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Within the framework of the phenomenological theory of second·order phase transitions a thermodynamic 
investigation is made of the behavior of matter near points at which N phases are contiguous, in the case 
when N exceeds the number of phases allowed by the Gibbs phase rule. It is shown that for three­
component order parameters in the case of two thermodynamic parameters (e.g., pressure and temperature) 
N ~ 5. A quantitative description of the phase transitions in the solid solution KTa.Nb1_.03 is given. 

PACS numbers: 05.70.Jk,-64.70.Kb 

In first-order phase tranSitions the Gibbs rule for­
bids the coexistance of more than three phases at one 
point in the plane of the thermodynamic parameters. 
This prohibition is a consequence of the fact that for 
first-order phase transitions the thermodynamic poten­
tials of the phases are assumed to be independent, and 
the requirement that these potentials be equal at the 
transition point gives rise to independent equations for 
the thermodynamic parameters. However, for second­
order phase transitions it follows from the Landau 
theory that the number of phases that are stable near 
certain points in the phase diagram can exceed the num­
ber of phases allowed by the Gibbs rule. This conclu­
sion is connected with the fact that for second-order 
phase transitions the thermodynamic potentials of the 
different phases, being extrema of the same nonequili­
brium thermodynamic potential <I> (1)) (1) is the order 
parameter), are related to each other, since they are 
expressed in terms of the same phenomenological coef­
ficients of <I> ( 1) )P]. In the following we shall call the 
pOints at which the phases undergo a continuous transi­
tion into each other N-phase pOints, meaning by N the 
maximum number of phases that can exist in an arbi­
trarily small region about such a point. 

In Landau's article[2] examples are given in which 
such points arise at the intersection of two lines of 
second-order phase transitions with different order 
parameters, or are isolated second-order transition 
points lying on lines of first -order phase transitions. 
However, an N-phase point can also lie on a line of 
second-order transitions with one order parameter[a,4 J• 

The present article is devoted to an investigation of the 
structure of phase diagrams in the vicinity of an N­
phase point lying on a line of second-order transitions 
with one order parameter. 

We shall assume that the potential <1>(1)) is an entire 
rational function of the components of the order parame­
ter 1/. Then the low-symmetry phases to which a con­
tinuous transition from the symmetric phase is possible 
only at an N-phase point in the plane of the two thermo­
dynamic parameters can be divided into two types. The 
first type of phase is characterized by the fact that the 
diameter of the region of existence of such phases near 
an N-phase point is of order Tn (n ?! 2, T is the distance 
from the N-phase point). The boundaries of the exist­
ence of such phases have a common tangent at the N­
phase point itself. A direct continuous transition from 
the symmetric phase to a phase of the first type is pos­
sible only when there is a strictly coordinated variation 
of the thermodynamic parameters-only along a single 
line in the phase diagram (tangency to the "beak,,)[a]. 
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For the second type of phase the smallest diameter of 
the region of existence of the phase about the N-phase 
point in the plane of the thermodynamic parameters is 
of order T. The lines bounding the region of existence 
of such phases intersect at a finite angle at the N-phase 
point. A transition from the symmetric phase to a 
phase of the second type is possible under less stringent 
restrictions on the varying thermodynamic parameters: 
a transition to such a phase in the phase plane is possi­
ble along any line passing through the N-phase point and 
lying within a certain finite angle[4]. 

For second-order phase transitions the possible 
types of phase diagram are determined by the dimen­
sionality and transformation properties of the order 
parameter[ 1]. Which type of phase diagram is realized 
in each specific case depends on the quantitative rela­
tionships between the coefficients of the thermodynamic 
potential <1>(1/). Phase diagrams containing phases of 
the second type arise only when the order parameter 
has not less than three components (we are considering 
the case when the components of the order parameter 
transform according to an irreducible representation of 
the symmetry group G of the symmetric phase). 

As is well-known, the Lifshitz condition restricts the 
number of possible three-component order parameters 
to five types[4], of which three can describe second­
order transitions on a line in a plane of two thermody­
namic variables. Here we shall conSider a three-com­
ponent order parameter admitting the maximum num­
ber of low-symmetry phases. The phase diagram in this 
case turns out to be more complicated than for other 
three-component order parameters. However, it is 
precisely this which makes it possible to carryover the 
method of investigating the phase diagram, and certain 
conclusions, to the case of N-phase points in diagrams 
describable by order parameters of high dimensionali­
ties. The maximum number of phases arises in the 
case of an order parameter for which the matrices of 
the corresponding irreducible representation in the 
three-dimensional space of representations E3 form the 
point group L = Ob.. Such order parameters character­
ize the ferroelectric transitions in BaTiOa, PbTiOa, 
KNbOa, and also the non-ferroelectric transitions in 
SrTiOa, KMnFa, PrAIOa, PbaV20 B, PbaP20 B, etc. (cL, 
e.g.,[S,6]). 

1. QUALITATIVE INVESTIGATION OF THE PHASE 
DIAGRAM NEAR AN N-PHASE POINT 

For a three-dimensional order parameter with 
L = 0b the thermodynamic potential <1>(1/) depends only 
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on three functions of the components of the order 
parameter: 

which constitute an entire rational basis of invariants. 
In accordance with this, the nonlinear equations deter­
mining the equilibrium values of the order parameter 
have the form 

8411/81],=21], (411,+21]1'411,+1].'1],'411,) =0, 

lJ41I/81],=21],(41I,+21],'41I,+1],'1],'41I,) =0, 

8411/81].=21], (411,+21].'411,+1], '1],'411,) =0, 

where 41 = 41(J l, J z, J 3) is the nonequilibrium thermody­
namic potential and 41k = a41/aJk. These equations have 
six types of solution, describing low-symmetry phases 
with different symmetry (the trivial solution 1}1 = 1}2 
= 1)3 = 0 corresponds to the symmetric phase): 

1]" 1]" 1].; 411,=0, 411,=0, 411 3 =0, (1) 
1],,1]',1].=0; 411,=0, 411,=0, (2) 

1],=1],,1].; 2411,-1],'411 3 =0, 411,+(21]"+'1.')411,=0, (3) 
1],=1]',1],=0; 411,+21],'411,=0, (4) 

1],=1],=0, 1].; 411,+2'1,'411,=0, (5) 

1],=1],=1].; «11,+21],'411,+1],'411.=0. (6) 

Below we shall be interested only in those solutions 
T)l,1}2, 1)3 of the nonlinear equations (1)-(6) that can 
vanish at the boundary of stability of the symmetric 
phase. (In the case of two thermodynamic parameters 
this line is 41dXl, X2) = 0 in the (Xl' X2)-plane.) 

The first restriction on the possibility of a second­
order phase transition to one or other of the low-sym­
metry phases follows from the requirement that the 
number m of independent components of 11 characteriz­
ing the phase (or, in other words, the number of equa­
tions determining the magnitude of the independent com­
ponents of 1) not exceed the number k of independently 
variable external conditions-the thermodynamic 
parameters Xl> X2, ..• ,Xk' If, e.g., k = m, a second­
order transition is possible only at a point in the X­
space; if k = m + 1 it is possible on a line, and so on. 

The solution (1) describes the phase with the lowest 
possible symmetry for the order parameter under con­
sideration. In this phase the three components of the 
parameter are nonzero and independent. It is obvious 
that in the general case the system of equations (1) does 
not have solutions that vanish on the line of loss of sta­
bility of the symmetric phase in the (Xl' X2)-plane, 
Le., a second-order transition from the symmetric 
phase to such a phase is impossible. 

The phases corresponding to the solutions (2) and 
(3) are described by space groups having twice as many 
symmetry elements as the symmetry group of the 
phase (1). Equations (2) and (3) can have vanishing solu­
tions only at the point 411 (Xl' X2) = 0, 412(Xl, X2) = O. 
Equations (4)-(6), describing the most symmetric of 
the phases, characterizable by one independent com­
ponent of the vector 11, admit solutions vanishing on the 
line 41 dXl, X2) = 0 in the (Xl' X2)-plane. 

However, the conditions obtained above are only 
necessary. Now we must investigate the stability con­
ditions near the line cf> l( Xl, X2) = 0 for each of the 
phases, Le., determine the region in which the matrix 
composed of the second derivatives a2cf>/a11ia1)k is posi­
tive-definite for 1) - O. Violation of the stability con­
ditions leads to a second restriction on the possibility 
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of a second-order transition to some low-symmetry 
phase. A particular case of this restriction is the well­
known Landau condition[ll. 

For the phase (2) the stability conditions have the 
form 

and do not lead to any additional restrictions on the 
possibility of a second-order transition. For the phase 
(3) near the line 41 l( Xl> X2) = 0 for small 1}1 and 1}3, the 
stability conditions 

are contradictory. This contradiction disappears only in 
the region where 1} f - 1); ~ 1}4. In this region it is neces­
sary to take into account terms of higher order in 1'/ in 
the stability conditions, Hence it follows that the region 
of existence of a phase (3) describable by solutions that 
vanish on the line cf>l = 0 becomes narrower in propor­
tion to 1}4 as the point 411 = 0, 412 = 0 is approached, and 
lies along the boundary of the existence of solutions 
corresponding to the phase (6), for which 111 = 1}2 = 1}3' 
Consequently, the potential of the phase (3) cannot differ 
from the potential of the phase (6) by more than a quan­
tity of order J~ ~ 1) 8, This result is important for the 
following analysis. 

For the phase (4) the stability conditions are contra­
dictory for finite 412: 

411,,>0, 411,>0(411,<0), -2411,+1],'411,>0. 

Consequently, only at the point cf>l = 0, 412 = 0 can this 
phase arise in a second-order transition from the sym­
metric phase; as this point is approached, the width of 
the region of existence of the phase (4) decreases like 
1}2, We note that in the case of finite values of cf>3 the 
phase (4) exists only for 413> O. The stability condi,tions 
for the phase (5) 

2«11,+411,,>0, 411,<0 

contain no contradictions. For the phase (6)we have: 

2411.+411 0,>0, 4411.'+4411,411,,-21]'411,411,,>0, 2411.+3411,,>0, 

which are also not contradictory. 

The third restriction on the possibility of a second­
order transition is connected with the overlap of the 
regions of stability of some of the low-symmetry phases 
near the line cf> 1 (Xl, X2) = O. If the regions of lability of 
the phases overlap, a transition occurs to the thermo­
dynamically stable phase with a thermodynamic poten­
tiallower than the potentials of the other phases. We 
shall study first the stability conditions for the phases 
(3), (4) and (6), for which, as follows from an analysis 
of the stability conditions, the regions of lability over­
lap. The equations of state determining J 1 in the phases 
(4) and (6) respectively have the form 

411,(/ .. 1/2/,',0, X" X,)+J,IlI,(/" 1/21,',0, X .. X.)=O, (4') 
Ill, (I" '/.1,', '/,,1,', X" X,) +'1,1,411.(/ .. '1,1,', '/,,1,', X" X,) . . 

+'I.!,'4D, (I" '1,1,', '/,,1,', X .. X,) =0. (6') 

Since, in (4) and (6), the dependences of the functions 
41i on their arguments are the same, it is clear that in 
the region of Simultaneous existence of the solutions de­
scribing the phases (4) and (6) the difference J l(4) . 
- J l(6) is of the same order as J l(4) and J l(6) them­
selves. From a comparison of the stability conditions 
for phases (4) and (6) for small values of 412: 
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, 
2 III , (4) -'/", (4) Ill, (4) <0, 2Ill,(6) -.'U, (6) Ill, (6) >0; 

it can be seen that the regions of lability of these phases 
overlap in such a way that the width of the overlap re­
gion is of the order of J 1. Consequently, the potentials 
cf>(4) and cf>(6) at the boundaries of the regions of lability 
of phases (4) and (6) differ by an amount of the order of 
Jf. Since, as shown above, the region of lability of the 
phase (3) can lie only near the boundary of the region of 
lability of the phase (6), where the potentials of (3) and 
(6) differ by an amount of order J~, the phase (3) is al­
ways metastable for small values of J 1. The stable 
phase in the region of lability of (3) is the phase (4), 
whose potential is lower than that of the phase (6) by an 
amount of the order of J~. 

We now analyze how the boundaries of the phases (4) 
and (5) are positioned with respect to each other. On the 
phase-(5) side the lability of phase (4) is bounded by the 
condition cf>2(4) ~ 0, while the lability of phase (5) is 
determined by the condition cf>2(5) ~ O. We shall con­
sider the solutions of Eqs. (4) and (5) that vanish on the 
boundary of the region cf> 1(0) > O. 

On the boundary of lability of the phase (5), 

Ill,('" '.', x" X,) =0, Ill,('" ,,', X,, X,) =0. (7) 

Along the stability boundary, dcf> 1 (J 1, J~, Xl, X2) = 0 
2 ' dcf>2(J 1, J 1, Xl, X2) = O. Hence the slope of the tangent to 

the boundary of stability of the phase (5) in the (Xl, X2)­
plane will be, for small J 1, 

The fourth restriction on the possibility of a second­
order transition to a given low-symmetry phase is con­
nected with the requirements that the solutions of the 
nonlinear equations determining the value of the order 
parameter in this phase be real near the line <l>l(X l, X2) 
= O. Thusf real solutions of the system of equations (2) 
exist only for <1>11> 0, <I> 11<1>22 - <I>~2 > O. Inasmuch as the 
values of J l in the phases (2), (4) and (5) differ only by 
Jf, the conditions for the solutions of the system (2) to 
be real for small J 1 coincide exactly with the condition 
for the existence of a region in the (Xl, X2)-plane in 
which only phase (2) is stable. This region of the phase 
diagram is investigated in more detail below. 

We shall state the results briefly: 

1. For the order parameter being studied (L = Ob), 
in a plane of two thermodynamic variables five phases 
(0,2,4,5, and 6) can be contiguous at one point 
<l>l(X l, X2) = 0, <l>2(X h X2) = O. 

2. The sequence of low-symmetry phases near the 
five-phase point is the following: 0 - 5 - 2 - 4 
-4-6 -0. 

3. To describe the phase (4) it is necessary to con­
Sider a model potential of degree not lower than Tj 6, and 
for the phase (2)-not lower than TjB. 

4. The diameter of the region of existence of the 
phase (2) near the five-phase point is of order 71 4, and 
for phase (4) is of order Tj2. 

5. The width of the region of metastability in the 
transition between the phases (4) and (6) is of order 71 2, 
and in the direct transition between phases (5) and (4) 

(8) is of order 71 4 • 

For the phase (4) on the stability boundary, 

<11, (l.,-i1",x"x, ) ",w,=O, <1I'(l"+l",X,,X~)""w,=o, (9) 

whence, in analogy with (8), we obtain 

dX,! [ {jw, . (jw, ] 
- = -~-(w(2+1,w22)--~-(wli+l,w12) dX" uX, uX, 

x -' (w,,+l,w12)--' (w12+1,w22) . [ aw aw ]-' 
. ax, ax, (10) 

From a comparison of (7) and (9) it can be seen that 
J l in phase (5) and :L in phase (4), like <1>, <l>i and <l>ik 
for these phases, differ from each other by an amount 
of order J~. Consequently, forming the difference 

dX,) dX,! ({jill, /Jill, (jill, a Ill, ) 
dX, ,- dX, ,=" --ax: {jX, - ax, ax, (<11,,<11,,-<11,,') 

x -'Ill12--' <11" +0(','), ( alll (jill )-' 
ax, ax, (11) 

we find that the tangents to the boundaries of stability of 
the phases (4) and (5) coincide on the boundary with the 
high-symmetry phase. The difference in the slopes of 
the tangents increases like J 1 as one moves away from 
the line <l>dXl' X2 ) = O. 

Considering the different cases 

~~: ! "'~"'~"FO ",0, 

it can be shown that if <1>11<1>22 - <I>~2 > 0, then, between 
the regions in which phases (4) and'(5) are stable, there 
is a region of width of the order of J~. In the opposite 
case (<I> 11<1> 22 - <I> ~2 < 0) the regions of existence of the 
phases (4) and (5) overlap, also with a width of the 
order of J~. 
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These conclusions are also valid in a number of 
cases when the nonequilibrium potential <1>(-1), Xl, X2) 
has a singularity in Xl and X2. For example, all the 
results remain valid for a Singularity of the second 
kind, in Fisher's classification[7]. The assumption of 
an entire rational dependence of <I> on Tj may also turn 
out to be unimportant for certain results of the analysis, 
e.g., the number of phases and their symmetry. This is 
connected with the fact that an entire rational basis of 
invariants always contains a functional basis[B]. 

2. MODEL DESCRIPTION OF THE PHASE DIAGRAM 
NEAR A FIVE·PHASE POINT 

Two expansion parameters appear in the Landau 
theory near the point <I> 1 = 0, <1>2 = 0, and this enables 
us to investigate the phase diagram in more detail than 
usual. The analysis carried out in the previous Section 
showed that for a complete description of the character 
of the contiguity of the phases near this point it is 
necessary to consider a model potential containing terms 
of at least eighth order in the components of 71: 

<1I=a.l,+a",'+a"l'+aJl'+~.l'+~2"'+1",+C12'''' 

+d',",+/'.l,. (12) 

The equalities corresponding to <I> 1 (0, Xl, X2) = 0 and 
<1>2(0, Xl, X2) = 0 in the potential (12) are adXl' X2) = 0 
and i3dXl, X2) = O. 

From the equation of state for the phase (6) we have, 
to terms of second order in al, 131, 

,_ ,_ ,_ a, + a.~. 27a,+'9c,,+1 
f).-f),-f),--Ba;' 18a,'- 2'3'a,' a.'. (13) 

The potential of the phase (6) in this approximation is 
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at' at' 27a.+9c,,+y 
$(6)=--4 +~'-t2 ,- 2'3' , a,'. 

az Cl.2 ctz 

(14) 

The stability conditions for phase (6) reduce to the two 
inequalities 

a,>O, 

For the phase (5) we have 

Tl" -- _ _ a, + _a,~, _ 3a.+c" ~ , 
Tl,=Tl'=O, ~ 2CX2 2az2 Ba:z3 1 , 

, ,+ 
'" (5) _ a, +. R a, a. c" • .., - - - ~'--, - --,-a, . 

4a, 4a, 8a, 

(15) 

(16) 

(17) 

Unlike in the previous case of the phase (6), we shall 
write out the stability conditions to second order in the 
small parameters. The necessity for this is connected 
with the fact that, as has been shown, the region of 
existence of the phase (2), and, consequently, its bound­
ary with the phase (5), can be described only by start­
ing from this approximation. We have 

a,>O, c"a, c"a,~, [3(a.+c")c,, ( ) ] a,' (18) 
~,<-----,-+ . d+2~, --,' 

2a, 2a, 2a, 4a, 

For the phase (4), 

Tl,=O, 
3 (2a,+c12) a ,. 

32Ct23 t , 
(19) 

"'(4)- a,' + R a,., 2a,+c12 '. 
w --- ~,------a, 

4a, 8a,' 16a,' ' (20) 

( y ) a, c"a, a,>O, c,,-- ->~, >--
4 2a, 2a, 

_ c12a,~, + [3(2a,+c,,)c12 -(~,+d) ]~. 
4a,' 4a;, 4a,' (21) 

From the inequality (21) in the first approximation it 
follows that the phase (4) exists only for positive y. 
However, if we assume even so that, for chance rea­
sons, y is negative but sufficiently small (y ~ 0!1 ~ (31), 
the inequality (21) can be fulfilled and the phase (4) can 
be contiguous with the high-symmetry phase. In this 
case the region of existence of the phase (4) will be 
transformed from a "corner" to a "beak!' 

For the phase (2), which can also be contiguous with 
the high-symmetry phase at the point O!I(X1, X2) = 0, 
(31(X1, X2) = 0, the equations of state can be brought to 
the form 

,+ '_I _ c"~'-~~2a, + c"d-6a.~, (C,,~,-2~,a,), 
fit f)2 - 1 - 4aZ~2-Ct~2 4a;2~2-C'2 2 4CX2~2-C122 ' 

'+ '_/ _ c"a,-2a,~, 3a,c,,-2a,d (C"~,-2~,a,), 
Tl' Tl' - • - + . 

4cx,~,-c12' 4cx,~,-c,,' 4a,~,-c,,' 
(22) 

In order that the system of equations (22) have a real 
solution for 1J~ and 1J~, it is necessary that one further 
condition (the fourth restriction from Sec. 1) be ful­
filled. However, as was shown by Levanyuk and Sanni­
kOV[3] for the analogous case of a two-dimensional 
order parameter, the corresponding condition is always 
fulfilled in a certain region of width of order Q!~. In our 
case this region is located along the line (31 = C120!1/2a2. 
As follows from the general treatment, the stability 
conditions for the phase (2): 

(23) 

do not impose any restrictions on the possible bounda­
ries with the other low-symmetry phases. The bound­
ary of the region of existence of real solutions of Eqs. 
(22) COincides exactly with the boundaries of the phases 
(5) and (4) for 4a2 {32 - C~2 > O. Therefore, a transition 
from phase (2) to phase (5) or (4) should occur as a 
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second-order transition. The possible types of phase 
diagram near the point 0!1(X1, X2) = 0, IMX1, X2) = 0 are 
gi ven in Fig. 1. 

The model thermodynamic potential (12) contains ten 
phenomenological parameters, and to establish it com­
pletely a large number of varied experiments is re-
qui red. However, certain exact relations between 
measureable quantities can be established on the basis 
of the analysis performed, even without establishing the 
thermodynamic potential. 

Suppose that the phase boundaries have been estab­
lished experimentally for a certain substance, and the 
phase diagram has the form depicted in Fig. 1b or 1c. 
In this case, without establishing the thermodynamic 
potential, it is possible to calculate exactly for the 
phases (4) and (6) the lability boundaries defining the 
region of the maximum possible temperature hystereSiS 
in the corresponding transitions. We shall consider this 
problem in the approximation linear in the deviations of 
the thermodynamic parameters from the point 0!1 = 0, 
{31 = O. We shall transform from the coordinates 0!1 and 
{31 in the phase diagram to the pressure and temperature 
coordinates, p and T: 

a.,=A,AT+A,Ap, ~,=B,AT+B,Ap. (24) 

We shall introduce the notation ki = aTi/ aPi for the 
slopes of the transition lines between the phases, where 
i is the label of a line in accordance with Fig. 1b or 1c. 
Then, on the experimental phase diagram, the lines 2 
and 3 are described. by the equations 

~,= c"cx, ..... k, 2cx,B, + 2cx,B, = k,-k" 
2CX2 euA, elzA! 

( 21) cx, 2a,B, 2a,B, 91 
~,= c,,-- - ..... k,--+--=k,-k,---(k,-ktl. 

9 2cx, c"A, c"A, 2c12 · 
(25) 

This gives a system of two equations for the three com­
binations of phenomenological parameters: 

The equation of the line {31 = (C12 - y/6)0!1/2a2 deter­
mining the left-hand boundary of stability of the phase 
(6) has in the Tp-plane the form 

(26) 

Here k4 = aT 4/ apt is the slope of this line in the Tp­
plane. The equation 131 = (C 12 - y/4)0!1/0!2 of the right­
hand boundary of the phase (4) takes the form 

k,M+N=(k,-k,) (t-'/,R). (27) 

Substituting M and N from (25) into (26) and (27), 
we obtain two independent equations of the form 

RI( k" k" k" k., k,) =0. (28) 

Inasmuch as R == Y/ C12;1f. 0, we obtain relations deter­
mining k4 and ks in terms of k1' k2 and k3: 

k,k,+3k,k,-4k,k, 
k .. = , 

4k,-3k,-k, 
k, = k,k,-9k,k,+8k,k, 

-8k,+9k,-k, 
(29) 

3. THERMODYNAMIC DESCRIPTION OF THE 
PHASE TRANSITIONS IN KTN 

We shall carry out concrete calculations using the 
example of the solid solution KTN (KTaxNb1-x03). 
Niobium and tantalum are so close in their chemical 
properties and ionic radii that when they are substituted 
for one another no phase separation of the solid solution 
occurs, at any concentration of the components. There­
fore, when considering macroscopic experiments we 
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FIG. I. Possible types of phase diagram near a five phase point for a 
three-component order parameter (L = Oh). The phase labels correspond­
ing to (I )-( 6) are ringed by circles. The solid lines are second-order tran­
sition lines; lines of first-order transitions between nonsymmetric phases 
are.shown by dashed lines, and the stability boundaries of phases by 
dashed-dotted lines. 

can assume that, in the substitution, there is simply a 
change in a certain crystal-averaged characteristic. 
In pure KNbOs the order parameter transforms accord­
ing to a vector representation of the symmetry group 
(Db) of the paraphase, Le., KNbOs is an intrinsic ferro­
electric. Addition of tantalum leads to a uniform change 
in the temperatures of the ferroelectric transitions. In 
this situation, the tantalum concentration can be re­
garded as a scalar thermodynamic parameter, analogous 
to the temperature or pressure. Consequently, e.g., all 
the formulas (24)-(29) remain valid for this case, if p 
is replaced by x. 

It follows naturally from symmetry considerations 
that in KTaxNb1-xOs there should exist a scalar coef­
ficient of proportionality 11 between the order parame­
ter and the polarization of the crystal: Pi = 1I7/i; we 
shall assume that this coeffiCient has no singularities 
near <1>1 = 0 and <1>2 = O. From dimensionality arguments 
it is obvious that the parameter 11 does not appear in 
the final formulas describing the thermal and dielectric 
properties of the crystal. Also unchanged are the rela­
tions determining the phase-transition lines in the 
phase diagrams. In fact, the replacement of 7/i by Pi 
in the potential (12) corresponds to the following trans­
formation of the coefficients of the potential: 0!1 
- 0!~/1I2, {31 - {3U1I4. For the line 1 (Fig. 1), e.g., we 
obtain A2/ A1 = A~/ A~ = -kb for the specific-heat dis­
continuity on the line 1 we have TAf/2(a2 + {3d 
= TA~2/2(a~ + {3U, etc. Therefore, we can simply re­
place 7/i by Pi in (12) and regard the coefficients in all 
the formulas obtained above as coefficients of the ex­
pansion of <I> in Pi. 

We shall write out those relations between measur­
able parameters that make it possible to determine the 
coefficients of the thermodynamic potential. The coef­
ficient al is determined from data on the dielectric 
permittivity of the crystal in the paraphase (X- I = 2(1). 
The ratio of the discontinuities in the square of the 
polarization in the (6)-(4) and (5)-(4) phase transitions: 

!l.(6,4)=P.'-P.'= a,'cn (1_2R) 
48a,' 9 

(30) 

makes it possible to determine 

R ~ ~ (. 1 _ 3!l. (6,4) a.' (5,4)") . 
2 !l.(5.4)a.'(6.4)· 

(31 ) 

Here a l(5, 4) is the value of a1 at the (5) - (4) transi­
tion point, 

• • a.'cn a.' (5,4) 
XII- (4)-XII- (5)=--.-=---u. 

2a, 2a, 
(32) 
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The relations (25) enable us to determine B1fa2 and 
B 2/a2. The ratio O!s/a2'is determined from any value 
of X~I; e.g., in the phase (5), 

XII -1(5) =4a,l-1+'j,a. (a.,!a?+u) J. (33) 

The coefficient ratios found (R, u, B 1/ 0!2, B2/ a2 and 
a3/ a~) make it possible to predict completely the tem­
perature dependence of the susceptibilities in the low­
symmetry phases: 

_. ( ~. a.u) Xl. (5)=2a. ---- , 
a, 2 

XII-' (4) =4a. ( -1 + ~ a. ( 2 :,: + u) ] , 

_. [ ~. a. u ( 1) ] Xu (4)=a. ~--2- 1-t;R , 

XII-'(6)=4a.[-1+:~(27 :':+9U+RU)). (34) 

Hence it can be seen that the number of experimentally 
determinable relationships considerably exceeds the 
number of parameter combinations introduced. 
Naturally, these combinations of parameters can also 
be determined from other relations, e.g., relations 
taken from (34). 

The absolute values of the coefficients of the thermo­
dynamic potential can be found if we know the absolute 
values of the polarization in any of the phases, or the 
latent heats of the transitions between the phases. In 
fact, the value of 0!2 is determined from anyone of the 
relations 

a. [ ~, P.'=- -1+--
2a, 3a, 

3a,a. a. ( 1)] -----u 1+-R , 
4a,' 4 9 

a. [ ~. 3a.a. a.] 
P.'= 2a, -1+ 2a2 - 4a,' -T u , 

Q(5,4)= 

=T(54)a l '(5,4) (_ A.ua, +B) 
. 8a,' 2 I, 

Q(6.4)=T(6.4) a.'(6,4) 
24a,' 

x [ -~A.u ( 1 - : R) + B.] . 

(35) 

(36) 

The other relations from (35) and (36) can be regarded 
as checks. 

After determining the absolute values of the coef­
ficients it is easy to find the critical point lying on the 
intersection of the lines a1 = 0 and {3I + 2a2 = O. 

It follows from the data ofl9] on the dielectric sus­
ceptibility that the approximation linear in ~T and ~x, 
which we took above in (24), is valid. The coordinates of 
the four-phase point for KTN are Xo = 0.88 and T = 135 
K. From the experimental phase diagram of lS ] (Fig. 2) 
we find k1 = -625 deg, ka = 375 deg, k3 = 160 deg. 

Then, according to the relations (29), 

k,=240 deg, k,=105 deg. (37) 

The temperature hysteresis of the transitions has 
been investigated experimentally for x = 0.8. The ob­
served values of the hysteresis between the phases (5) 
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FIG. 2. T-x phase diagram of KTN. 
The solid lines are plotted from the 
data of paper [9). The dashed lines are 
those obtained as a result of the cal­
culation. The letters denote the sym­
metries of the corresponding phases: 
cubic (C), tetragonal (T), orthorhom­
bic (0) and rhombohedral (R). 

and (4) cannot be distinguished from zero experiment­
ally, and a value ~3 deg was obtained for the (4)-(6) 
transition. Estimates from (37) give 0.3 and 10.8 deg, 
respectively, for the maximum possible values of the 
hysteresis. These results should correspond to the dif­
ference in the Curie temperatures defined with respect 
to the corresponding component of the dielectric-per­
mittivity tensor rather than with respect to the observed 
hysteresis. 

The analysis carried out above can be applied with­
out change to the p-T phase diagram of BaTiOs. Using 
the experimental data of(lOl, we find that the four-phase 
point in the p-T diagram of BaTiOs should have coordi­
nates p = 50 kbar, T = 140 K. There should be analogous 
four-phase points in the phase diagrams of KNb03, 
PbTixHf1-x03, etc. 
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