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The problems of the absorption of intense frequency-modulated light, the absorption of intense light by a 
paramagnetic solid, and also the nolinear absorption of light by a solvated electron are solved in the 
Landau-Zener approximation. An expression extending beyond the limits of perturbation theory is obtained 
for the transition probability per unit time for the electron transfer reaction. 

PACS numbers: 42.50.+q, 78.90.+t 

The problem of transitions in a two-level system, 
where the energy levels E1(t) and E2(t) are random func­
tions of the time, is investigated in the present article. 
Furthermore, it is assumed that the quantity OE(t) 
= E1 - E2 is differentiable with respect to the time. This 
problem has several applications. The calculation of the 
probability for the absorption of intense light having a 
randomly modulated frequency is related to it. The ab­
sorption of intense monochromatic light by a paramag­
netic solid also pertains here, where the randomness of 
the quantity OE(t) is caused by fluctuations of the self­
consistent field, exerted on a given spin by all remaining 
spins of the system. The problem of the absorption of 
intense monochromatic light by a solvated electron or by 
a polaron in ionic crystals at high temperatures also re­
duces to this same formal statement, and also the de­
termination of a formula for the rate of the electron 
transfer reaction extending beyond the framework of 
perturbation theory. In these problems the randomness 
of OE(t) is caused by temperature fluctuations in the 
polarization of the medium. 

Let the fluctuations of the energy levels be sufficiently 
slow, i.e., the condition .a.Tc » 1 is fulfilled, where .a. is 
a parameter characterizing the scale of the fluctuations 
in the quantity OE(t) and TC is the correlation time of 
this same variable. Under this condition the system be­
haves adiabatically on the average, since a large phase 
builds up during the time T c' In this connection, if the 
conditions V < .a. and Jw - W1J >.a. are satisfied, where 
V is the matrix element of the interaction between the 
levels, causing the transition, and w - W1 = (OE(t) is the 
average separation between the system's energy levels, 
then the transitions primarily take place in the neighbor­
hood of the pOints of intersection of the energy levels. 
In actual fact the time, during which the transition is 
being formed, is equal to T ~ V If. in order of magnitude, 
where E is the rate of change of the quantity OE(t) at the 
intersection point. On the other hand, T should be 
smaller than TC; therefore, assuming that E ~ .a.hc' we 
obtain the condition V < .a.. 

For the probability of a transition from the first level 
to the second during a single intersection, we shall util­
ize the Landau-Zener formula, [1,2J which is well known 
in collision theory: 

W,,=i-exp[ -2nV'/Jell. (1) 

The probability per unit time of a transition from 
level 1 to level 2 is then obtained by averaging (1) over 
the average number of intersections of the levels per 
unit time dv. It is obvious that 

(2) 

where f(E, E) is the distribution function for the number 
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of intersections associated with a fluctuation of magni­
tude E having a rate of change E. Then, by using Eqs. (1) 
and (2) we obtain the following result for the transition 
probability per unit time: 

~ 2nV' 
W"=J [1-exp(-~)]/(w-w,,8)edB. (3) 

One can easily analyze the case of a weak interaction, 
V2T c/.a. « I, in the general formula (3). In this case, by 
expanding the exponent in Eq. (3) in a series in powers 
of V2, we obtain 

W,,=2nV'<p(w-wI), <P(W-WI)= S /(01-01 1, e)dE, (4) 
o 

that is, the well known result of perturbation theory. In 
order to analyze the case of a strong interaction, V2T c/.a. 
» I, it is necessary to specify the random process. Let 
us consider the case which is most typical for applica­
tions, when OE(t) = w - W1- .a.E(t), where the fluctuation 
process .a.E(t) is a random Gaussian process. The dis­
tribution f(w - W1, E) can be easily found for a random 
Gaussian process. It is also Gaussian and is expressed 
by the following formula: [3J 

. _ 1 x [_ (01-011)' + __ 82_], 
/(01-01,,8)- 2nd (_K"(O))'i, e p 2d' 2K"(O) (5) 

where K(T) = (.a.E(T)M(O) is the correlation function of 
the energy fluctuations, and K"(O) is the second deriva­
tive of K(T) evaluated at zero. Then, by substituting (5) 
into (3) and evaluating the integral by the method of 
steepest descents, which we apply to (3) in the case of a 
strong interaction, we obtain 

..,. [(-K"(O))", 
JI ,,= 

2nd 
1 ( V'K" (0) ) 'i, 

n'I'd ---4--

{ nV'I'}] [ (00-00 1)'] 

xexp - (-2K" (0))'1. exp -~-
(6) 

in order of magnitude this gives 
_ ".;[ __ 1 ___ 1_( V",) '1, ex {_ nV'I,,:I'}ex {_ (W-WI)'}. 
W" 2'i, 'I, 4d P 2d'i, P 2d' nT, n T, (7) 

Let us consider the absorption of intense light having 
a carrier frequency w; W1 denotes the difference between 
the two levels involved in the transition, V = Jd 12 JEo, 
where d12 denotes the dipole moment of the transition, 
and Eo denotes the amplitude of the incident field. The 
quantity .a.E(t) is a Gaussian variable with a Gaussian 
correlation function, that is, 

K(.) =d 2 exp( -,'/2.,'); 

substituting the expression for K" (0) = -,~ 2h~ into Eq. 
(6), we obtain formula (7). 

As is clear from Eq. (7), the shape of the absorption 
line for an intense field is Gaussian, just as in the case 
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of perturbation theory; however, in contrast to the case 
of perturbation theory the absorption probability is a 
nonlinear function of the intensity of the incident field. 

We note that under the condition ~TC »1 the shape 
of the incident light spectrum is Gaussian and does not 
depend on the frequency correlation time T c' At the 
same time it is clear from Eq. (7) that the probability 
for absorption of the field significantly depends on T c; 
therefore, the absorption of an intense field may serve 
as one of several methods for measuring the quantity T c' 

The energy fluctuation process in paramagnetic 
solids[4) is also Gaussian with a Gaussian correlation 
function. Therefore, the same formula (7) is obtained for 
the nonlinear absorption of light of frequency w. We call 
attention to the fact that the absorption of low intensity 
light, calculated according to perturbation theory, does 
not depend on the time T c' At the same time the non­
linear absorption of an intense field significantly depends 
on TC' Therefore, just as in the preceding case, non­
linear absorption may serve as one of several methods 
for measuring the energy correlation time T c. 

One of the most interesting problems in which form­
ula (6) is used is the problem of the absorption of intense 
light having a frequency w by a solvated electron or by a 
polaron in an ionic crystal. This problem was investiga­
ted according to perturbation theory in [5, 6). As is shown 
in [5), the quantity 

where 

lie (t) =En-Er+Ep-I';E (t), 

Ep=...!'!-S[I';D(r)]'dr, 
4n (8) 

Co = 1/E(OO) - 1/E(0) is the well known Pekar factor, and 
~D(r) = DII(r) - DI(r) is the difference between the values 
of the displacement in electron states I and n, 

I';E(t) =- S I';Dj(r) IiP,(r, t)dr, 

BP(r, t) denotes the fluctuation of the medium's polar­
ization vector. In a quantum treatment, the quantity 
~E(t) is an operator. However, at sufficiently high tem­
peratures when kT is much larger than the characteris­
tic frequencies of the medium, the fluctuations of the 
polarization vector become classical and one can regard 
the quantity ~E(t) as a numbero In this connection, as 
one can easily see from the results of [5, 6), the quantity 
~E(t) is a Gaussian variable with a fluctuating correla­
tion function 

K(,;)= kT+S~~ len(w)1 e-i·'Sdr[I';D(r)l'. 
4n-

o
_ w e(w) 2 

From Eq. (9) we obtain 

kT S dw en(w) S K(O) =1';'=-, ----0 ddI';D(r) ]', 
4n' w Idw)l-

where E(W) = E'(W) + iE"(w) is the complex dielectric 
constant. 

Differentiating (9) two times, we obtain 

+~ II () 1 
Kn(O)=-X dw w 1:(w~I' 4n' S dr[I';D(r) p. 

(9) 

(10) 

(11) 

For the model of an ionic crystal characterized by a 
single frequency Wo of the longitudinal vibrations, when 
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en (w) 
---I = conwo[li(w-wo) -Ii (w+wo)], 
Idw) , 
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(12) 

formulas (10), (11), and (4) give the following result for 
weak intensities and kT »wo: 

_ _ ~ -{ _ [w- (En-Er+Ep) ]' } (13) 
W"-(2n)'f'l';exp 21';' ' 

where ~ 2 = 2kTEp' in complete agreement with (6J • 

For high intensities and kT »wo, it follows from 
formulas (10), (11), and (7) that 

_ [ Wo Wo (V') 'I. 
W,,= 2n - n'I'(2kT/wo)';' 4E;I'W;I. 

{ _ nV'" }]ex {_ [w-(En-Er+Ep)]'} 

X exp wo[ 4kTEp/wo],l. P 4E pkT • 

(14) 

It is evident from formula (14) that the shape of the 
absorption line for an intense field is exactly the same 
as for the absorption of a weak field, and is a Gaussian 
having a width that increases linearly with the tempera­
ture. However, in contrast to the absorption of a weak 
field, the dependence of the absorption on the intensity of 
a strong field is intrinsically nonlinear, and also a tem­
perature dependence appears. 

If the perturbation giving rise to electron transfer is 
not the interaction with the electromagnetic fieW but an 
intrinsic interaction, for example, the operator of non­
adiabaticity, and in addition the transfer is resonant, 
then by setting w = 0 and Ell = EI in Eq. (14) we obtain 
the follOwing formula for the probability of electron 
transfer: 

_ [wo Wo ( V' ) 'I. 
W,,= z; - (2knT/wo)'I, 4E."f,Wo''' 

xex {- nV';' }]ex {_~} 
p w,[4Ep kT/wol'" _ p 2kT' (15) 

It is evident from formula (15) that resonant transfer 
has an activational nature, with the same activation en­
ergy as in the case of a weak interaction. This result is 
very natural and is related to that energy which the 
polarization fluctuations must acquire in order for an 
intersection of the energy levels to occur. However, in 
the case of a strong interaction the dependence of the 
pre-exponential factor is considerably more complica­
ted, and a temperature dependence of the pre-exponential 
factor appears. 

In conclusion the author considers it his duty to ex­
press gratitude to E. E. Nikitin for a helpful discussion 
of a number of the results of this work. 
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