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An explanation is proposed for the recently observed narrowing of the Rayleigh line wing as the critical 
stratification point in a binary liquid mixture in the single-phase state is approached. It is shown that the 
dependence of the molecular interaction energy on their mutual orientation, which is described by the 
anisotropy tensor, is proportional to the product of the square of the anisotropy tensor and the square of 
the concentration fluctuation in the thermodynamic potential. This term gives the dependence of the 
anisotropy tensor relaxation time, which determines the width of the wing, on the concentration 
fluctuations. It is the peculiarity of these fluctuations which is manifested in the narrowing of the wing. 
This term also leads to the appearance of a new scattering line due to scattering by the sum ( difference) 
modes of the concentration and anisotropy "waves." The spectrum of this line is calculated and its 
intensity is estimated. 

PACS numbers: 78.30.Ly, 64.80.Cz 

Narrowing of the Rayleigh line wing as the tempera­
ture T approaches the critical temperature Tc in 
critical-composition mixtures of nitrobenzene-n-hexane 
and aniline-cyclohexane in the single-phase state was 
recently observed experimentally,P] In the present 
work, a mechanism of this narrowing is proposed. 

In the mixtures studied in[l], as in most pure liquids, 
the wing consisted of two contours-a narrow part and 
a broad part. Similar narrowing of both contours was 
observed. Assuming independence of the scattering 
mechanisms responsible for these parts, we limit our­
selves to the consideration of the narrow part of the 
wing only. 

The presence of an intense wing in the components 
of the mixtures studied in[l] means that their molecules 
do not possess spherical symmetry. The energy of the 
interaction of such molecules should depend on their 
mutual orientation, which is described by the aniso­
tropy tensorsp,3] In mixtures of these components, the 
orientation part of the energy of the interaction of the 
molecules with the nearest neighbors will depend on the 
concentration of the components in their vicinity. This 
should lead to a dependence of the anisotropy relaxa­
tion time, which determines the width of the wing, on 
the concentration fluctuations. Thanks to this depend­
ence, the singularity of concentration fluctuations near 
the critical stratification point manifests itself in the 
narrowing of the wing. This constitutes the physical 
picture of the proposed explanation. We now proceed to 
the calculation. 

We find that term of the thermodynamic potential 
which describes the sought-for link between the concen­
tration fluctuations and the anisotropy tensor. Inasmuch 
as the mixtures studied in[l] have an upper critical point, 
we limit our consideration for definiteness only to mix­
tures with an upper critical point. As is well known, the 
critical stratification temperature is determined with 
sufficient accuracy by the relation 

Tc=k-tz(v-·/l} , 

where z is the number of nearest neighbors, v is the 
average energy of interaction of two neighboring, identi­
cal molecules (we assume it to be the same for both 
components), v is the average energy of interaction of 
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two neighboring, different molecules, k is the Boltz­
mann constant. (This relation, in particular, can be ob­
tained by the method of the self-consistent field[4].) 
Simplifying the situation somewhat, we shall assume 
that the mutual orientation of the like and unlike mole­
cules is described by the same anisotropy tensor!) 
~ml' Taking into account the dependence of v and v on 
~ml' we can write the expression for Tc in the follow­
ing fashion: 

(1 ) 

where v(o) and VOl are the parts of v and v which are 
independent of ~ml, a is some coefficient, and the 
angle brackets denote the average over the volume. 
Using (1), we expand the part of the thermodynamic 
potential which depends on the concentration fluctua­
tions in a series in-k-1za(i;ml!;lm), limiting ourselves 
to the first terms. This part of the thermodynamic po­
tential has the following form in the region that is not 
too close to the critical point: 

VB S '" 1 t.\(I) =-,-- icq [---- dq. 
(201)' (~) x(qfJ} . 

(2) 

where \ Cq \2 is the spectral intensity of the concentra­
tion fluctuations with the wave number q, B is a quantity 
proportional to the deri vati ve of the chemical potential 
with respect to the concentration: B = Bl(T - Tc)Y, 
Y "" 1.2; B 1 is a constant quantity in the critical region; 
p is the correlation radius of the concentration fluctua­
tions; X(qp) are functions which take into account the 
nonlocal character of the concentration fluctuations; in 
correspondence with the Similarity hypothesis, it de­
pends only on the combination qp; X (qp) is assumed to 
be normalized so that X(O) = 1; V is the volume of the 
considered system; the integration is carried out over 
the entire space of the wave vectors. The cited form of 
the thermodynamic potential is justified by the fact that 
the expression that comes from it for the total intensity 
of the central component of the polarized light scattered 
by the concentration fluctuations 

kl' 
I=GM'2Jjx(qp} 

is identical with that which was observed in numerous 
experiments[5,61• In this expression, M is the deriva­
tive of the dielectric constant with respect to the con-
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cent ration, G is a known factor which depends on the 
characteristics of the incident light, on the distance 
from the scattering region to the point of observation, 
and on the size of the scattering volume. Expanding 
~ <I> in a series at fixed \ Cq \2, we get 

Ml =~ J [--.!!-~ ] 1c.I'dq 
(2,,) (00) x(qp) 'm'-O (3) 

+ (2:~'k J ~m'~'m dV J a~ [ x~p) ] 1e.1' dq. 
,- (0:.) 

The second component in (3) is the sought component, 
which describes the connection between the concentra­
tion fluctuations and the anisotropy tensor. Conversely, 
if we start out from the thermodynamic potential (3), 
then, in addition to other effects, the last component 
leads to a small shift in the critical temperature. 

We now proceed to the calculation of the relaxation 
time of the anisotropy tensor, which determines the 
width of the wing. For this purpose, we consider the 
part of the thermodynamic potential which depends on 
the concentration fluctuations and the anisotropy tensor. 
It is obtained by the addition to (3) of a term which de­
pends only on the fluctuations of the anisotropy tensor, 
and takes the following form: 

<D=MI+AS Sm'~'mdV. (4) 
v 

(In order not to complicate the picture, the connection 
of the fluctuations of the anisotropy tensor with the de­
formation fluctuations was not taken into account.) For 
the anisotropy tensor indicated in footnote 1), the coef­
ficient A is of the order of T/iT', where T' is the re­
laxation time of the anisotropy in the mixture at the 
critical temperature, T/ is the viscosity of the mixture 
at the considered temperature.rz I The dissipation func­
tion' which is connected with the anisotropy tensor, is 
of the following form: 

R=L f ~ml~jm dV, .. 
where L is practically a constant in the critical region 
(the weak singularity of the viscosity near the critical 
stratification point is neglected). Equating the deri va­
tive of R with respect to ~ml to the derivative of <I> 

with respect to i; ml with opposite sign, and averaging 
over the ensemble, we obtain the following equation of 
motion for ~lm: 

. 1 
5Im=--£lm, 

" where 

1 ! [ az J a [ R] ] -=- A+--- - -- <Ie I')d'l 
T L (2,,)'k aT z(qp) • . 

(c..') 

(5 ) 

This expression also represents the half-width of the 
wing of interest to US. 

We now consider the last component in (5) in more 
detail. For qp « 1, the function X(qp) has the Oren­
stein-Zernike form 

1 
x(qp)~ H(qp)'· 

For qp » 1 the exact form of x( qp) is not known. We 
shall assume 

Z(qp)=l/(qp)' if qp»1. 

This assumption is in agreement with the data on light 
scattering and x-ray scattering from concentration 
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fluctuations, and is close to that given in[7l. It is in­
directly confirmed by the agreement of the results of 
the present calculation with experimentYl Since, ac~ 
cording to the experimental data, Bp2 is practically in­
dependent of the temperature in the critical region, this 
assumption leads to the result that 

fj [ B ] -- -- =0 if qp»1. 
aT x(qp) 

We now assume that this quantity vanishes at qp > b, 
where b is a number of the order of several units. 
Here the integral in (5) turns out to be cut off at a value 
of q equal to qrnax = b/ p : 

a [ B ] OB 'IP hr -( -) <lc.I')dq=4"iiT f <ic.I')q'dq. (6) 
(~) x qp " 

This expression can also be represented in the form 
(a B/ aT)( <::2), where c is the concentration fluctuation, 
averaged over the spherical regions with radius of the 
order of 1Tp/b. Substituting the expression (6) in (3) 
with averaging omitted, we see that the fluctuations of 
the anisotropy tensor turn out to be coupled only with 
the fluctuations of the concentration c averaged in the 
form described above. Substituting in (6), 

< Ie,,!,> =kTI2B[ H (qp) 'l, p=;o (TITe-1) -\"1', 

where ;0 is constant in the critical region, and also the 
expression B, we obtain the following final expression 
for liT: 

1 1 [ aZl (T ) 3T/'-1 ] 
-=- A+-- -~1 (b~arctgb). 
"L 4,,'so' Te 

(7) 

We first note that the narrowing takes place only for 
a> O •. Moreover, for its existence, it is necessary that 
the ratio a of the second component to the first was of 
the order of or greater than unity in the range of tem­
peratures studied in(ll. We estimate a, assuming 

We shall set a = d( VIOl - v(O»), where d characterizes 
the fraction of molecules in the interaction which depend 
on their relative orientation (for the estimate, we shall 
assume d = 14). According to the latest data, as kindly 
communicated to me by the authors of(ll, T' > 10-9 sec, 
for the narrow part of the wing. Sincel'j "'! 10-2 poise 
for the mixtures studied in [11, it follows that A < 107 

erg/cms• USing the given values, we obtain a> 13(T/Tc 
- 1)°·8. For T/Tc - 1 = 4 X 10-2 , we have a> 1. For 
large values of T/Tc - 1, we can neglect the first com­
ponent in (7) and assume, approximately, that 

ilT~ (TITe- i ) 0.'. 

The critical exponent 0.8 that has been found is prac­
tically identical, in the limits of experimental error 
(10-3Wo), with the critical exponents of 0.62 and 0.66 
observed in(l] for the narrow and broad parts of the 
wing. 

The term which is proportional to ~ml~lmc2 in the 
thermodynamic potential (the last component in (3)), in 
addition to the considered effect of narrowing of the 
spectrum of light scattered by the anisotropy fluctua­
tions, should lead also to another effect-the appearance 
of a new scattering line. Actually, the mean square of 
the fluctuations of the dielectric constant, generally 
speaking, should contain terms of this same type, as 
also <I>. Therefore, the general expression for the 
fluctuations of the dielectric constant 15Eml should it­
self have a component proportional to i;mZc, in addition 
to the components proportional to ';ml: 
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where 
No = Bemi 

a~mi ' 
M=~ fiemm 

3 8c . 

In the depolarized scattering considered below, only the 
first two terms make a contribution. The scattering by 
the fluctuations of the dielectric constant, which are 
proportional to ~ml, is given by the formulas of the 
work of Leontovich and Rytov,l2,3] in which l/T should 
be expressed by Eq. (7). A new line appears as a result 
of scattering from the fluctuations, proportional to 
~mlc, and which are described by the second term.2l 

We now find the intensity spectrum of this line. 

Since only scattering in the mode oEml with wave 
number p = qs - qi is recorded at a fixed angle of ob­
servation (qi is the wave number of the incident light, 
qs the wave number of the scattered light), the contri­
bution to the considered scattering will be given by all 
the modes ~ml with wave number q and all modes c 
with wave number q', for which q + q' = p. Thus, the 
considered scattering is the scattering from the sum 
and difference modes of the anisotropy and concentra­
tion "waves." The time during which the sum (differ­
ence) mode will exist is equal to the smaller of the two 
times: the relaxation time of the anisotropy and the 
time of diffusion dissipation of the concentration fluc­
tuations. This time also determines the width of the 
line under consideration. In different temperature in­
tervals, first one, then the other of these times turns 
out to be the minimum. Denoting the mean spectral 
intensity of the fluctuations of c with wave number q 
and frequency w by (I cq,w 12) and the corresponding 
spectral intensity of the anisotropy fluctuations by 
< I( ~ ml ) q w 12), we can write the intensity of the light 
with freq'uency w scattered through an angle of 90° by 
the fluctuations proportional to ~mlc in the following 
form: 

Iml(w,p)=GN' IS <I (;m,)_q+p._.,I')<lcq,.,I')dqdw', (8) 

where land m are the directions of polarization of the 
incident and scattered light. In view of the previously 
assumed smallness of the expansion parameter 
-k-1za( ~ ml~l m), the concentration fluctuations were 
assumed to be independent of the fluctuations of the 
anisotropy tensor in writing down this expression. The 
spectral intensities entering into this expression have 
the form 

<I « ) ,I') = kT~' ____ _ 
~ml -HP,.-O Ln l+(w-w')'~" 

where T is determined from the expression (7): 

<1_ ,')_ kT Dq'rp(qp)x(qp) 
Cq,. I - 2Bn (w')'+(Dq'rp(qp»' 

where D is the diffusion coefficient, c:p (qp) the 
Kawasaki function:[8,9] 

rp(qp)= ~[ (q~)' +1+(qp- (q~),)arctgqp]. 
Since the integral in (8) falls off rapidly at large q, we 
can make the following simplification: the integration 
is carried out not up to qmax = b/ p but up to "", and 
we set c:p(qp) = 1. We then obtain 

(9) 

where 
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{(Hx'-'/,~') [(Y Hx' + '/,~)l' (Hx')'41- l'~ - '!,~l'~l 

+xHxl'~-(l'1+x' - '!,~)l' (1+x')"-Tl), 

X=WT, ~=~/T, T=p'/2D. 

(10) 

In view of these Simplifications, the resultant expres­
sion ceases to be valid for x > b2{3. For {3 « 1, 

F(x, ~)=Y2, x<l; F(x, ~)=1/Y.r, ,);»1. 

For {3 » 1, 

F(x, ~)=2!1'~-:- x<l; F(,x, p)=lIl';:;- x»~. 

Thus the shape of the conSidered line is not Lorentzian' 
for large WT the intensity falls off very slowly, as ' 
1/ / WT. For {3 « 1, the halfwidth of this line is deter­
mined by the time T and for {3 » 1, by the time T. 

Far from the critical point, T ~ 10-11 sec, T ~ 10-10 

sec for the narrow part of the wing, so that {3 » 1 and 
the hali-width of the line is determined by T. As the 
critical point is approached, D decreases as 1/ p and 
consequently T increases, as p3, i.e., more rapidly 
than T. Therefore, for this case, {3 decreases, reach­
ing the range (3« 1, where the half-width of the line is 
determined by the time T. Graphs of the function 
F(x, (3) for different (3 are shown in Fig. 1. 

The total intensity of the depolarized light, consisting 
of the intensity of the light scattered by the fluctuations 
of the anisotropy and by the fluctuations of ~mlc take 
the following form: 

where 
N'n'kT nN' 

s=-----= <c'), 
No'B,p,'pY~ 2No'Y~ (b-ai'ctg b) 

Pi is the correlation radius for T - Tc = l"K. In this 
temperature range, where we can assume T 

cc (T/Tc - 1ro•8, S depends weakly on T - Tc. 

We estimate the value of S in this temperature 
range. We begin with the quantity No/N. As is well 
known, for the anisotropy tensor indicated in footnote 1, 
we have 

where CI.\l) and a\i) are the principal polarizabilities of 
the molecules of the first component, a~) and atf) are 
the corresponding quantities for the second component, 
n is the number of molecules per unit volume, and Co 

is the mean concentration of the first component in the 

F(X,P) 

L----5~---f~O----f~5-----~~---2~; 

FIG. I 
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mixture. Using this expression for the ratio No/N 
= No (aN/acot\ we obtain No/N = [Co «(1\1) - a,~1» 
+ (1 - co) «(I~l - elfl )]/ (a,(fl - (iiI - (llfl + d;l). For a mix­
ture of nitrobenzene-n-hexane at the critical tempera­
ture, we get No/N::::l 12, since the principal polarizabil­
ities of the n-hexane molecules are much smaller than 
the corresponding quantities for the nitrobenzene mole­
cules. Further, assuming No and N to be quantities of 
the same order, we get as an estimate of S, 

8 "" (1:') _1_ = (1: ,).£L _1_ 
l'f r p if' 

where the index "f" indicates "far from the critical 
point." Using the estimates 

~""1O(pf /p)', (cr ')""1, 

we find that S ~ 1 to 0.1. Thus, the new line that has 
been considered should be observable. Graphs of the 
function 1/(1 + x2) + F(x, (3) are shown in Fig. 2 for 
various f3. 

A line of the type considered appears also as a re­
sult of double scattering of light by terms in c5Eml that 
are linear in the fluctuations, when one scattering act 
takes place from anisotropy fluctuations and the other 
from concentration fluctuations yO] The intenSity of 
this scattering will be referred to the intenSity of scat­
tering from that sum (difference) modes of concentra­
tion and anisotropy fluctuations as ~2/N2. This quan-
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tity is less than unity for the mixture of nitrobenzene 
and n-hexane. 

We note that, in addition to the mechanisms con­
sidered, an important contribution to the depolarized 
light scattering near the critical stratification point is 
also made by double scattering from concentration 
fluctuations. [11,12] 
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Starunov and 1. L. Fabelinskil for valuable comments in 
a discussion of the present research. 

I)In the case of elongated molecules that are symmetric relative to the 
"long" axis, their mutual orientation can be characterized by the 
tensor ~ml = (3/2)(<nmnl~- (1/3) liml), where nm and nlare the 
projections of the unit vector in the direction of the long axis of the 
molecule on the m and I axes of the laboratory system of coordin­
ates; the averaging is carried out over the nearest neighbors of the 
central molecule. 

lIThe cross term from the first and second terms in the intensity of 
depolarized scattered light is equal to zero. 
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