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The development of absolute parametric instability in an inhomogeneous plasma is investigated in the 
vicinity of plasma resonance on the basis of a fourth-order equation. It is shown that along with "violet" 
Langmuir satellites it should also be possible to excite "red" satellites as a result of the plasma becoming 
more "transparent" in the strong pumping field. The effect of the linear transformation of the pumping 
electromagnetic wave on the development of the absolute instability is investigated in the geometric-optics 
approximation. It is shown that the presence of a transformed wave considerably enlarges the instability 
region without appreciably altering the logarithmic increment. 

PACS numbers: 52.35.En 

INTRODUCTION 

The investigation of parametric instabilities in an 
inhomogeneous plasma has gained greatly in importance 
in connection with the problem of plasma heating by 
powerful electromagnetic radiation. The anomalous ab­
sorption of large-amplitude electromagnetic waves in a 
plasma is attributed to these instabilities.l1-2 ] The in­
homogeneity of the plasma greatly influences the para­
metric interaction of the waves. Allowance for the in­
homogeneity can lead to stabilization of the decay insta­
bilities, since the condition for spatial synchronism for 
the indicated waves is satisfied only in a finite region of 
the plasma. A stationary theory of decay processes in 
a weakly inhomogeneous plasma was developed in[3-5] 
under the condition that the interacting waves are de­
scribed by the geometrical-optics approximation. An 
examination of the temporal evolution of the perturba­
tions in the same approximation has shown that in the 
course of time the amplitudes of the waves increase to 
a certain maximum value determined by the stationary 
gain.[6,7] These exist, however, situations wherein ab­
solute instabilities develop in the plasmap-IO] and the 
time-growing perturbations are localized in a certain 
region of space. Then, as a rule, at least for one of the 
interacting waves in this region, the geometrical-optics 
approximation is Violated, and this leads to a blocking 
of the oscillations as a result of reflection from the 
turning point[l] or transformation pOints.[l2] In[l3] there 
was demonstrated the possibility of development of ab­
solute instability in the region of existence of a space­
limited pump wave of constant amplitude. 

Considerable interest attaches to the decay of a pump 
wave into a Langmuir wave and an ion-sound wave, since 
this decay has the largest growth rate in a uniform 
plasma. This decay was investigated in[8] for the case 
of oblique incidence of a p-polarized pump wave on an 
inhomogeneous plasma. It was shown that owing to the 
particular behavior of the field amplitude in the vicinity 
at the plasma-resonance point Wo = wpe(z) (wo is the 
frequency of the pump wave, WZ e(z) = 41Te'ho(z)/m), 
absolute instability can set in l the intensity of the 
pump wave is large enough: 

where Ei is the am~litude of the incident wave, ko 
= wo/ c, A = (roeLl z, L is the characteristic scale of 
the plasma inhomogeneity, and rDe is the Debye radius 
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of the electrons. The results ofl8] are based on the use 
of geometriC optics for the description of parametrically 
excited waves in the vicinity of plasma resonance. This 
method can be used to investigate the excitation of only 
"violet" Langmuir satellites with frequencies WI> WOo 

In strong fields (az » 1), however, the dispersion 
properties of the medium are strongly altered near 
plasma resonance. This change leads to ''transparenti­
zation" of the plasma to the resonantly excited Lang­
muir perturbation. Not only the perturbations with fre­
quencies W 1 > Wo ("violet" satellites) are then unstable, 
but also perturbations with frequencies WI < Wo ("red" 
satellites), and the latter do not exist at all in the indi­
cated region in the linear approximation. At the same 
time, an important role can be assumed by the process 
of linear transformation of a pump wave into a plasma 
wave, which was likewise not taken into account in[8]. 

In Sec. 1 of this paper we investigate parametriC in­
teraction of perturbations of the Langmuir and ion­
sound type with a spatially-inhomogeneous pump field 
near plasma resonance in the case when the perturba­
tion localization region is liz «A (A is the half-width 
of the resonance). In contrast to[81, the analysis is based 
on an equation of fourth order. This makes it possible 
not only to justify the geometrical-optics approximation 
used in[8], but also extend greatly the limits of applica­
bility of the results, and in particular advance into the 
region of larger pump-field intensities and conSider, 
besides the usual case, also the case of "modified" 
decay. It is shown at the same time that the case of 
unmodified decay (y « wz, where Wz is the frequency 
of the ion sound) is well described by the geometrical­
optics approximation. 

The latter circumstance allows us to use this ap­
proximation to analyze perturbations localized in the 
region liz » A, when it becomes important to take into 
account the linear transformation of the pump wave into 
a plasma wave. The influence of the linear transforma­
tion on the development of absolute instability in the 
case of unmodified decay is the subject of Sec. 2 of this 
paper, it is shown that in the presence of a transformed 
wave there appear unstable perturbations, the localiza­
tion region of which greatly exceeds A, whereas the in­
crement does not change substantially. 

In strong fields (az » 1), an important role is played 
by the self-action of the pump wave. The nonlinear 
solutions obtained in[14] describe the "transparentiza­
tion" of the opacity barrier for the pump wave itself 
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beyond the pOint of plasma resonance z = 0 at z > a2{3~. 

At the same time, the character of the behavior of the 
field at z < a2/3~ is determined qualitatively by the 
linear theory, and, in particular, a peak of the longitudi­
nal-field intensity exists in the vicinity of z = O. No ac­
count is taken in this paper of the self-action of the 
pump wave. A correct allowance for this self-action 
will lead apparently only to a redefinition of the quantity 
a, on which the increments obtained below depend. This 
conclusion can be drawn on the basis of the fact that the 
results of Sec. 1 of the present paper are valid for the 
parametric interaction in an arbitrary inhomogeneous 
pump field near the maximum of its intensity. 

1. ABSOLUTE PARAMETRIC INSTABILITY NEAR 
PLASMA RESONANCE 

We consider an inhomogeneous plasma with a density 
that increases monotonically in the positi ve direction of 
the z axis. An electromagnetic wave of frequency Wo 
is incident at an angle e to the density gradi ent and is 
polarized in such a way that the electric-field vector 
lies in the plane of incidence (p-polarization). Near the 
plasma-resonance point z = 0 there exists a region in 
which the electric field has an anomalously large 
value,P5] and the z-component of the electric field at 
z « -~ is described by the expression[16] 

E,.=F.(z) exp (ioo,t-ik.x) + c.c., 

F,(z)= (:n~:L~:" ~ {( - ~ r' (1.1) 

+ (_ ~) -"'n'" exp [ _ i; + i ~ (_ ~ )"]}, 
where kx = ko sin e, and ~(e) ~ 1 and differs from zero 
in a narrow range of incidence angles e ~ (koLtl/ 3 • 

Expression (1.1) holds in the collisionless limit 
v L 
--<1, 
00, ~ 

(1.2 ) 

where II is a certain effective electron collision fre­
quency. The first term in the asymptotic expression 
(1.1) describes the increase of the electric-field ampli­
tude near the resonance pOint, and the second corre­
sponds to the appearance of a plasma wave as a result 
of the linear transformation of the pump wave. 

At z > -~, in the approximation (1.2), the field am­
plitude is approximated by the expression[l5] 

Fo(z) <ll(e)E, L ( z ,)-' 
-:-:-~:-:-7.-- -+1 
(2nk oL)'" ~ ~ , 

(1.3 ) 

We consider the parametric interaction of perturba­
tions of the Langmuir and ion-sound type with frequen­
cies WI and W2, on the one hand, and the high-frequency 
field EOz, on the other. We assume the frequency­
resonance condition 

(1.4) 

where 5 is the frequency detuning, to be satisfied. Then, 
in the given pump-field approximation, this decay is de­
scribed by the system of coupled equations 

[ a' ,a a' ] 4ne' -a z + 2'\11- + (iJpe 2 - VTe'l---'a Er.= - --nsEoZ! 
t at z' m (1.5) 

[ a' a (a' a') ] e'n a' 
'&f+ 2v,Tt- v.' i)?+Tz2 n8= mM~ooo, a;,; (Eo,E.) , 

where Ez and OS are the perturbations of the longitud­
inal electric field and the ion density; III and 112 are the 
effective field-damping decrements; vTe = 3Te/m, 
v~ = 3Te/M. It is assumed for simplicity that the Lang-
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muir wave propagates along the density gradient. In the 
deri vation of (1.5) we discarded terms of order W L in 
comparison with unity. The system (1.5) was obtained 
in standard fashion from the equations of hydrodynam­
ics and from Maxwell's equations (see, e.g.,[l7]). 

Let us investigate the stability of the perturbations 
in such an interaction; to this end, we represent them 
in the form 

E.=/(z)Fo(z)exp{joo,t+pt}+c.c .,ns=g·(z) exp (i(oo,-6) t-ik.x+pt} +c .c, 

The system (1.5) then reduces to the form 
F' F" 1 

r+2-' 1'+ (-'-+Q,')t=--,g, 
Po Po nOrD. (1.6) 

g"+Q,'g= 

where 

Q.'=k,,[ 1- 2i(p+v,) ], Q,'=k,' [1 + 2iB], k,' = 00,'-000' 

k l v1 kZV2 VT(l2 

k ,_ oo,'-k.'vs' k,vT ; -(p+v,+'i1»'+( + +") 
2 - , Vi = --, V 2=U8, B 21'00, P "2 ~u , 

Vs 2 (Of 

and the prime denotes differentiation with respect to z. 

In this section we investigate those eigenfunctions of 
the system (1.6) which are localized near z = 0 in a 
region 1iz « ~, where the approximation (1.3) for the 
pump field is valid. Neglecting in (1.6) the terms of 
order (If'lfl ~r1 for such functions and eliminating g, 
we obtain for the amplitude of the Langmuir perturba­
tion an equation of fourth order: 

r+(Qt'+Q,')r+Q.'Q,'/=-a' ( z,1~, ) ". (1.7) 

The quantities Q~ and Q~ can be reduced to a form that 
lends itself more readily to further analysiS: 

Qt'=k,'b-' (Q-ir,), Q,'=k,'(Q-ir,)', 

~oo 
Q=b+-, 

k,v, 

k,v, 
b=--

2k,v, 

In the absence of a right-hand Side, the solution of 
(1.7) is obviously a superposition of plane waves with a 
linear dispersion law. The presence of the right-hand 
Side, however, leads to the appearance of spatially 
localized particular solutions f - 0 as z - ± "". The 
determination of these particular solutions reduces to an 
investigation of the eigenvalue problem for Eq. (1.7). If 
it turns out here that there are eigenvalues with Re p 
> 0, then the corresponding solutions are absolutely 
unstable with increment y = Re p. The quantity ~W 
='Im p determines the nonlinear shift of the perturbation 
frequency. In contrast to[8], where the geometrical­
optics approximation was used for the perturbation, we 
can now consider not only the case k~ > 0 (WI> Wo), 
which corresponds to excitation of a "violet" satellite, 
but also the case WI < Wo ("red" satellites), The ex­
citation of "red satellites will be treated by making the 
substitutions b - -b and kl - I k11 in all the formulas 
encountered below. 

The use of the Fourier transformation reduces the 
investigation of the eigenvalues of (1.7) to the eigen­
value problem for an equation of second order in k­
space. The regions of localization of the function f( z) 
and of its Fourier transform f( k) are then connected by 
the relation 1) 5z5k ~ n, 

Taking the Fourier transform of (1.7) with the vari­
able k and putting, by virtue of the assumed smallness 
of the localization region of the eigenfunctions, (Z2 + ~2 
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+ 6.2r1;,; 6.2 (1 - Z2/6.2), we obtain after making the 
change of variable ~ = k6. ra, 

f"(s)-(~'-a+~/s')f(~)=O, (1.8) 

where 

a=a+ (Q,'+Q,') 11'la, ~=Q,'Q,'I1'la'. 

We note that at (3 = 0 Eq. (1.8) coincides with the equa·· 
tion for the quantum oscillator. 

Substitution, in (1.8), of the solution in the form 

(1.9) 

where s(s - 1) = (3, leads to an equation for the function 
u( ~): 

(1.10) 

the solutions of which at s = 0 are Hermite functions. 
If we seek the solution of (1.10) in the form of the series 

(1.11) 
.-, 

then we obtain an equation for r: 

r(r-1+2s) =0, 

and the recurrence relations 
2r+4n-a+2s+1 

a'nH = (r+2n+2) (r+2n+2s+1) a'n, a'n+,=O (n=O, 1, ... ), 

Since (a2n+2/a2n) ~ n-1 as n -.>0, the solution (1.11) 
behaves as ~ - ± -0 like u ~ ~ r exp (~2), so that the 
function f diverges at infinity. However, under the con­
dition 2r + 4n - O! + 2s + 1 = 0 the infinite series in 
(1.11) degenerates into a polynomial of degree 2n, and 
the function f in (1.9) tends to zero as ~ - ± 00, i.e., it 
is localized. The condition for the termination of the 
series (1.11) yields for the eigenvalues an equation that 
can be rewritten in the form 

4n-a+2s,+1=O, l=1, 2, 

where Sl,2 = Y2 ± (Y4 + (3)J./2. 

(1.12 ) 

Equation (1.8) is not valid in the entire range of vari­
ation of ~. Indeed, in the expansion of (Z2 + 6.2r 1 we 
have discarded terms of higher order, which would lead 
to the appearance of higher-order derivatives in (1.8), 
For example, the term proportional to Z4/6. 4 leads to 
the appearance of the fourth derivative d~/ad~4 in (1.8). 
It is obvious that the condition for discarding this term 
takes the form d'i/ d~2 « af, according to (1.8), or 

(I Wa)'f.¢: lsi <a'f'''''Sm''''' 

It is precisely in this region that equation (1.8) is valid. 
On the other hand, according to (1.9), the region of 
localization of f(~) is of the order of dH ~ (2n + 1)1/2. 
To be able to speak of the existence of solutions that are 
localized in k-space, it is therefore necessary to satisfy 
the inequality d~f « ~max or a » 2n + 1. Then, since 
the region of localization of f( z) is of the order of OZf 
~ (Okffl ~ 6.[ (2n + 1)/a]1/2, the initial assumption OZf 
«6. is automatically satisfied. Thus, the inequality 
a » 1 yields the lower limit of the intensities of the 
pump wave, for which the described results hold true. 

We return now to the eigenvalue equation (1.12) and 
rewrite it, discarding terms small in comparison with 
a: 

[ Q,'+Q,'+x n']'=4Q,'Q,', . (1.13) 

where we put K~ = a 2(1 - 2(2n + 1)/al6.-2 • Equation 
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(1.13) is algebraic and of fourth-degree in (n - ir). It 
has roots with r > 0 at all values of the parameters. 
Particularly simple equations for the roots are obtained 
in two limiting cases, I Qd » I Q21 and I Q11 « I Q21. 

In the former case Eq. (1.13) has the solution 

k,v, ( Xn' ) 1100=-- 1+- . 
2 k,' 

.. (1.14a) 

This case is realized in sufficiently weak pump fields: 

In strong fields, when the opposite inequality holds, we 
obtain 

(1.14b) 

It is seen from these expreSSions that the degree of de­
pendence of the instability increment on the pump-wave 
amplitude changes appreciably with change of the latter. 
In the case of weak pump fields, the instability thresh­
old is determined by the damping of the Langmuir wave, 
whereas in suffiCiently strong fields, the threshold may 
be determined by the damping of the ion sound. The 
growth rate decreases with increaSing number of the 
state. Expressions (1.14a) and (1.14b) describe also the 
"modified" decay (y » W2), when the stability is 
aperiodic. 

2. INFLUENCE OF LINEAR PUMP-WAVE 
TRANSFORMATION ON THE ABSOLUTE 
INSTABILITY 

In this section we investigate the eigenfunctions of 
the system (1.6), which are localized in a region whose 
width greatly exceeds the half-width of the plasma reso­
nance (Oz »6.). An important influence on the develop­
ment of the absolute instability is exerted here by the 
presence of a transformed plasma wave, described by 
the asymptotic expression (1.1), in the region z < -6.. 
It is impossible as yet to investigate the eigenfunction 
of the system (1.6) in such a complicated field by the 
method developed in the preceding section. We shall 
therefore use for the description of the unstabile per­
turbations the geometrical-optics approximation, which 
has, however, a narrower applicability range. We seek 
the solution of the system (1.6) in the form 

j=a,(z)exp(-ik,z), g=a,(z)exp(-ik,z), (2.1) 

with W1> wo, k1 = k2 = k > O. (The results are not 
changed if k is replaced by -k. It is necessary to 
change here from V1,2tO IV1,21.) 

If the geometrical-optics approximation is to be 
valid in the entire region where the field exist, the fol­
lowing inequality must be satisfied :2) 

I da",/ dz I <, k,.,a"". . .. (2.2) 

Substituting (2.1) in (1.6), abbreviating the equations 
(i.e., discarding a~,2)' and eliminating a2, we obtain an 
equation for the amplitude of the Langmuir wave: 

( ) " (p+v, B F,' ) 1-£ a, + ----+-+2ik£ a,' 
Vi V2 Fo 

[ '( p+v, F,' ) B ] + - --+- -+k'£ a,=O, 
Vi Fo Vj'. 

(2.3) 

where 
a' (z ) ( Z) {(l+z'II1')-" z>-I1, 

£ = 4 (kt.'.) , 'P\ ~ , 'P ~ = n(-z/I1)-'f. z<--i'> . 

Equation (2.3) is valid if z > -6.( k6.)2» and terms of 
order (k6.t1 and AiL have been discarded from it. We 
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consider pump-wave intensities in the range 1 « a 
« k6.. The first inequality cOincides with that used in 
Sec. I, and the second is the necessary condition for 
neglecting the higher-order deri vati ves in (2.3), for in 
this case we have E« 1 in the entire region, so that the 
coefficient of the second derivative is not small any­
where and can be set equal to unity. The transformation 

{ 1 (P+v, B ) J' (Fo' )} a,=1jJ(z,p)exp -- ---- z- -+ike dz 
2 V, v, 2Fo 

(2.4) 

reduces (2.3) to the equation 

1jJ"+U(z, p)1jJ=O, (2.5) 

where U( z, p) is generally-speaking a complex function 
of elaborate form. We confine ourselves to parameter 
values for which U(z, p) takes a form that admits of a 
simple investigation of the eigenvalue problem (2.5). 

In the region z > -6., where the representation (1.3) 
is valid for the pump field, we can approximate U(z, p) 
by the expression 

a' 1 (p+v, B)' U(z,p)=--.--- --+- , 
z'+L'.' 4 v, v, 

if the inequality 1 «6.1 (p + Vl)/Vl + B/V2\ « k6..is 
satisfied. 

(2.6) 

Under the same assumptions in the region -6. (k6.)2 
« z « -6., using (1.1), we obtain 

;;ta' ( z )-';. 1 [P+v, B 2i ( Z) ';'] , 
U(z,p)=7 -~ -4 -;;;-+ v, -Il -~ . 

The function (2.6) has a turning point Zl,2 = ±6.(J.l.2 
_ 1)1/2, where 

[( p+v, B) ]-' 
ft=2a -v,-+--;;;- L'. . 

(2.7) 

Let J.I.» 1. Then in the region where the approximation 
(2.6) is valid the potential U(z, p) does not vanish at 
z < 0), and to find the left-hand turning point it is neces­
sary to use expression (2.7). If at the same time3) 
1fJ.l.3« 2a and 1f2J.1.4« (k6.)2, then the function (2.7) has 
in the considered region the turning point z = -Zo 
= _1f2J.1.46.. 

It follows from (2.6) and (2.7) that in the region 1 z 1 
« 6. (k6.)2 the function </! has asymptotic forms 

¢-exp [±~ (P+v, +!!..)z], 
2 v, v, 

whereas according to (2.4) the asymptotic forms of al 
are 

(2.8) 

If at the same time the equation 

" 
Sl'U(z,p)dz=n(n+'/,) (n- is an integer) (2.9) 

has roots p with He p > 0 and He B > 0, then Eq. (2.5), 
and together with (2.4), has localized solutions that in­
crease exponentially with time. 

The integral (2.9) can be calculated with good ac­
curacy in the following manner: The function U is ap­
proximated by the expression (2.7) in the region -Zo 
< z < - 6. and by the expression (2.6) in the region -6. 
< z < Zl. Simple calculations show that the principal 
terms of the asymptotic expansion of the integrals at 
J.I. » 1 take the form 

" S Y U dz '" a In 4". (2.10) 
-', -& 
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It folloWS therefore that the main contribution to the in­
tegral (2.9) is given by the region in which there exist a 
transformed plasma wave. From (2.9) and (2.10) we 
obtain an equation for the determination of the eigen­
values p: 

p+v, +!!.. = A .. 
Vi Va 

a ( 4n'a ) 'h 

An=-u 2nH ' 

which can also be rewritten in the form 

(Q,'-Q,')'=-4k'An'. 

In the case 1 Ql 1 « 1 Q21 we obtain 

(2.11 ) 

'Y+v,=(Ank)'I·V" L'.(fJ=-kv,/2, (2.12a) 

with ;\n» k(V2/Vl)2. If the inequality is reversed, have 

(2.12b) 

The previously employed conditions 1fI/« 2a, 1f2J.1.4 
« (k6.)2, and ;\n6. » 1 impose an upper bound on the 
number n of modes for which the foregoing analySiS is 
valid: 

2n+1<na'. (2.13 ) 

and the conditions J.I. » {2 and ;\n « k yield the lower 
bound 

2n+t»n'a. (2.14) 

Thus, for the lowest modes 2n + 1 ~ 1f2a the growth 
rate is determined by the quantity ;\n ~ a/6. and de­
creases with increasing mode number. The condition 
;\n « k makes it possible to consider only unmodified 
decays by this method. The same method can be used 
to investigate the instability of modes localized in the 
narrow region 1 z 1 «6.. The numbers of these modes 
are determined by the inequality 2n + 1 « a (see Sec. 
I), and the growth rate and the frequency shift are ob­
tained from (2.12) by replacing ;\n with /(n. Conse­
quently, the growth rate of the modes localized in the 
narrow region agrees in order of magnitude with the 
growth rate of the lowest unstable modes localized in a 
broader region. The dependence of the growth rates on 
the group velocities Vl,2 and also the instability 
thresholds, coincide with those obtained in the preced­
ing section. 

The results are only in qualitative agreement with 
the results of Sec. 1. The reason is that the use of 
geometrical optics necessitated a number of rough as­
sumptions (see footnote 2), so that Eq. (2.11) is essen­
tially approximate. 

Our analysis allows us to draw the following conclu­
sions: The development of absolute instability near 
plasma resonance is connected with the fact that the 
action of dynamic pressure produces in this region an 
effecti ve "potential well." Perturbations that interact 
resonantly with the pump field are captured in this 
"well" and can exist in it in various states, which turn 
out to be absolutely unstable. The perturbations corre­
sponding to "states" with small numbers (2n + 1 « a) 
are localized in a narrow region liZ « 6. near the 
plasma resonance, where the pump field can be approxi­
mated by a simple parabolic dependence. With increas­
ing number of the state, the localization region in­
creases, and the growth rate decreases somewhat. When 
the localization region becomes of the same order as or 
larger than 6., the dependence of the pump field on the 
coordinate becomes more complicated, and this is due 
to the appearance of a transformed plasma wave. 
States with numbers (2.13) and (2.14) correspond to un-
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stable perturbations localized in the region oz ~ a4/3~ 
»~. The growth rate of the lowest modes localized in 
so broad a region is of the same order as the growth 
rate of the modes localized in the narrow region. Allow­
ance for the linear transformation of the pump wave 
leads consequently to an appreciable increase of the 
instability region without an appreciable decrease of the 
growth rate. 

It is obvious that the results of the present paper can 
be generalized to include parametric instability in an 
arbitrary inhomogeneous pump-wave field near the max­
imum of its intensity, where the representation \ EOZ \2 
~ E~ (1 - Z2/ z~) is valid (zo is the characteristic scale 
of the field inhomogeneity). To this end it suffices to 
make everywhere in Sec. 1 the substitution 

2 E02 Z02 
a -+----

4:rtnoT e rve2 

Such an inhomogeneous pump field can be realized, for 
example, not only in the case considered above, but 
also in the case of parametric excitation in the focus of 
a laser, and also in strongly nonlinear formations such 
as ·solitons and collapSing caverns. The instabilities of 
this type can constitute an effective mechanism for the 
absorption of electromagnetic radiation when plasma is 
heated and the energy of solitons or collapsing caverns 
is disSipated. 

Let us estimate the pump-wave intensities needed to 
ensure the condition a > 1. For the parameters of a 
neodymium laser and the plasma used in the droplet 
variant of the laser thermonuclear reaction (wo"" 1015 

sec->, L ~ (10-2_10-1) cm, Te"" 10 keY, no"" 1021 cm-3), 

this condition is equivalent to the requirement that the 
plasma be irradiated by an electromagnetic wave with 
an energy flux density Q> (lOll - 1012) W/cm2. Such 
laser powers are easily attainable at present (see 
e.g.,l21). ' 

In conclusion, the authors thank A. D. Piliya and 
V. I. Fedorov for fruitful discussions. 

OWe can use the approximate-equality sign because, as will become evi­
dent later on, the eigenfunctions in k-space are close to the wave func­
tions of a quantum oscillator. 
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2)It will be shown later on that Idai/dzl '" kal/2 < kal' Thus, the geome­
'trical-optics approximation is quite crude. Its use leads, nevertheless, to 
a qualitatively correct result. 

3)This condition makes it possible to neglect the last term in the square 
brackets of (2.7). 
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