al 
= A2, i.e., corresponds to tetragonal symmetry. The 
separatrlx joining the pOints 1 and 2 and passing 
through the point with symmetry SO(n) E!3 SO( m) corre­
sponds to vanishing of the cross-vertex A12' On in­
crease of nand m the topological structure of the 
phase plane remains as before, but, from the point of 
view of the symmetry, the points 3, 4 and 5 change 
places. For definiteness, as before we shall denote the 
stable center by the number 3 and the left and right 
saddle points by the -numbers 4 and 5 respectively. Then, 
for n + m > 4, the point 5 corresponds to the full sym­
metry SO( m + n). The possible symmetries of the 
center 3 for n + m ~ 4 are as follows (m !S n); for 
m = 1 and n < 10, for m = 2 and n < 7, for m = 3 and 
n < 6, and for n < 4, the lowest possible symmetry is 
realized-the symmetry SO{ n) x SO( m); for all other 
values of nand m (m!S n) the point 3 possesses the 
symmetry SO( n) E!3 SO( m) (A12 = 0, (n + 8 )Al = (m 
+ 8)A2). 

The example considered illustrates a general feature 
arising in the fluctuation theory of phase transitions: 
the asymptotic symmetry arising on a phase-transition 
line can turn out to be higher than the symmetry of the 
initial system. The scale invariance of the fluctuations 
is, in any case, such a symmetry. As can be seen from, 
in particular, the example conSidered, on a phase­
transition line the appearance of new rotational sym­
metries, not possessed by the initial system, is possi­
ble. The first example of an asymptotic rotational sym­
metry was considered by Wilson and Fisher(31. 

5. POSSIBLE TYPES OF STATE DIAGRAMS 

The form of the state diagram is determined by the 
following principal factors: 

1. The existence of narrow regions ("ears") 
bounded by two first-order transition lines (cf. Sec. 3). 
A necessary condition for the existence of ears is that 
the inequality (5) be fulfilled. To simplify the situation 
we shall assume that the constant A appearing in it is 
equal to unity. The condition for the existence of an ear 
near the phase transition to the phase cp has the form 
;\12 > ;\~/;\l' and near a transition to the phase I/! has the 
same form but with interchange of the indices 1 and 2. 
In these inequalities we have also put the corresponding 
constant equal to unity. 
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, 2. The form of the state diagram for large negative 
values of T. This is determined by the sign of the in­
equality ~~ ~ ~1~2 (cf. Sec. 2). 

3. The form of the phase diagram is also determined 
by the positions of the bare values ~h ~2 and ~12 in the 
phase plane (Fig. 2). If they lie in the region bounded 
by the separatrices 1-4, 2-4, 1-5 and 2-5, an intersec­
tion of second-order phase-transition curves occurs. 
But if they lie outside this region, a first-order transi­
tion occurs for values of T still not equal to zero. 

Figure 3 depicts half of the phase plane for the case 
n = m = 1. As the variables we have chosen x = (AI 
- A2)/ (AI + A2), y = A12/ (AI + A2). The regions of in­
stability (AI < 0 and Al2 < 0, A f2 > AlA 2) are shaded. 
The dashed-dotted curve is determined by the equation 
Af2 = AIA2 (A12 > 0). The dashed lines are determined by 
the equations Al2 = A~Ail and Al2 = AfA-I. The separa­
trices are plotted as thick solid lines. The thin solid 
line is the integral curve intersecting the y-axis at a 
right angle. All the integral curves lying above this 
curve necessarily intersect the dashed-dotted line 
Af2 = AIA2. The lines enumerated are the boundaries of 
the regions A, B, C. D, E, F, G and H, as indicated in 
Fig. 3. The state diagrams shown in Fig. 4 correspond 
to bare values ~I, ~2 and ~12 represented by points in 
one of these regions. 

We shall clarify how the line of first-order phase 
transitions arises in the diagram F. The corresponding 
integral curve starts in the region F of the phase plane, 
intersects the dashed-dotted line and falls through the 
regions E and 0 into the stable center. On further de­
crease of T the point representing the system moves 
along the same integral curve in the opposite direction. 
So long as this point is situated in the regions D and E, 
the inequality Af2 > AIA2, corresponding to the phase 
diagram I in Fig. 1, is fulfilled. On further decrease of 
T the representative point intersects the dashed-dotted 
line and the inequality changes sign; this corresponds 
to the diagram II in Fig. 1. The final form of the dia­
gram is depicted in Fig. 4. 

If the initial value corresponds to a point in the 
region H, the integral curve intersects the stability 
boundary while T is still > O. A first-order phase 
transition to the phase cp l/J occurs. The phase diagram 
H for this case is shown in Fig. 4. 

Using analogous arguments we can obtain all the 
other diagrams of Fig. 4. When n + m 2: 4, the sym­
metric point through which the dashed-dotted and 
dashed lines pass becomes a saddle point. In this case, 
regions corresponding to the diagrams A, B, C, G and 
H in Fig. 4 exist, the diagrams D and F are absent, 

FIG. 2 FIG. 3 
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and in place of the diagram E' there arises the new dia­
gram depicted in Fig. 5. 

6. CURVE OF CRITICAL POINTS IN A 
SUPERFLUID SOLUTION 

The phase diagram of a solution of the helium iso­
topes shows that, within the experimental errors, the 
line of ~ -transitions passes through the vertex of the 
phase-separation curve[51. One of the possible explana­
tions of this fact is that this point is a tricritical 
point[61, i.e., the cpefficients of l/J2 and l/J4 in the Landau 
expansion vanish at this point. For a more detailed in­
vestigation of this possibility we shall assume that 
phase separation of a mixture of He3 and He 4 would 
also occur in the absence of the superfluid condensate, 
on lowering of the temperature. That such an assump­
tion is realistic is indicated by the phase diagram of a 
mixture of solid helium isotopes[5). It can be seen from 
this phase diagram that a mixture of solid isotopes 
separates and has a critical phase-separation point. 

We shall consider this possibility in the framework 
of the Landau theory. The thermodynamic potential n 
is a function of the temperature T, chemical potential 
jJ., concentration c and pressure p, and can be written 
in the form 

(8) 

The subscripts sand n correspond to the superfluid 
and normal phases. In particular, the potential On de­
scribes the phase separation in the absence of the super­
fluid condensate. In accordance with the experimental 
Situation, it is assumed that phase separation sets in as 
the temperature is lowered. 

Eliminating l/J by means of the equilibrium equation 
80 s /8 l/J = 0, we obtain the thermodynamic potential of 
the superfluid phase in the form 

Q,=Qn-"(C, p)/4'i.. (9 ) 

The boundary of the region of stability of the solution is 
described by the equations 80/ac = 0, a'o/ae' = O. USing 
the expression (9), we obtain the equation of the bound­
ary of stability for the superfluid phase: 

il'Q, = __ 1_(~)' + c9'Qn =0 
c9c' 2'i. c9c c9c' . 

(10) 

Since the phase separation sets in on lowering of the 
temperature, for a fixed concentration the pOints at 
which 820/8 c2 > 0 correspond to higher temperatures 
than the corresponding pOints on the stability boundary 
(a20/8c2 = 0) of the normal phase. In particular, this 
means that the stability boundary (10) of the superfluid 
phase lies higher in temperature than the stability 
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boundary of the normal phase. At different pressures 
the line of ~ -transitions intersects the phase-separa­
tion curve of the normal phase or the stability boundary 
of the superfluid phase at different pOints. The possible 
types of phase diagram are depicted in Fig. 6. In this 
figure the phase-separation curves are plotted by solid 
lines and the curves of absolute instability of the super­
fluid phase by dashed-dotted lines. The equilibrium 
curves of the normal phase are plotted by a thin dashed 
line. The lines of ~ -transitions are plotted by a thick 
dashed line. In the case depicted in Fig. 6a, the line of 
~-transitions intersects the phase-separation curve of 
the normal phase before the dashed-dotted line does. 
This leads to phase separation into superfluid and nor­
mal phases. The phase-separation curves at tempera­
tures below the temperature of the point of intersection 
are slightly distorted. 

Another simple possibility is realized if the curve 
of ~-transitions passes above the critical phase­
separation point in the superfluid phase (the point K'). 
In this case, phase-separation into two superfluid 
phases occurs near K'. On lowering the temperature 
the line of ~ -transitions may not intersect the phase­
separation curve (Fig. 6e). In the case when such an 
intersection does occur, the solution separates into a 
superfluid and a normal phase at a temperature below 
the intersection point. 

Figures 6b, 6c and 6d correspond to the case when 
the ~-transition line intersects the stability boundary 
of the superfluid solution (the point Tp). On further 
lowering of the temperature, phase separation into 
superfluid and normal phases occurs. At the point T p 
the concentrations of the separating components are 
equal. The phase-separation curves Cl( T) and cz( T) 
are determined by the equalities 

Q. (c.) =Q. (c,), (~) =(~) =0 
iic ,~" iic ,~" . 

Assuming Cl and Cz to be close, Eqs. (11) can be 
rewritten in the form 

(11) 

1 i) 2Q. ,1, 
2"""Dc'(c.-c,) - ~ t" =0, (12) 

ii2Q. (C.-C2) __ 1_ (!.2.-) t"=0. 
ilc 2 21. ac 

The condition for the compatibility of Eqs. (12) has the 
form 

ii'Q. =_1 (~)2 
Oc' 21. Oc 

(13) 

Comparing the expression obtained with formula (10), 
we can convince ourselves that the point Tp belongs to 
the stability boundary of the superfluid solution. Using 
the equalities (12) and (13), we obtain T(Cz) '" 00 This 
means that the curve cz( T) and the ~-transition line 
have a common tangent at the point Tp. In order to ob­
tain the curve c l( T), it is necessary to keep terms of 
third order in Cl - Cz. Thus, the superfluid transition 
greatly changes the phase diagram. In a broad range of 
pressures, a diagram is realized in which the vertex of 
the phase-separation curve (the point Tp) lies on the 
~ -transition line. 
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Elementary calculations show that the pOints T pare 
tricritical in the conventional sense, i.e., in the sense 
that the coefficients of 1/l and 1// in the Landau Hamil­
tonian vanish at these points. From general arguments 
it is difficult to say anything definite about the curve 
T p( c) of tricritical pOints corresponding to different 
pressures. The assumption that a mixture of helium 
isotopes can also undergo phase separation without the 
superfluid condensate enables us to assert that the 
curve T p( c) has a maximum of the point K'. There­
fore, in addition to diagrams with tricritical points, 
other types of phase diagram are possible. From the 
point of view of comparison with experiment, the dia­
gram of Fig. 6e is of special interest 0 In this case the 
right-hand part of the phase-separation curve does not 
have a common tangent with the ~-transition line, and 
the vertex of the phase-separation curve is smooth, 
without the discontinuity that is characteristic for a 
tricritical point. Observation of phase separation into 
two superfluid phases would serve as a proof of the 
existence of a diagram of the type in Fig. 6e. 

I) Similar equations for the particular case n = I have been investigated 
in [4] by Nelson, Kosterlitz and Fisher. 

1 L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 627 (1937) 
[English translation in "Collected Works of L. D. 
Landau", Gordon and Breach, N. Y., 1965). 

zl, F. Lyuksyutov, Phys. Lett. (in press). 
3 K. G. Wilson, Phys. Rev. Lett. 28,548 (1972); K. G. 
Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 
(1972 ). 

4D. R. Nelson, J. M. Kosterlitz and M. E. Fisher, Phys. 
Rev. Lett. 33, 813 (1974). 

5B. N. Esel'son, V. N. Grigor'ev, V. G. Ivantsov, E. Ya. 
Rudavskii, D. G. Sanikidze and I. A. Serbin, Rastvory 
kvantovykh zhidkostei He3_He 4 (Solutions of He 3_He 4 

Quantum Liquids), Nauka, M., (1973). 
6 R. B. Griffiths, Phys. Rev. Lett. 24,715 (1970); E. K. 
Riedel and F. Wegner, Phys. Rev. Lett. 29,349 (1972). 

Translated by P. J. Shepherd 
194 

I. F. Lyuksyutov et al. 926 


