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A sunple recursion equation giving an approximate description of critical phenomena in lattice systems is 
proposed. The equations for a d-dimensional spin system and a 2d-dimensional gauge system coincide. An 
interesting consequence is the zero transition temperature in the two-dimensional Heisenberg model and 
four-dimensional Yang-Mills model; this corresponds to asymptotic freedom in field theory. 
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INTRODUCTION 

Second-order phase transitions possess the remark­
able property of universality. In the critical region the 
micro-structure of the system is unimportant, and only 
its dimensionality and internal-symmetry group are 
important. IncreaSing the internal symmetry makes a 
phase transition more difficult-the critical dimension­
ality dc above which an ordered phase exists is in­
creased. Thus, dc = 1 for the discrete group SO(1) (the 
ISing Model), while dc = 2 for the continuous groups 
SO(n) (the Heisenberg model), Recently, gauge systems 
in which the parameters of the group can depend on the 
pOSition in the lattice have been introduced(ll, There is 
reason to expect that dc = 4 for continuous gauge 
groups. Such a system corresponds to relativistic field 
theory with a gauge-invariallt spectrum of states. Here 
the noninvariant objects (quarks) are confined within 
the invariant ones (hadrons) by long-range forces(ll. 

A recursion equation describing critical phenomena 
in a gauge system was proposed in the author's paper[21. 

Below, using the same methods, we shall obtain a 
recursion equation for spin systems. As in the gauge 
equation, the dependence on the dimensionality of space 
is separated out in explicit form. Here there is a re­
markable analogy between a d-dimensional spin system 
and a 2d-dimensional gauge system: the recursion equa­
tions for them COincide. From this follow, in particular, 
the values dc = 2 for the discrete gauge group and dc 
= 4 for a continuous gauge group. The transition tem­
perature and critical indices, which, in the general case, 
are determined by solving the recursion equation nu­
merically, can be expanded in powers of d - dc . 

The zeroth and first terms of the expansions for the 
indices are exact, In this respect our equation resem­
bles Wilson's equation[31, which gives the first terms of 
the expansion in 4 - d for spin systems. 

1. THE EXACT EXCURSION EQUATIONS 

We shall consider the two-dimensional Heisenberg 
model and introduce for it a Z-functional-a partition 
function with pinned spins at the boundary; by defini­
tion, the couplings between the spins at the boundary 
appear with half weight in the energy. As was re­
marked by Berezinskii[41, Z-functionals are multiplica­
tive: When neighboring regions are joined into one it 
is necessary to multiply their Z-functionals and inte­
grate over the spins on the common boundary. It is 
convenient to conSider square regions; then the func­
tional Z2L of a square with side 2L is equal to the 
averaged product of four ZL-functionals: 
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• 
Z.dSrl= S 11 (dS ••• ) n ZdSrJ, (1) 

i_I 

(dS) ... d"S<S(1-S') f(n/2) le'/'. (2) 

Here {Sd is the set of spins on the boundary of the 
2L-square, {Sy) are the sets of spins on the bound­
aries of the L-squares, and {Sint} are the spins on the 
internal boundaries of the L-squares (see Fig. 1). 

Equation (1) is a functional recursion equation, which 
must be solved with the following initial condition on 
the unit cell (Fig. 2): 

~ • h • 
Z.=exp ( "2.E S.s,+! +"2 .E s,) . (3) 

i_I i_I 

Analogous equations can be written in d-dimensional 
space-the number of factors in (1) will then be 2d. Ob­
viously, we are interested in the free energy in the 
statistical limit L - "". It can be related, in general 
form, to the solution of the normalized equation. This is 
done as follows. From the Z-functionals in (1) we sepa­
rate out their averages over {S}, i.e., the usual parti­
tion functions: 

ZdS}=(ZL·>WdS}. 

We then obtain for the correlation functional W a 
normalized equation of the form 

W'L"'7R(WL)/(R(Wd >, 
and we can express the partition function in terms of 
the correlation functional by the recursion relation 

(4) 

(5) 

<z,L)=(ZL>"'<lHWd>· (6) 

We then find the free energy - (3F = lim L -d In < Z L ) : 

As is usual in the recursion approach[31, the Singu­
larities of the free energy are associated with unstable· 

FIG. I. Exact recursion equations for the correlation functional of 
the two-dimensional Heisenberg model. The arrows indicate the distri­
bution of spins on the sides of the squares. Averaging is performed over 
the internal spins. 
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Za FIG. 2. Correlation functional of a unit cell. 
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fixed points of the equation for the correlation func­
tional: 

wL .... w. {S} + (~..:..~,)L'/v«I>dS}+hLd"':A«I>,(S}. (8) 

The critical indices II and ~ are determined from the 
equation linearized about W*: ~l and ~2 are its eigen­
functions, with eigenvalues 21/ II and 2d-~ respectively. 
After this, the free energy has the well-known scaling 
form 

F(~, h) = (~-~,)'df(h(~-~,) (A-d).) + regular terms (9) 

The singular terms are determined by the large dis­
tance 2k ~ (.B - .Bcrll or 2k ~ h-1/(d-~) in the sum (7). 

2. LOW-TEMPERATURE APPROXIMATION 

Up to now our arguments have been exact and have 
not differed, in essence, from the general Kadanoff­
Wilson schemerS). 

This scheme acquires practical significance if a 
successful way of approximating the functional equa­
tions by integral equations is found. The well-known 
approximation of Wilson is valid for d = 4 - €, when 
the spin fluctuations are close to being Gaussian. 

We propose another approximation, which is valid 
for d = dc + €, when the transition temperature is low. 

In the low-temperature approximation we shall 
neglect fluctuations of the spins along the side of a 
square (with d = 2, for the present) and shall seek the 
Z-functional in the form of a product of functions of the 
average spins of opposite sides: 

(10) 

After integrating over the four average internal spins 
in (1) (Fig. 3), we find 

F'L (S, S')= (F;.'):.'. (11) 

Here F2 denotes the contraction 

(F')ss'= J (dSI)F(S,S'~)F(S",S'). (12) 

In d-dimensional space we shall associate an 
average spin with each of the 2d faces of a cube and 
shall seek the Z-functional in the form of a product of 
d functions FL(Sit Si) of the pairs of spins on opposite 
faces. Integrating over the spins on the internal faces 
of the 2d cubes forming the doubled cube, we find 

(13 ) 

Finally, as in the gauge theory[2), it will be conven­
ient to generalize the equation to the case of an arbi­
trary change of scale in !laCe of the doubling. Proceed­
ing analogously, when;\ cubes are joined together we 
find the equation 

I,d-'I 

F,L (S, S') = (FL') •• " (14) 

where F;\ is the ;\-fold contraction. 

For noninteger ;\ this contraction can be defined by 
means of an eigenfunction expansion on the unit sphere. 
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FIG. 3. Approximate recursion equation. 
Spin fluctuations along the sides of the 
squares are not taken into account. 
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For the case when there is no magnetic field, so that F 
depends only on the scalar product (SS'), this expansion 
has the form 

(15) 

For the Fourier coefficients fp(L) we obtain from (14) 
the equation 

x.(l)f.(AL).~ J(dS) [Ef:(L)xq(SS')Nq] .... , )(.(8S'). (16) 

This equation goes over into the gauge recursion equa­
tion of[2), if in (16) we replace 

(17) 

The spherical functions Xp(z) appearing in (15) and (16) 
coincide for n = 2 and 4 with the characters of the 
groups U(l) and SU(2), respectively. Thus, the XY­
model is analogous to photodynamics, Le., to a lattice 
Abelian gauge theory, and the four-component Heisen­
berg model is analogous to the Yang-Mills lattice 
theory. 

These analogies are not accidental. Polyakov has 
shown by field-theory methods that in four-dimensional 
photodynamics a phase transition without ordering oc­
curs, as in the two-dimensional XY-model, while in the 
two-dimensional Heisenberg model there are, at zero 
temperature, singularities associated with asymptotic 
freedom, as in the Yang-Mills theory. 

In the framework of our approximation the analogy 
goes further and gives a relation between the critical 
indices, e.g., 

d gauge (2d) /d,pin (d) =v'pin (d) /gauge(2d) "",2. (18) 

3. THE ISING MODEL 

We shall start from the Ising model, in which the 
recursion equation (14) can be investigated analytically 
to completion. 

For the coefficients of the normalized correlation 
functional 

WL=l+SS' th ~(L) =eP(L)88'/ch ~(L) 

the equation reduces to the following: 

th[~(AL)A'-dl=th'~(L), ~(a) =~. 

(19) 

(20) 

Linearizing the equation near the fixed point .Bc, we 
find the index ~' = d - lI'l in (8): 

d'=OnA)-t 1n [ sh2~, ]. (21) 
. sh 2~oA' • 

The second index ~ can be found if we seek the solution 
in the form 

1 
WL = ch ~, exp (~,s8' +hLd-. (8+8'» (22) 

and linearize (14) in h. We then obtain 
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d=1+2~,(At-d-1)/lnA. (23) 

The dependence of the transition point and critical in­
dices on the model parameter ~ indicates the inexact­
ness of our approximation. 

It is interesting that the indices do not change when 
~ is replaced by ~ -\ whereas the transition tempera­
ture acquires a vector ~d-l. From this point of view, 
the choice ~ = 1 is optimal (the apparent singularities 
at ~ = 1 cancel in all the quantities). Numerical values 
of the parameters for ~ = 1 for the two-dimensional 
model are given in the table. 

The critical temperature coincides with the exact 
answer, the dimension t:. of the order parameter is out 
by 5% and the dimension t:.' = d - V -1 of the energy 
density is out by 25%. Of course, for the two-dimen­
sional ISing model such a crude approximation is of no 
value. There exist calculations by Kadanoff, also based 
on the recursion approach, giving an accuracy of better 
than 1%. Unfortunately. it has not been possible to 
generalize these calculations-they use the discreteness 
of the group in an essential way. 

Our equations for the ISing model should become 
exact for d - 1 + €, when the transition temperature 
tends to zero. In this case we find 

(24) 

2 A'-1 
d'=1 +"'3 lIiA r·~'+O(r·~'). (25) 

1 A'-1 " 
d=3 InA e-·~+O(r·~'). (26) 

The first terms of the €-expansion (2{3c = €-\ t:.' = 1, 
t:. = 0) do not depend on ~, and so it may be hoped that 
they are exact. We have not succeeded in finding a 
proof of this hypothesis. It is curious that the first 
terms of the €-expansion give a fair approximation to 
the two-dimensional ISing model. 

Concerning the gauge-model analog. the following is 
known[5J. 

For d = 2 it reduces to the one-dimensional Ising 
model and is described exactly by our equation. For 
d = 3 the free energy reduces to that of the three-dimen­
sional Ising model with {3c = 0.76 and v = 0.62. Finally, 
the transition temperature is known for d = 4: 2{3c 
= In (1 + 12). Our equations «20) with the replacement 
(17) for ~ = 1) give {3c = 0.9 and v = 1.05 for d = 3, and 
2 f3c = In (1 + f'l) and v = 0.66 for d = 4. 

Summarizing, we can say that, by comparison with 
other recursion methods, our equation describes dis­
crete groups rather crudely. The advantages of our 
equation will become apparent in the case of continuous 
groups, where the other methods are inapplicable. 

4. CONTINUOUS SYMMETRY GROUPS 

In systems with continuous symmetry the critical 
dimensionality dc = 2. We shall seek a solution of Eq. 
(19) for d = 2 + € in Gaussian form: 

Fdcos 8) -+-exp(A (L) -~(L) 8'/2) 

with a low effective temperature f3- 1(L). 

(27) 

Integrating by the method of steepest descents and 
retaining terms ~ f3 and ~ 1, we find a relation for (3(L): 

Il(ALl =At~(L) +1/. (n-2) I.' (1-A) +O(~-t). (28) 
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~=I I Onsager', 
solution 

In(1 + V2)=O.881 In(1+ 
+V2) 

11' V21n (1 + V2) = 1.246 1 
11 ' 1-1n(1 + Vi) = O.it9 1/8 

From this we find the transition temperature: 
;"-21-A n-2 A-1 ' 

~'=-6-A'-'-1 -+-6e""'lnI"+0(1) 

and the critical index v: 
v=8-'+0(1). 

(29) 

(30) 

The second critical index t:. corresponds to the aniso­
tropic solution 

FL-+-exp(A-~,8'/2+hLd-'(S+s') (Has')). (31) 

Linearizing Eq. (11) in the magnetic field h and in­
tegrating by the method of steepest descents, we obtain 

a=1/12, 

2-'=1- (n-1)/12~,+0(~,-2). 

(32) 

(33) 

Substituting (3c for ~ = 2 from (29) into this, we find the 
first term of the €-expansion: 

n-1 e 
d=---+0(e2). 

n-2 2 

The exact values of the linear terms in the €-expan­
sions for the indices have been found by Polyakov by 
the methods of chiral field theory. 

(34) 

Our results (30) and (34) coincide with the exact 
results. This is not surprising. inasmuch as the transi­
tion temperature vanishes linearly with €. and our 
model becomes exact in the low-temperature limit. The 
proportionality coefficient €{3c in (29) depends on ~, and 
differs from the exact value: 

e~,exact -+- (n-2)/21t. (35) 

For ~ = 1 the difference will amount to 5%. 

But what happens in two-dimensional models? The 
power temperature singularities as € - 0 go over into 
exponential singularities. e.g., 

( ~ ) -v ( ~" ) ( 21t~ ) r, - 1 - - -+- exp - -+- exp -- . 
~, ,~, n-2 

(36) 

The power dependences on the spatial scale 
into logarithmic dependences: 

n-2 L 
~(L}-+~~-In-. 

2n . a 

- ,[ ~ (L) ] (n_I)/I(n_2) 

hLd-'-+hL' '--
" ~ 

L go over 

(37) 

(38) 

It is not difficult to verify this by considering the re­
cursion equations for € = 0 in the Gaussian approxima­
tion. The zero transition temperature of the two-dimen­
sional Heisenberg model means that ordering is absent 
at all temperatures, in accordance with Hohenberg's 
theorem. 

The XY-model, in which the corresponding group 
SO(2) is Abelian, represents a special case. For € = 0, 
n = 2, the transition temperature and critical index t:. 
in (35) and (34) remain indeterminate. The correlation 
length (36) is infinite at suffiCiently low temperatures, 
when the Gaussian approximation (27) is applicable. The 
corrections to the Gaussian approximation are exponen-
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I 
tially small, since they are connected with the edges of 
the range I cp I < 1T of integration over the angles of the 
two-dimensional spin vector. 

If we extend the integration to I cp I < 00, the Gaussian 
form with any f3 will be a fixed point. Linearizing Eq. 
(11) for n = 2 near the degenerate Gaussian point 

( ~ h(8+8') ) 
F.=exp A - -.8' + ---£'-''1' (8) 

2 18+8'1 ' 

we arrive at the integral equation 

lr~+oo (( 8 )') . cp-8 
2-''1'(8)= v-;·Jdcpexp -~ CP-2 cos-2-'I' (cp), 

the solution of which can be found in the form of a 
double series in 82 and T == f3- I: 

8' 7T 8' 
'1'=1- 24 (1+ 90 - 80 + ... ), 

TiT ' 
~ln2=12-Th2) + ... 

(39) 

(40) 

(41 ) 

(42) 

Solving Eq. (11) numerically for n = 2 (without a mag­
netic field) shows that the initial function F 0 

= exp (f3 cos cp) goes over after several iterations to the 
Gaussian form exp (A - (3cp2/2) with 73 = f3 + 0(1). The 
Gaussian form is held for a very long time for f3 ~ 1, 
and then moves away rapidly to F = I, which corre­
sponds to the disordered phase. For f3 > f3c "" 1.7, the 
Gaussian form remains throughout the entire interval 
chosen (100 iterations). This means that for f3 > f3c the 
correlation length is effectively infinite, i.e., the region 
f3 > f3c is on a phase-transition line. This corresponds 
to the curve Tc(€) (Fig. 4) obtained by solving Eq. (16) 
numerically for ,\ = 21; (d-1), when this equation sim­
plifies in the Fourier representation. 

We recall that, according to the analogy between 
gauge and spin systems, all that has been said above 
can be carried over to four-dimensional photodynamics. 
These results agree with the general conclusions of 
Berezinskil for the XY-model['l and of Polyakov for 
photodynamics. 

CONCLUSION 

The results of this paper are summarized in Figs. 5 
and 6. Figure 5 enables us to understand intuitively how 
phase transitions cease at the critical dimensionality of 
space. Figure 6 shows what happens to the spectrum of 
dimensions in this case. The behavior of the spectrum 
for d = 4 - € is known from Wilson's work[31. The 
upper curves correspond to the dimension t:.' = d - V-I 
of the energy-density operator. The dimensions of com­
posite operators are not given in this figure. These 
dimensions, for d = 2 + E, can also be found by lineariz­
ing the recursion equations. As regards practical ap­
plications of the model, the greatest interest evidently 
lies in the equation of state in two-dimensional magnets, 
which can be found by numerical solution of the recur­
sion equations. In this case it is possible to take into 
account the spin-space anisotropy, which should sup­
press fluctuations of one or two components of the spin. 

In conclusion I wish to thank my colleagues A. M. 
Polyakov, Y. L. Pokrovskil, and S. B. Khokhlachev for 
numerous discussions and critical comments. I am 
also extremely grateful to E. B. Bogomol'nyi and Y. Y. 
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FIG. 4. Qualitative dependence, found from the recursion equations, 
of the transition temperature on the dimensionality of space for an SO(2) 
spin system (XY-model) and a U(1) gauge system (photodynamics). 

FIG. S. Qualitative dependence, found from the recursion equations, 
of the transition temperature on the dimensionality of space for gauge 
and spin systems with SO(n) symmetry. The crosses correspond to exact 
results [5 I for the discrete gauge group SO(l) = Z2; the circles correspond 
to exact results for the Ising model. 

n=J 

o 1 J II d 

FIG. 6. Qualitative dependence of the dimenSIOns of the spin (t:.) 
and energy density (.1.') on the dimensionality of space for the general­
ized SO(n) Heisenberg model. The behavior for d ..... I and d ..... 2 is found 
from the recursion equations, and for d ..... 4 from the €-expansion; the 
crosses correspond to the known indices of the two- and three-dimensional 
models. 

Vas 'kin, who helped me in the numerical solution of the 
recursion equations. 
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