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A model of d(f) metals with localized levels immersed in the conduction band is considered. When the 
transition energy n between the configurations d n +1 and d n is close to the Fermi energy IJ., the metal 
becomes unstable with respect to formation of bound states between the conduction electrons and d(f) 
ions. As a result, a gap 2~m appears in the conduction band, and the density of states at the edge of the 
gap is much greater than the initial density. Consequently, Cooper pairing under such conditions may 
result in superconductivity with a high transition temperature T,. The conditions on the electron spectrum 
parameters are obtained and the region of interaction constants Am and A, is found for which the gap ~m and 
the superconducting gap ~, can exist simultaneously. 

PACS numbers: 74.1O.+v 

1. A characteristic feature of transition d- and rare­
earth f-metals and their' compounds is the presence in 
their energy spectra of localized atomic-like levels of 
d(f)-electrons; for example, the pseudopotential of a 
transition metal differs from the pseudopotential of an 
alkali metal by a term which describes the resonance 
scattering of the conduction electrons by the localized 
level.[l] If the localized level (or very narrow band) 
overlaps the conduction band, then their hybridization 
(mixing of states) takes place and the density of states 
in the hybridized bands increases materially close to 
the level in comparison with the density of states in the 
trapped conduction band go. We emphasize that the hy­
bridization is due to the action of the crystalline field 
and is a single-particle effect, which is taken into ac­
count in the traditional band scheme. 

The scattering of conduction electrons by the level 
can be regarded as a reaction with a "compound atom" 
stage: 

c+d(n) ..... d·(n+1) ..... c'+d'(n), 

when the d-ion with a ground n-electron configuration 
and energy En absorbs a conduction electron (c-elec­
tron), transforming into an (n + 1) electron state with 
energy En+ b and then again emits the c-electron, re­
turning to the n electron state. As is shown in[2,3], if 
the energy of the transition n '" En+ 1 '" En is suffici­
ently close to the Fermi energy J.J., additional hybridi­
zation of the c- and d-states takes place, due to their 
intra-atomic interaction; in contrast to the usual hy­
bridization (direct mixing), this is known as dynamic 
mixing. The metallic state for J.J. ~ n turns out to be 
unstable relati ve to the formation of bound states of the 
conduction electron with the d-ion, and at a temperature 
T '" Tm it undergoes a phase transition into the "super­
mixed" statep] which is characterized by the order 
parameter < CfXf2), where cf is the creation operator 
of the conduction electron at the node f of the crystal 
lattice, and xf2 is the Hubbard operator, which de­
scribes the transition of the d-ion from the (n + 1) elec­
tron configuration to the n electron configuration. 

For T < T m, the dispersion law of the quasiparticles 
in the nonmagnetic case is[2] 

(1 ) 
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where €k is the energy of the conduction electron and 
A is the self-consistent parameter of dynamic mixing: 

(2) 

Here V m is the potential of the screened intra-atomic 
Coulomb interaction of c- and d-electrons, no is the 
relative number of nodes occupied by ions with the 
n - electron configuration and the mean < c +X) does not 
depend on the number of nodes. Since the dynamic mix­
ing has a resonance character in the range J.J. ~ n, the 
contribution of the crystalline field to the quantity A 
(single-particle hybridizations) can be neglected. The 
spectrum (1) determines two subbands: E+(k) and 
E_ (k), separated by a forbidden band wi!,h a minimum 
(indirect forbidden band) Eg "" 2~m '" 2A2/W: which is 
much less than the value of 2A-the direct forbidden 
band (W is the halfwidth of the conduction band). 

Depending on the location of the Fermi level, the 
supermixed state will either be a dielectric or a state 
of the type "reduced metal,,[4] with a reduced number 
of carriers. 1n both cases, the denSity of states ill:" 
creases at the edge of the gap (in the integral ~2A), 
and, as is shown in[3), 

11 
g(E) -go In iQ-lli . 

The state of the system with ~ m « A can turn out 
to be unstable relative to the Cooper pairing, and the 
energy of coupling of the Cooper band can be much 
greater than in the initial metal, because of the high 
density of states. 

A similar situation was considered in[5,6], where the 
electron-hole pairing leads to a transition metal-die­
lectric with twice the period of the lattice and formation 
of a dielectric gap. Similar to our case, the density of 
states on the edges of the gap increases, which leads to 
an increase in the binding energy of the Cooper pair and 
elevation of the temperature of the superconducting 
transition Ts. 

The effect of ordinary hybridization-direct mixing­
on the superconducti vity was studied in [7,8], where it 
was shown that, depending on the relation of the con­
stants of hybridization, intra-atomic interaction and 
interband interaction, the presence of an unfilled level 
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near the Fermi surface can lead both to an increase 
and to a decrease in the effective binding constant and, 
consequently, in Ts ' 

In the present paper, we study the superconducti vity 
in the simplest mixing modelp] in which the c-electrons 
fill a simple, nondegenerate s-band, and localized states 
of the d(f)-ions appear: I a) - n electron configuration 
with spin S = Y2, its projection a and energy En, I 2 ) 
- (n + 1) electron configuration with spin S = 0 and 
energy En+l. The level En is assumed to be degenerate 
in a (for the magnetic case En! '" Enl, the dynamic 
mixing was considered in[3]). We shall assume the con­
duction band to be filled arbitrarily, so that the chemical 
potential /J. can take on different values, The condition 
of the closeness of nand /J. is 

IQ-I1I';;l1exP {-l/Vmgo}. 

Depending on the quantity ~W = V mgO, this difference 
can vary from 10 to 103°K,l ] so that this limitation on 
/J. is not very severe. 

2. We consider the set of collectivized and localized 
electrons, described by the Hamiltonian 

"a 

<leo~ LSkCka+Cka+oo 1:X,22, 
ka 

deij= 1: Vklk~C::tC-+kl~C-kl~Cklt· 
klka 

(3 ) 

Here cka' cka are the creation and annihilation opera­
tors of the c-electrons with quasimomentum k and spin 
a, .xrpq == I p ) ( q I are the Hubbard operators (p, q = a, 

2), Ek = Ek - /J., w = n - /J., l1(a) = ±1 for a = ±Y2. The 
Hamiltonian yto describes the set of noninteracting col­
lectivized and localized electrons, ytmix their dynamic 
mixing with the self-consistent potential Af(k) 

= N- 1/ 2 e -ik . fA and yts describes the interaction be­
tween the c-electrons leading to the superconductivity, 
while Vk 1k2 is the ordinary potential of the BCS attrac­
tion model, and is equal to -V s in the layer 2wD 
around the Fermi surface. 

We introduce the following anticommutator equal­
time Green's function: 

«CPI I CPI +», «X,I'I CpI +», «C_PI + I CPI +», 
«X,'I I CPI +», 

the set of equations for the Fourier transforms of which 
is obtained in the following fashion:[9] 

(E-sp) «cPI Iepl +» .. -1: A,(p) «X,I'IcPI +» .. +d (p) «c::PI I CPI t»,,~l, 
, 

(E-oo) «X,"lcPI +»E- (l-n+) EA,' (k) «Ckl Iepl +» .. ~o, 
• 

(E+sp) «c~PlIcPI +»,,-1: A,' (-p) «Xr'1 iepI +»,,+d' (p) «cPI ICPI +»E~O, 
, 

Here 

< .. .> 
Sp( ... e-JCrr ) 

Sp e-·I(/T 
(5 ) 

In the nonmagnetic case n. = n_ = Y2nO. Assuming !l. (P) 
to be a real quantity, we find the solution of (4): 
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E+sp-JI'/(E+oo) + I +" d(p) 
«CP! ICp! +»E Dp(E) «c_'1 c.! 11,,= - D.(E) , 

where 

A,'(p) (1-no/2) E+s.-JI'/(E+oo) 
«X,·'lcp!+»" 

E-oo Dp(E) 

«X'!I +» ~ -A,(-p) (l-nol2) Mp) 
, CPI E E+oo Dp(E) (6) 

Dp(E)= E'~OO' {[ (E-sp) (E-oo)-JI'][ (E+sp) (E+oo) -JI')-d'(p) (E'-oo')}. 

(7) 
The functions (6) still do not give complete information 
on the system; for calculation of averages of the type 
( X aa ) and < X22 ), we must know the functions 

«x,a'IX,'a», «ck._aIX"a», «c~kaIX,'a», «X"·-aIX,,a», 

which are easily found from the set of equations similar 
to the set (4): 

12 'I _t-no/2 '\"1 ,l'(l-nol2) E+sp-JI'/(E+oo) 
«X, IX, »" - E-oo +.t.... (E-oo)' Dp(E) , 

p 

A,(p) (1-no/2) E+sp-JI'/(E+oo) 
«cPIIX,'I»" ~ E-oo Dp(E) , 

«.+ IX'I» ~ -A,(p) (1-nol2) d(p) 
C_'I 'E . E-oo Dp(E) , 

«X"IX'I» ~_ '\"1 JI'(1- no/2) d(p) . 
, 'E .t.... E'-oo' Dp(E) 

(8) 
p 

The expression for Dp(E) is conveniently written in the 
form 

Dp(E) ~ _l_{[E'_E+'(p) I [E'-E_'(p) )-d' (p) (E'-oo')}, 
E'l_<oZ 

where E±(P) are determined by Eq, (0. The excitation 
spectrum is determined from the equation Dp(E) = 0: 

E,'.,(p) ~'/, {E+' (p) +E_' (p) +d' (p) ±[ (E/ (p) -E_'(p»' 

+6. '(p) (d' (p) +2 (E/ (p) +E_' (p» -400') P}. (9) 

In the limiting case !l.(p) - 0, the spectrum (9) goes 
over into (1) and, as A - 0, w - 0, we get the usual 
form of the dispersion law in a superconductor, 

3. We find the averages of interest to us with the 
help of the spectral theorem: 

<C +c > ~~__ 1 {Sp(E/(P)-oo')+ooJI' th E,(p) 
PI PI 2 E.'(p)-E,"(p) 2E.(p) 2T 

Sp(E,'(p)-oo')+ooJI' h E,(P)} 
2E,(p) ·t ----zr ' 

C +( + > ~ d(p) {E.,(P)-oo' th E.(p) 
< PI --pI E.' (p)-E,'(p) 2E.(p) 2T 

_ E,'(p)-oo'th E,(P)} 
2E,(p) 2T' 

-A,' (p) {E/(P) +oosp-JI' th E. (p) 

E.'(p) -Ez' (p) 2E. (p) 2T 

E,'(p)+ooSp-JI' th E,(P)}. 
2E,(p) 2T 

(10) 

(11) 

(12) 

The expressions for the averages < Xf3) = (xf~2) and 
(Xraa ) = (Xfa2 X{a) are found in a similar way from (8). 
The explicit values of these averages is not given be­
cause of their cumbersome nature. 

Using the definitions (2) and (5) and the relations (11). 
and (12), we find the self-consistent equations for A 
and the superconducting gap !l.s (for SimpliCity, we con­
sider a rectangular conduction band with the level /J.o 
= 0 set at the middle of the band): 

E. V. Kuz'min and S. G. Ovchinnikov 859 



_ E,'(s)-w' th E,(s) } 
E,(s) 2T' 

(13 ) 

1 1 J ds {Et'(S) +Uls-A' E, (s) 
'Am =2 Et'(s)-E,'(s) E,(s) thzr-

-w 

_ E,'(s)+ws-A' th E,(s)}. 
E. (s) 2T 

(14) 

Here As = VsgO and Am = VmgO. The equation for the 
chemical potential has the form 

ka 

where n is the given electron concentration. In an 
alloyed metal, or in an intermetallic compound with a 
complicated unit cell, the quantity n may not be an in­
teger. Correspondingly, the Fermi level will lie not at 
the middle of the conduction band: iJ. = iJ.o - OiJ. = -OiJ.. 

Equations (13), (14) and (15) form a system from 
which the order parameters as, A and the chemical 
potential iJ. can be obtained in principle as a function of 
the interaction constants As, Am and the temperature 
T. The existence of common solutions with nonzero 
a s and A would mean a superconducting state of the 
system with dynamic mixing. 

4. We now determine under what conditions, imposed 
on the parameters An, AS, w, WD and 0iJ.' does a non­
trivial solution for as appear. In this case, we set as 
= +0 in Eqs. (13), (14). For OiJ. < 2am and W = 0 we 
find from Eq. (13) 

UlD { 1} A=-exp -- . 
2 'A. 

(16) 

Equation (14) takes the form 

~""arsh~+ A' 1 {arsh __ A __ +arsh __ A __ } (17) 
'An. 2A A'+'1,8Il' 2 2~",-151l 2~m+l5ll· 

As OiJ. - 0, (17) takes on the solution obtained earlier 
in[2]: 

A.= W exp { __ l }. 
2 2"m 

Comparing (16) and (18), we see that in the limit OiJ. 
- 0, the condition 

1 WD 1 
sh-=-sh-, 

'A. W 2'Am 

(18) 

(19 ) 

is necessary for the compatibility of the system; for 
finite Am, this relation is satisfied only for finite AS 
Le., there is a threshold in the interaction constant. 
The condition (19) means the necessity of a strong at­
traction for the formation of Cooper pairs, when the 
chemical potential lies within the gap 2am. The condi­
tion (19) can be satisfied also for Am - 0 and As - 0, 
which means the identity of the temperatures Tm and 
Ts. We shall not consider this case. 

In the other limit 2a m - oiJ. « 2am, Eq. (17) has 
the form 

1 W 1 A 
- = arsh- + - arsh---. 
'Am 2A 2 2t.m-lill 

(20) 

Substituting (16) in (20) we find the desired condition on 
the parameters 
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~= arsh~+~arsh (WD eXP{-l/'A.}) 
'Am 2A 2 2 2t.m-151l ' 

(21) 

which is satisfied for finite Am for as weak an attrac­
tion as is suitable. The condition (21) illustrates the 
fact that as OiJ. - 2 ~ m, the Fermi level falls into the 
energy range with a high density of states. It is natural 
to expect that the temperature of the superconducting 
transition Ts will in this case be much greater than the 
temperature Tso-the critical temperature of the super­
conductor in the absence of mixing. 

5. To obtain Ts , we set as = +0 in Eqs. (13), (14): 

l"D ds 1 __ _ 

To = S (sHIl) (s'+4A')'/' 4 { [sHIlH s'+4iI'] 

X. th 1'~+s+61l +['H -l"'+4A']th r""f+4X'-s-61l} 
4T. ~ Il b 4T.' 

1 j ds 1 {E/(s) -A' l's'+4A'+sHIl 
'Am =_w (sHIl) (S'+4A') 'I. 4 E+(s) th 4T. 

E_'(S)-A' 1'~2-S-61l} 
+ £_(s) th 4T,· 

(22) 

Equations (22) are written for the case W = 0 under 
the assumption that Tm> Ts; then am differs from 
zero for T = T s. Moreover, we shall assume that the 
chemical potential iJ. = -oiJ. is the specified parameter 
and not the concrete specification of the electrons n. 

The set of Eqs. (22) was solved by means of a high­
speed computer. As the calculations show, there exists 
a three-dimensional region G in the space of the parame­
ters AO, Am, OiJ. inside which the system is compatible. 
For the intersections of G with the planes OiJ. = const, 
the character of the phase transition on the boundary 
curve will be different for different OiJ.: for oiJ. = 0, it 
is a first order transition (see (19)), for oiJ. = 2am, a 
second order (see (20)), and for /jiJ. < 2am, first order 
close to a second order transition (intermediate case). 
Figure 1 shows the section of the region G with 15iJ. 
< 2~m for which Ts/TsO reaches a maximum (see 
Fig. 2); here a maximum of Ts/Tso on the plane AS, 
Am is achieved on the line AL (TsO is determined 
from (22) for A = 0 and coincides with the BCS formula 
only for /jiJ. = 0). It should be noted that for /jiJ. = 0, the 
existence of compatible solutions is accidental in this 
sense that there is only one line (see (19)) on the plane 
AS, Am while for oiJ. ~ 0, there is an entire region. 

Some of the solutions of the system for different 
As, Am, and oiJ. are given in the table, from which it is 
seen that the maximal ratio Ts/TsO is greater than 40 
and the maximal T s is equal to 30oK. The considered 
region of values of the constants AS and Am is entirely 
real, Since, for example, for superconductors, AS lies 
in the interval 0.18 (Zn, AI) to 0.39 (Pb),(lO] while the 
mixing constant Am, according to[2], is in the range 0.1 
Am < 0.2. 

All the obtained solutions of Ts /TsO have sharp 
maxima in the parameter (2~m - oiJ.)/2amO for 2am 
- /jiJ. < 0 (Fig. 2). This result shows that the maximum 
amplification of Ts/TsO takes place when the Fermi 
level lies in the range of forbidden values of energy with 
an increased density of states. Upon further increase 
of /jiJ., the Fermi level gets into a region far from w, 
where the mixing no longer adds to the density of states. 

The condition of applicability of Eqs. (22) Ts < Tm 
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FIG. 2 

FIG. 1. Region of points (As' Am) (shaded) allowing compatible 
solution of the set of equations (22) for wD/W = 0.03. 

FIG. 2. Dependence of Ts/TsO on (2Llm - /)p.)/2LlmO for As = 0.331, 
Am = 0.153 and wD/W = 0.03. . 

Some solutions of the set of equations (22) for the points (As, Am) 
lying on the curve AB 

Sf'. K T,O.K IT,. KIA. K 

0.204 0.i16 0.2 0.06 2 0.44 25 
0.232 0.122 1.1 1.2 3 2.3 2.5 
0.257 0.132 0.9 1.5 5.7 3.5 3.8 
0.264 0.134 0.2 0.21 6.5 4 30.9 
0.331 0.153 0.15 0.4 16.5 2.6 41.2 
0.331 0.153 0.2 0.7 16.5 2.6 23.6 
0.398 0.166 10 4 24 10 6 
0.403 0.168 13.5 12 22 6 1.8 
0.438 0.173 13.9 6 30 8 5 
0.444 0.173 13.5 4 30 15 7.5 

is satisfied for all the solutions obtained: thus, if we 
"come down" from the high temperature region, then a 
succession of transitions takes place: metal- "reduced 
metal" -superconductor. 

6. We have assumed the level to be infinitesimally 
narrow; if it diffuses into a narrow band of width r, 
then, so long as r < 2Llm, nothing changes qualitatively; 
only the indirect forbidden band narrows (in the case of 
identical signs of the effective masses of the broad and 
narrow bands in the region of their overlap). Even for 
r > 2Llm the basic conclusion on the increase in 
Ts /TsO remains in force, since the peak in the density 
of states remains, although the indirect forbidden band 
vanishes. 

We also note that the increase in Ts/TsO will take 
place in the case in which the mixing will not be dy­
namic (many-particle), but the usual Single-particle 
hybridization. [7] 

The considered model applies to compounds of transi­
tion or rare-earth metals, in which the localized level 
lies near the Fermi level. The necessary closeness can 
be achieved by alloying. Evidently such a situation 
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exists in the layered compoun"s MexMoSa,Pl] where 
Me is an alkali metal. For x .. 0.3-0.4, the value of 
Ts increases to 6.3°K from 1.7°K in pure MoSa. 

In addition, our model can poasibly be applicable to 
inter metallic components with a complicated unit cell, 
for example, with the structure {3 - W, about which it 
is known that near the Fermi level, at a distance 
-0.01 eV, a narrow peak is found in the denSity of 
statesya] This peak is usually explained by the quasi­
one-dimensional motion of the electrons connected with 
the specific symmetry of the structure {3 - W; Account 
of the band structure of these compounds,(l3] carried 
out with account of the lattice symmetry and with ac­
count of single-particle hybridization, confirms the 
presence of a peak in the density of states, but the value 
of the density of states in[l3] was obtained almost an 
order of magnitude less than the experimental value. 
Possibly the dynamic mixing considered above also 
leads to such a large density of states. 

In conclusion, the authors thank V. A. Borisyuk, 
G. M. Zaslavskil, I. S. Sandalov for discussion of the 
results and useful observations, and A. P. Doroshenko 
for help in the numerical calculations. 
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