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Nonradiative transitions in /L-mesic atoms involving the expulsion of shell electrons (Auger transitions) and 
the formation of electron'positron pairs are considered. It is shown that the weak interaction of the neutral 
currents leads to an asymmetry in the electron and positron emission with respect to the initial muon 
polarization. The asymmetry coefficient in the Auger transitions is 10-5_10- 6• The asymmetry coefficient 
in the pair production process can be increased by performing the measurements in the region of small 
resultant pair momenta. 

PACS numbers: 36.1O.+m, 32.l0.Qy 

1. INTRODUCTION 

The existence of weak neutral currents(11 leads to 
parity nonconservation in atomic processes[lI-41. On ac­
count of the large j.J.-meson mass, the parity nonconser­
vation phenomena should be most noticeable in j.J.-mesic 
atoms[5-71. It is generally suggested that, in order to 
observe parity nonconservation in radiati ve transitions, 
we can observe the highly forbidden, magnetic, one­
photon transition from the excited 2S level to the ground 
lS state, into which the weak interaction admixes the 
electric transition from the neighboring 2 P level. The 
interference between the electric- and magnetic-transi­
tion amplitudes leads to the appearance of parity-non­
conserving circular photon polarization, or to an asym­
metry in the photon emission with respect to the initial 
j.J. -meson polarization i: [5-71. The degree of circular 
polarization or of asymmetry in the photon emission can 
attain in light j.J.-mesic atoms several percent[5,61. How­
ever, their observation is, for quite a number of reasons, 
complicated. 

In particular, because of the relatively large P-level 
widths and the slow decrease of the Breit-Wigner dis­
tribution over energy, part of the unpolarized photons 
produced in the allowed 2P - lS transition will have 
the same frequency as the photons emitted in the 2S 
- lS transition under investigation. This can lead to 
a conSiderable effective decrease in the degrees of 
polarization and asymmetry if special measures are not 
taken. Such an obstacle can be avoided if, for example, 
we make use of the substantial difference in the life­
times of the 2 P and 2S states, and study the transitions 
from the metastable 2S levels after the population of the 
2P levels have become nearly equal to zero. 

The main difficulty encountered in the experimental 
study of the 2S - lS + y transition is connected with 
the fact that the probability of this transition in light 
mesic atoms (where the parity nonconservation effects 
are especially pronounced) is small compared to the 
probability of the other possible transitions from the 
2S state. On the other hand, in heavy mesic atoms, 
where the relation between the probabilities of the one­
photon and other possible transitions is more favorable, 
the parity-nonconservation effects are comparatively 
small, being of the order of 10-4_10-5. 

In this paper we consider parity-nonconservation ef­
fects in nonradiative transitions in j.J.-mesic atoms. To 
them pertain Auger transitions involving the expUlsion 
of one electron from the atom and transitions involving 

769 Sov. Phys.·JETP, Vol. 42, No.5 

z 

I 4 I 
O>,/m 0.037 

I 
0.066 I 0.10 0.26 2,19 I 251< 3.01 3.72 661 

wy • sec-I 30 5.3-102 5.0·IOS 5.5.105 1,2·tOIO 2.4.1010' 4.7·10U 1.1·1011 1.0·10" 
Wi)" sec- i 1.2·10' 6.9·10s 2.7.101 '1.5·10- 1.1.t.·1011 2.t·tOll 2. \).1011 4./1.1011 1.2·10tt 

W'y. sec- 1 -1 50 
1.4·1~ 2.8.107 3 7·101~ 84.1012 1.8.1013 4.8·t013 6.6.10 1, 

F -1.6.10-7 44.10-7 2.0·10-· 1.3·10-· 1.1.10-7 1.1·10-~ 1.:3·10-; 1.2·10-7 1.3·10-7 
We' sec-I 2.3·10' I 2.3.1011 24.1011 ~. 7 ·10~ 0.8·10' 7.7·109 8.8.109 1.1.1010 2.0.1010 

<l' -4~'0-'1 t3~0-'1 56.10-6 3,5.10-6 ~.2·10-6 2.2.10-8 2.2.10-6 2.1·10- 1,8·10--« w:_, sec-I - - 1,0.101 2.5.109 1.1.1010 4.5·1010 5.8.1011 

9', - - 7.4.10-6 4 3·10-~ 3.7·1O-ft 3.0.10-6 2.3.10-6 

Note. The values of the asymmetry coefficients ~e and :1, given correspond to 
Kp + NKn!Z = 1. The radiative-transition probabilities and the mixing parameters 
F were taken from the papers ('-']. 

the production of electron-positron pairs. The Auger 
transition involving the transition of the j.J. meson from 
the 2S to the lS level in the atom and accompanied by 
the expulsion of an electron from the lS shell!) is the 
primary transition in j.J.-mesic atoms when the nuclear 
char~e Z:s 10. For Z > 10 the dominant mode becomes 
the one-quantum transition from the 2S to the 2P level. 
A Significant role in mesic atoms is also played by the 
two-photon transition 2S - lS + 2y. Pair production 
becomes possible at Z > 22, when the 2S - lS transi­
tion energy, w = %mj.J.(a Z)2, begins to exceed 2m (m 
is the electron mass). The probability for pair produc­
tion, W+_, is, in contrast to the probability for the Auger 
effect, we, not limited by the phase volume of the initial 
bound electron. Therefore, w+_ rapidly outgrows we, 
and already at Z = 27 we have w+_ > we. A better idea 
about the relation between the probabilities of the dif­
ferent processes is given by the table. In it, besides the 
nonradiative transition probabilities we and w+_, we 
give for comparison the probabilities for the t:ransitions 
2S - lS + y (w y ), 2S - lS + 2y (W2y), and 2S - 2P 
+ y (w~). 

Parity nonconservation in nonradiative transitions, 
as in radiative transitions, is connected with the inter­
ference of the two diagrams 1a and 1b, an interference 
which leads to the appearance in the electron emission 
of an asymmetry with respect to the initial j.J.-meson 
spin. The degree of asymmetry turns out to be propor­
tional to the ratio of the amplitudes of the processes 
shown in Figs. 1b and 1a. The coefficient of mixing of 
the levels 2S and 2P, i.e., the product of the weak vertex 
W in Fig. 1b and the j.J.-meson propagator, which con­
tains in the denominator the difference between the 
energies in the 2S and 2PI/2 states, is a quantity of the 
order of 10-\ and weakly depends on Z[5-71. The elec-
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FIG. 1. Feynman diagrams for conversion processes. 

tromagnetic transition shown in Fig. 1b is an E1 transi­
tion; therefore, it is intensified in comparison with the 
EO and M1 transitions in Fig. 1a by a factor of (qafJ.rl 
= TjfJ./q, where q is the momentum of the intermediate 
photon and afJ. = Tj ~l = (mfJ.aZ r l is the Bohr radius for 
the fJ. meson. To sum up, the asymmetry coefficient ~ 
turns out to be proportional to the quantity TjjJ./q x lO-7. 
For Auger transitions q = p, where p is the momentum 
of the outgoing electron. In the nonrelativistic region 
(for small Z), p = (2mW)l/2, TjfJ./q~ (mfJ./m)l/2, and 
~~ lO-7(mfJ./m)1/2~ 10-6 • In the relativistic region (for 
large Z), q = p ~ W, TjfJ./q ~ (aZr\ and ~~ 10-7 (aZrl. 

For transitions involving pair production when 
Z > 22, the momentum q of the intermediate photon is 
equal to the combined momentum of the pair and can be 
arbitrarily small, while the degree of asymmetry can 
theoretically be reduced to unity. Unfortunately, as q 
decreases, the differential probability for the process 
decreases in proportion to q4 (the amplitude of the pro­
cess in Fig. 1a is ~q, while the phase volume is 
~q2dq), so that for each order of magnitude earned in 
the asymmetry coefficient ~, we lose four orders of 
magnitude in the probability. In reality, we can, appar­
ently, count in the pair-production process on a value 
for rJ' not greater than 10-5 • 

Another mechanism leading to parity-nonconserving 
correlations and not connected with the mixing of the 
2S and 2P levels is also possible in nonradiative transi­
tions in mesic atoms. This is the weak direct contact 
interaction between the electron and muon currents (see 
Fig. 1c). The ratio of the magnitude of this diagram to 
that of the diagram in Fig. 1a is of the order of 
Gq2/47Ta ~ lO-l1, where G is the Fermi weak-interac­
tion constant. For the processes under consideration, 
on account of the smallness of q, Fig. 1c is four-five 
orders of magnitude smaller than Fig. 1b, and therefore 
we shall not consider it. 

The M1 magnetic transition in Fig. 1a is highly for­
bidden, and arises only when the retardation of the spin­
orbit interaction is allowed for(8-l01. The magnitude of 
the M1 term is of order (aZ)2 times the magnitude of 
the EO term; therefore, we shall neglect the magnetic 
transition. It should, however, be noted that the inter­
ference of the M1 and E1 transitions can lead to another 
P-odd correlation, i.e., to the longitudinal polarization 
of the final electrons (positrons), a polarization which is 
absent when only the EO-E1 interference is taken into 
account. It follows from the foregoing that the longitud­
inal polarization is (aZ)2 times less than the degree of 
asymmetry rJ' in the electron emission with respect to 
the initial fJ.-meson polarization. 

Furthermore, the magnetic term is responsible for 
the appearance of a parity-conserving correlation of the 
type (tfJ. .q) (te .q) (where tjJ./2 and te/2 are the fJ.-
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meson and electron spins), which vanis~es upon averag­
ing over the electron sfilJ.s. The relative contribution of 
this correlation ~ (aZ) , which is much greater than the 
asymmetry ~ connected with parity nonconservation. 
Therefore, when the averaging over the final-electron 
spins te is not sufficiently thorough, the indicated cor­
relation can imitate the P-odd asymmetry (tfJ. • q). For 
the pair-production process, when we take into account 
the exchange of two quanta one of which is of multipole 
order M1, there also arises the azimuthal asymmetry 
tjJ. . [Pl x P2] (p~ and PI are the electron and pOSitron 
momenta), the relative contribution of which is propor­
tional to (aZ)3. The azimuthal asymmetry can also 
hinder the measurement of the asymmetry connected 
with weak interactions. 

There may arise in the experimental study of non­
radiative transitions the difficulty mentioned above in 
connection with radiative transitions. Beeause of the 
small energy difference between the 2P and 2S states, 
it is difficult to separate, according to energy, the con­
version electrons connected with the 2S - IS transi­
tion from the background electrons connected with the 
2P - IS transition. In the case of nonradiative transi­
tions the influence of this background is of less im­
portance, since the probability of the nonradiative 2P 
- IS tranSition is greater than the probability of the 
2S - IS transition by a factor of only ~ 102 (and not by 
a factor of ~ 10I4Z-s, as in the case of the one-photon 
transitions). The background can also be suppressed 
through the use of the difference in lifetimes of the 2P 
and 2S states. 

In computing the amplitudes of the nonradiative 
tranSitions, we did not take the finite dimensions of the 
nucleus into account. For light mesic atoms the correc­
tions for the finite nuclear dimensions are of the order 
of qRn ~ lIfJ./m7T ~ (aZ)mjJ./m7T ~ aZ, and can be dis­
carded in our approximation. For mesic atoms with 
large Z, where these corrections are more important, 
the obtained results should be regarded as approximate 
estimates. 

2. THE AMPLITUDE OF THE PROCESSES 

The Auger-transition and pair-production amplitude 
can be obtained from the diagrams in Figs. la and Ib. 
In the momentum representation the amplitude has the 
simplest form-the products of the muon J( q) and elec­
tron J' (q) currents with the photon propagator l/k2; 

S 4mx, d'q 
A = J,(q) "'kf J, (q) (2n)' , (1 ) 

(2 ) 

In the zeroth approximation in the Coulomb field, at the 
electron vertex in Fig. 1, momentum is conserved and 
the current J~ (q) can be represented in the form 

J,'(q)=j,(q) (2n)'6(q-p,-P2). (3) 

Substituting this expression into (1), we obtain 
41Ia 

A =J.(q)'k'j,(q). (4) 

For the Auger effect 
p,=o, P2=P=q, j,(q) =N,u p 1,uo, 

N,'=,,'/n, ,,=maZ, N,='¥,s'(O), 

where up, uo are the Dirac bispinors and N I is the 
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normalization factor for the wave function of the elec­
tron in the initial state, the square of which performs 
the function of the phase volume of the lS electron. 
For pair production 

(5b) 

It is convenient to write the expression for the muon 
current in the lowest approximation in £liZ in a two­
component form. Using the expression for the coeffic­
ient of mixing of the 2S and 2P states[5- 71: 

. _ (2P'I.IWI2S) . Gm.' ( 3 )',. ( Z),T\, (Z +N ) 'LF = = ~ -- - ct - Xp 'X n , 

WL 32n 2 WL (6) 

T\,=m,aZ, wL=E(2S)-E(2P'I,), 

where G is the Fermi weak-interaction constant, Kp 
and Kn are the coupling constants for neutral currents 
for protons and neutrons, we obtain the following expres­
sion for the muon current Jv (q) (Fig. 1b): 

-( az)' q' { A} 1,=41'2 9""' -;;;ZX,s' 1+0xn -q X,S, 

(7 ) 

- (az)' q {A W ( k')} J=41'2 ~ -x,s' n+o--e[oxn]- 1+-- XZS. 
9 W q m, 2m,w 

Here 

w=E (28) -E (18) ='/,m,(aZ)', n=q/q, 

n -- Gm.' w' 
A = -T\,F'=F1'2m,w=aZ--_ -(Zxp+Nxn) ' 

2 3n 1'2 WL 
(8) 

Xi and C1 are the Pauli spinors and matrices. The first 
terms in J o and J correspond to the EO transition; the 
second terms, containing A, to the E1 transition. We 
have also written out the magnetic M1 term (the last 
term in J), which is of the order of wi mfl = % (£liZ l 
as compared to the EO part of the current. The mag­
netic term is necessary for the estimation of the degree 
of longitudinal polarization of the final electrons, as 
well as of the correlations that hinder the observation 
of the parity-nonconservation effects and that were 
mentioned in the Introduction. In computing the asym­
metry in the electron or positron emission, we can 
neglect this term. It can be seen directly that the cur­
rent (7) satisfies the transversality condition 

kl =W/ .-qJ =0. 

The probability for the production of the pair e+e­
can be computed with the aid of the formula 

~ (4na)' ~ ~~ ~ dw= ~ IAI'df= k' Sp, Sp.{(p.+m)/(p,-m) p,J"}df, 

'.' 
p,='/,(H~o), 

d'p, d'p, 
df= 2e,(2n)' 2e,(2n),2n6(w-e,-e,), 

(9 ) 

where Pl, El and P2, E2 are the momentum, energy of 
the positron and electron, PJJ. is the polarization density 
matrix of the JJ. meson, and ~/2 is the mean value of 
the initial muon spin. To compute the probability for 
the Auger effect in (9), we should set 

p,=O, e,=-m, (2n)-'d'p,=N,'. (10) 

The computation of the trace with respect to the muon 
variables with the density matrix PJJ. is equivalent to 
the replacement of the C1 matrix in the muon currents 
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(7) by ~ and the dropping of the Pauli spinors Xi (the 
terms quadratic in C1 in the product of the muon cur­
rents in (9) are of the order of G2 , and should be dis­
carded). The computation of the trace with respect to 
the electron variables yields 

( 4na)' dw = --;;,;- 4{2 Re(p,/) (p,J")-(p,p,+m') (JJ")}df. (11) 

3. THE PROBABILITY OF THE AUGER EFFECT 

Carrying out the substitutions (10) in the formula (11), 
we obtain 

,2"1'3 ( m) 3+'1, ( W ),j, 
w,=ma -3" - 1 + -2 ' m, m 

(12 ) 

1/ m, 1 3, P 
!l',=2F V m (Hw/2m)'" ' w=gm,(aZ) , n=p' 

where F is defined in (6) and p is the momentum of the 
outgoing electron. In the nonrelativistic approximation, 
in which w « 2m (Z « 22), we can replace (1 + wl2m) 
in (12) by unity. In this approximation, only the temporal 
(Coulomb) part of the current (7) makes a contribution 
to the probability (12). The results of the calculations 
of the total Auger-transition probability we and of the 
degree of asymmetry iY'e for mesic atoms with differ­
ent Z are presented in the Table, where we also indi­
cate the values of the coefficients F of mixing of the 
2S and 2P states that were used in the calculations[5- 7 1. 
The greatest asymmetry iY'e ~ 10-5 can be expected in 
mesic atoms of Li and Be (because of the large coef­
ficient of mixing of the 2S and 2P levels); for other 
mesic atoms the quantity iY'e ~ (2-5) x 10-6• In spite of 
the small magnitude of the parity-nonconservation ef­
fects, as compared to the radiative tranSitions, Auger 
transitions in light mesic atoms may be of interest be­
cause of their high probability. 

4. PAIR PRODUCTION 

For the pair-production process the formula (11) 
gives 

( 2 az) '{ [( 2e,e) dW._=(8na)' 9-;- q'-e'+2A~ p, 1+~ 

+p, ( 1 _ 2::e ) ]} df, (13) 

The phase volume dr and the quantity A are defined in 
the formulas (9) and (8). 

In the presence of an initial muon polarization ~, the 
final state of the pair e+e- is characterized by three in­
dependent variables. As these variables we can choose 
q, El, and the angle "1 between the vectors ~ and Pl 

(Fig. 2a) or the angle" between the vectors ~ and q 
(Fig. 2b). The angles "1 and", as can be seen from 
Fig. 2, vary within the usual limits 0 s J, ~l S 71". The 
physical region in the variables q and E 1 are limited 
by the condition 

Ip,-ql<p,<p,+q, p!=e;'+m', 8,+8,=W. 

This region is hatched in Fig. 3. The upper and lower 
boundaries of the physical region are determined by the 
equation 

w±1q (4m') 'f, 
8,=-- ~= 1-- k'=ro'-q' 2 ' I k 2 ' • 
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FIG. 2. Kinematic variables in the e+e- pair production reaction. 
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FIG. 3. The physical region for the e+e- pair production process. 

The maximum and minimum values of E 1 are attained 
at q = .J w(w - 2m), The maximum value of q is at­
tained at E, = w/2, and is equal to 

q=qm=(W'-4m')"'. 

The measurement of the momentum q transferred to 
the mesic atom is possible only when the electron and 
positron momenta are also measured at the same time; 
for the direct measurement of the recoil of the mesic 
atom is very complicated. If only the positrons are de­
tected in the experiment, the formula (13) for the proba­
bility should be integrated over all q. Using the coordi­
nate axes shownin Fig. 2a, and taking into account the 
equalities 

we remove in dr the energy a-function by integrating 
over cos e = q 'P,/qp" Rewriting in (13) the vector 
P2 in the form q - PI and averaging over the angle <P 
(Fig. 2a), we obtain 

- f dcp i;q = i;q 2n = (i;n,) (qn,), 

p, q'-W8 
D1=P:' qn t =2p;-0 

Integrating further over q at fixed E1 (Fig. 3), we ob­
tain the distribution over E1 and t, = t 'n,/1; = COS",: 

For P, - 0 the expression in the curly brackets in the 
expression for 9',( E ,) is proportional to p~, and the 
asymmetry coefficient tends to zero linearly in P,. At 
the opposite edge of the spectrum, i.e., for P2 - 0 and 
PI - P1 max = .J w( w - 2m), the asymmetry 9',( E 1) 
- 2A/P1 max = 2A[w( w - 2mWl/". The diagrams il-
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FIG. 4. Dependence of the asymmetry coefficient ~,(e ,) (solid 
curve) and of the pair production probability w+_(e ,) (dashed curve) 
on the positron energy e, for mesic atoms with Z = 23. 

lust rating the dependence of 9', on the positron energy 
Eland the energy distribution of the pOSitrons for 
mesic atoms with Z = 23 are shown in Fig. 4. 

If we fix only the direction n, of positron emission 
independently of its energy, then the angular distribu­
tion of the positrons can be obtained from (14) by inte­
grating it over E ,: 

(15 ) 

Numerical values of the total pair-conversion probabil­
ity w+_ and of the asymmetry coefficient 9', are pre­
sented in the Table. An analytic expression for w+_ is 
given below (the formula (20)). In the nonrelativistic ap­
proximation, in which w - 2m == Eo« m, the formulas 
(14) and (15) assume the simple form: 

( Sa' (az)' 8.p,p, (14a) 
dw+_ e"t.)=-;- 9 -;;;a{1+i;n,9',(s,)}de,dt" 

9', (e,) =Ap/me., p,= (2me.-p,') 'I,. 

Integration of (14a) over E, yields 

dw+_ (t,) =2a' (aZ/9)'m (eolm) 3 {1 +i;n,9',}dt" 

64 A (15a) 
9',=--(--),-" 8.=w-2m. 

15n 2mB. ' 

It can be seen from (15a) that the coefficient of asym­
metry grows, as the reaction threshold is approached, 
in proportion to qu't ex; (2mEotl/2, while the probability 
decreases in proportion to d. 

During the simultaneous measurement of the electron 
and positron momenta, we can measure the asymmetry 
with respect to the resultant pair momentum q. The 
differential probability in these variables assumes, 
after averaging over the angle <PI (see Fig. 2b), the 
especially simple form: 

dw+_(q,e"t)=2: (! a: ),(q'-e') { 1+2i;n~}qdqde,dt, (16) 

t=cos -&=i;n/~. 

Integrating (16) over E10 we obtain 

dw+_(q, t) ='/,w+_ (q) {1+bn9'(q) }dqdt, (17) 

where 
Sa' (2 aZ )' ( 2m' ) ( 4m' ) 'I. w+_(q)=_ -- q' 1 +-- 1--- , 
3n 9 W k' k' 

9'(q) =2A1q. 
(18) 

The linear growth of the asymmetry coefficient 9'( q)2) 
with decreasing q can clearly be seen from the formu-
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FIG. 5. Dependence of the asymmetry coefficient9'(q) (solid curve) 
arid of the pair production probability w+_(q) (dashed curve) on the 
pair momentum q for mesic atoms with Z = 23, 30. Along the hori­
zontal are plotted the values of q/qm, where qm = (w2-4m2)112 is the 
maximum possible momentum of the e+e- pair. 

las (16) and (18); in this case, however, the pair-produc­
tion probability decreases rapidly in proportion to q4. 
An idea about the scale of these quantities is given by 
Fig. 5. Integrating (17) over q, we obtain an angular 
distribution of the form 

dw+_(t) ='/,w+_ (1+i;n.9'}dt, (19) 

where the total pair-production probability w+_ and the 
asymmetry coefficient 9' are expressible in terms of 
the hypergeometric functions 2F I according to the 
formulas 

713 

w+-=2(X'(~J)'(~~)'qm2F,(4-, ~ ;4;X), 

.'1' = ~_ ,F, ('/,,1; '/,; x) 

1.S:rrqm ,F, ('/" '/,; 4; .x) 

q". = (ul'-4m') "'. .T=qm'/w'=1-4m'/w'. 

SOY. Phys.-JETP, Vol. 42, No.5 

(20) 

In the nonrelativistic limit the formula (19) assumes a 
form similar to (15a) with 9' = 9'1 Fl. 

The authors are grateful to N. P. Popov for a discus­
sion of the work. 

I)The probability of Auger transitions involving the expulsi~n. of elect­
rons from the 1 S shell constitutes 80% of the total probablhty of 
Auger transitions from all the shells because of the decrease of the 
phase volume of the bound electrons in proportion to nOs, where n is 
the principal quantum number. 

2)If we obtain a distribution of the type (17) in the mixed variables 
(q, t l ) of Fig. 2a, then the asymmetry coefficient ~(q) characterizing 
the correlation ~nl will no longer be singular at q -> O. 
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