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Quasiclassical expressions are obtained for the energies and phases of a Dirac particle in a static centra1ly­
symmetric field, and formulas are also obtained for the scattering cross sections at small and large angles. 

PACS numbers: lUO.Qr 

The quasiclassical approximation for the four-dimen­
sional Dirac equation is well known (see[1,2J). In the 
case of a static centrally-symmetric potential one can, 
however, proceed much farther; the goal of the present 
article is to give a simple derivation of the pertinent 
formulas. 

1. As is well known, the wave function of a Dirac par­
ticle with a given angular momentum j in a static central 
field V(r) is represented in the form (the notation is the 
same as in [3 J ) 

(1) 

where f and g satisfy the system of equations 

df x 
dr +rf-f.lg=O, 

dg x 
~--g+(f.I-2m)f=O, 
dr r 

(2) 

where J1. = E + m - V. In principle this system might be 
reduced to the SchrOdinger equation; however, in this 
connection an extremely complicated effective potential 
is obtained. The reduction of the system (2) to the 
Riccati equation, proposed in [4], is a more convenient 
method for the transition to the quasiclassical approxi­
mation. Namely, it is shown in this article that if the 
substitution 

is made in Eqs. (2), then 

t=r-x exp [i j.leD dr], 

and ~ obeys the equation 

deD 2x , 
-. --~eD+f.leD +f.I-2m=O. 

dr r 

(3) 

(4) 

(5) 

This equation is convenient for the transition to the 
quasiclassical approximation; denoting the distance over 
which the potential changes significantly by a and intro­
ducing the notation 

[ 2EV-V' x' ]'t. r 
n= l---k,-- x'(ka)' ' k'=E'-m', x=-;;-, 

let us solve Eq. (5) with respect to ~: 

IIJ = ~ (~± ikan [1+ ~~~~] 't'). 
~ x ka k n' dx 

The formal expansion parameter associated with the 
transition to the quasiclassical approximation is 

(6) 

(7) 

,\ = (karl «1; in this connection one must be careful 
that all of the functions appearing in connection with 
higher powers of this parameter are not large. In addi­
tion, it is·necessary to take into consideration that values 
K ~ ka are important, as follows from the known connec­
tion between the angular momentum and the impact 
parameter. 
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Solving Eq. (7) according to perturbation theory, we 
obtain 

1 x k i IIJ' i <D" 
eD= j.la -;±i;-n± 2ka -;;:-+ 8(ka)' (;;-) + ... , (8) 

where the prime denotes the derivative with respect to 
x. The first and second terms in Eq. (8) are the zeroth 
approximation. The following conditions must be satis­
fied in order for the expansion to be valid: 1) n doesn't 
vanish anywhere, i.e., x does not lie nea.r the turning 
points; 2) none of the derivatives of n tend to infinity, 
i.e., the potential is a smooth function of x. More pre­
cisely as follows from Eq. (7) it is neCE!Ssary that 

_1_~~(~~±i~n) ~ 1. 
kan' k d.x f.la x f.I 

(9) 

Under these conditions, by using Eq. (4) the function f 
can be represented in the form 

f±=C}/ j.I exp{±irka'S(n+~~)dx+~J~ddV]+O(-k1 )}. 
.'Y kn 2 ax 2ka I1nx x a 

" 
Introducing the notation 

, [ H']~ S(r)=S pdr, p= k'-2EV+V2 __ ;:o' (10) 
" 

where ro denotes the value of r corresponding to the 
zero of p, we obtain the quasiclassical wave function: 

'¥ =.-:... V f.I (Qjim Sin (cp(r)+6) ) 
r p ,p " . (-1) ('+l-' )/2Qj"m [-cos(cp(r) +6) + -sm(cp(r)+6) J 

f.I W (11) 
1 as 1 

cp(r)=S+--+-L\ 
2 a" 2 ' (12) 

(13) 

The phase Ii is determined from a comparison of expres­
sion (11) with the asymptotic form of the wave function 
for free motion: 

whence it follows that 

l5=n/4. (15) 

It also follows from expression (14) that, for unbounded 
motion associated with normalization by 6(k - k'), we 
have 

(16) 

The expression S + ClS/2ClK, appearing in (P, can be con­
sidered as an expansion of the formula 

S'= Sp'dr, p'=[k'-2EV+V'-(,,+'/,)'/r'J'''. (17) 
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in powers of l/ka (for K - ka), which corresponds to the 
substitution Z(Z + 1) - (Z + 1/2)2 in the nonrelativistic 
case. In connection with the transition to the nonrela­
tivistic limit, the lower component of the bispinor in ex­
pression (11) and ~ tend to zero, and the only difference 
from the Schrooinger equation consists in the presence 
of n·Z instead of YZ • In the relativistic situation all 

Jm m 
terms are of the same order. We note that the quantity ~ 
originates exclusively from the spin-orbit interaction. 

2. The discrete spectrum will be examined in this 
section. Let two turning points exist, a and b, and let the 
motion take place in the domain a < x < b. To the right 
of the turning point a, the wave function is of the form 
(11) with 1) = 1T/4 and S and ~ determined in expressions 
(10) and (12), where ro = a. The wave function is attenua­
ted to the right of the point b; in order to obtain it, one 
must make the substitutions ± in - ± I n I, ± i/n - ± l/ln I 
in expressions (8) and (9); then ±is - ± lSI and ±it. 
- ± It. I· Discarding the increasing exponential, we obtain: 

'l'(x>b)=£'ll IL exp[-ISI-~~+~] 
r V Ipl 2 ax 2 

(
Q;Im ) 

x 1
1L
(; -Ipl ) (_l)"+l-l"/'Q",", . (18) 

In order to find \}I to the left of the turning pOint it is 
necessary, as is well known, [5J to analytically continue 
(18) in the complex r-plane; in this connection we obtain 
the result that, to the left of b the wave function (18) 
corresponds to the function (11) but with ro = b. In order 
that both functions coincide for all a < x < b, it is neces­
sary that 

Sb ( 1 ap x 1 dV) n p+--+---- dr+-=n(n,+1), 
a 2 a x 2pr IL dr 2 

(19) 

where nr is equal to the number of nodes in the radial 
wave function, that is, we obtain a generalization of the 
Bohr-Sommerfeld quantization rule to the relativistic 
case. For a Coulomb field the quasiclassical approxima­
tion is valid, just as in the nonrelativistic case, for all 
values of K if the Coulomb parameter II = aZE/p is large, 
or for all energies if K is large. Formula (19) gives the 
exact expression for the energy of a Dirac particle in a 
Coulomb field, as one can easily verify. If the substitu­
tion p + (1/2)(op/oK) - p' is used, where p' is given in 
(17), we obtain a formula valid to within (nr + Kr l (in 
contrast to the nonrelativistic approximation, where both 
formulas give the same expression for the energy). 

The wave function of the discrete spectrum has the 
form (11) with a normalization constant which is deter­
mined in the same manner as in the nonrelativistic case 
(see [5J); it is easy to obtain the result 

C-'= J drE~V. 
3. Let us consider the scattering of Dirac particles. 

Using the partial wave expansion of the amplitude and 
changing from a summation over Z to an integration over 
the dimensionless impact parameter b = Z/ka, we obtain 
the following result accurate to terms of order (karl 

j=A-iBva, 

k' 00 

A = 2; S P.ab(COS fl)bdb[e,;o(b' (1+e- ZiA ,b')_2], 
o (20) 

k' 00 

B = ~S pI (cos fl)db e"'(b, (1-e-"A(") 
~ w , 

o 
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where ~ is given in Eq. (13), Pz and pi are Legendre 
polynomials, 

/1 1 00 1a oo 
1\=--kro+,~(l+-) +J (p(r)-k)dr+--J p(r)dr, 

2 2 2 2 al 
To To 

and p is given in (10) with the replacement of K by I. 

In the case of small scattering angles, replacing the 
Legendre polynomials by their asymptotic expressions / 
in terms of Bessel functions, we find that for e « (karl 3 

the impact parameter representation is valid for the 
amplitudes: 

A =~S'ei"[e"'(1+e-''')-21d'b, 
4m 

B =~ Se i•bq b e'''(1-e-ZiA )d'b 4ni 0 0 , 

(21) 

where q is the dimensionless momentum transfer, and 
qo and bo are unit vectors in the directions q and b. We 
note that in contrast to the eikonal formulas, in Eqs. (21) 
no restrictions are imposed on the magnitude of the po­
tential. The eikonal approximation is obtained from (21) 
provided that EV /k2 « 1; in this connection V « E + m, 
t. - 0, and B - 0, that is, at high energies the spin-flip 
scattering amplitude does not contribute to the diffrac­
tion peak. The asymptotic (in the limit E - 00) expres­
sions for the phases and for the cross sections coincide 
with the corresponding formulas for the Klein-Gordon 
equation, for example, from (21) and the optical theorem: 

a,"/(E-+oo)=8na' jbdbsin2(j VdZ) , z'=r'-(ba)'. 
o 0 

By operating in the same way as in the nonrelativistic 
case [5J , we obtain the following results for large scat­
tering angles: 

A 
(ka)'" 

ik (2n sin fl) 'I, 
S jib db (ei~'+e"-) cos /1, 

(ka)Y' -B S I'bdbk~'-e"-)sin /1, ik(2n sin fl) 'I, 

where 

=ka[2 S- (n-1) dx-2xo+b (n±S) l+~ S-ndX+~'f'~, 
ab 2 4 

~ ~ 

n(b)=(1- 2EV-V' _~)'I'. 
k' x' 

Since ka » 1, one can use the method of steepest des­
cents; then 

A=je" cos /10, B=efei, sin /10, 

where f is the classical, relativistic, spinless scattering 
amplitude: 

=a(~ dbo )'" 
f sin fl dfl ' 

b o and dbo/de are determined from the usual condition 

_~Soo ndx= n±fl 
Db 2 ' 

(22) 

where the upper sign corresponds to an attractive poten­
tial, the lower sign corresponds to a repulsive potential, 
y is a common phase factor which does not give a con­
tribution to the cross section, E is the sign function, 
E = 1 for the upper sign in Eq. (22), E = -1 for the lower 
sign, and ~o = ~(bo). If there are several b's which 
satisfy condition (22) for a given e, it is necessary to 
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write A and B in the form 

A = 1:, f. exp (il.) cos .1., B = 1:, eJ. exp (il.) sin .1.. (23) 
• 

Since the phases yare very large (of order ka), inter­
ference between different terms in (23) is practically 
unobservable, and the cross section is equal to the sum 
of the contributions from the terms with identical Yk' 
Therefore 

~=~ \""' I b.~ I {1+2s,sin.1.lv(stv)sin.1.+e[vs t]cos.1.}. 
dQ sin e "-.l de • 

Here 81 and 82 are the initial and final polarizations, and 
" is a unit vector perpendicular to the plane of the scat­
tering. 

For an unpolarized incident beam, polarization of the 
scattered beam is absent; if the incident beam is polar­
ized along the direction of motion, the scattered beam is 
polarized in the scattering plane perpendicular to the 
direction of the incident beam. 
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