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The influence of dipole forces on the critical dynamics of uniaxial ferromagnets is considered. Like 
anisotropy, dipole forces suppress the critical fluctuations. Two variants are discussed-weak anisotropy, 
when, as the Curie point is approached, the suppression first appears as a result of the dipole forces and 
only after this do the anisotropy forces become operative, and the opposite case, when the anisotropy 
begins to act first. Expressions are obtained for ihe characteristic energy of the critical fluctuations and the 
inverse uniform-relaxation time; these depend in a complicated manner on the energy of the dipole 
interaction, the anisotropy energy and T = (T - Te) Te"\, the dependences being different in different cases 
(easy and hard axis) and in different temperature regions. However, in the limit T-;() the temperature 
dependence of the uniform-relaxation time in the easy direction is the same as for the corresponding 
susceptibility. This contradicts the recent experiments of Kamleiter and Kotzler with OdCI3• In connection 
with this it is shown that a weak magnetic field that does not affect the static susceptibility can greatly 
decrease the uniform-relaxation time in the easy-axis case, owing to the fact that it violates the selection 
rule forbidding the relaxation of a longitudinal fluctuation with creation of two similar longitudinal 
fluctuations growing without limit as T-;(). 

PACS numbers: 75.30.0n, 75.30.Jy 

1. INTRODUCTION 

The magnetic-dipole interaction strongly influences 
the properties of ferromagnets in the paramagnetic phase 
(T > T c) near the Curie point. If 4/TX < 1 (X is the static 
susceptibility), these forces can be taken into account by 
perturbation theory and turn out to be important only for 
the description of phenomena associated with violation of 
the conservation law for the total spin, e.g., the relaxa­
tion of the uniform magnetization and the absorption of 
long-wave electromagnetic oscillations. But if 41TX > 1, 
then, as Krivoglaz[l] has shown, because of their long 
range the dipole forces substantially alter the proper­
ties of the tensor of the correlations of the magnetiza­
tion components, and this leads to a change in the criti­
cal properties of the ferromagnet. Thus, according to 
Aharony and Fisher[2], in cubic ferromagnets in this re­
gion the values of the critical indices of the static-scal­
ing theory are slightly changed, and, as shown in[31, the 
dynamics of the long-wave critical fluctuations is com­
pletely changed. 

The present paper is devoted to an analysis of the 
dynamics of critical fluctuations in uniaxial ferromag­
nets. It is found that their dynamical properties depend 
in an extremely complicated manner on the character of 
the anisotropy ("easy-axis" or "easy-plane") and on 
the relative size of thl:] anisotropy energy and the dipole 
energy (more precisely, on whether the quantity 41TXm 
is greater or less than unity, where Xm is the maximum 
value of the static susceptibility in the "hard" direction). 
In the limit T ~O (T = (T - Tc)T<n, the critical damping 
of the fluctuations of the uniform magnetization in the 
"easy" direction (this magnetization is the order para­
meter in our case) has a normal character, i.e., its 
temperature dependence is the same as that of the in­
verse susceptibility corresponding to this direction l). 
This agrees with the well-known prediction of Riedel 
and Wegner[5]. Recently, the critical properties of the 
uniaxial ferromagnet GdCb have been studied experi­
mentally by K(ltzler and co-workers[6, 7]. This is a fer­
romagnet in which the dipole forces are of the same 
order as the exchange forces (T c = 2.2 K). It was found[6] 
that the static properties of GdCb agree well with the 
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predictions of the logarithmic theory of Larkin and 
Khmel'nitskU[8], while the critical damping behaves very 
strangely[7]. In the region of comparatively large TitS 
temperature dependence is normal and then, with de­
crease of T, becomes anomalous. The nature of this phe­
nomenon is studied in the last Section of this paper, 
where it is shown that a weak magnetic field that does 
not affect the static susceptibility can lead to anomalous 
behavior of the critical damping, owing to the fact that it 
violates the selection rule forbidding the relaxation of a 
longitudinal fluctuation with creation of two similar longi­
tudinal fluctuations growing without limit as T ~ O. 

2. COMBINED DESCRIPTION OF THE DIPOLE 
FORCES AND ANISOTROPY 

As is well-known, because of the long range of the 
dipole forces the internal magnetic field Hik in a sample 
does not coincide with the external field Hk: 

H,.=Hk -4n(nMk )n, n=kk-', (1) 

where k is the wave vector and Mk is the corresponding 
Fourier component of the magnetization. Therefore, one 
distinguishes the magnetic susceptibilities of the body 
(;;:) and of the substance (x), which are defined by the 
equalities 

M,"(w)=X.,(k, w)H.'(w)=X",(k, w)Hi.'(w). (2) 

By virtue of the equality (1), these two susceptibilities 
are connected by the relation[2] 

i,.,(k, w)=X.,(k, w)-4nXa.(k, w)n.n,x;(k, w). (3) 

In the limit k ~ 0 the tensor n!LnV goes over into the 
tensor of the demagnetizing factors N!LV (N J1.)J. = 1). On 
the other hand, the energy of interaction of the magnet 
with an external nonuniform field is described by the 
formula 

H' =-gfL 1:, SIH (RI' t), 
J 

(4) 

where 81 are the op erators of the atomic spins and Rl 
are the coordinates of the l-th atom' by virtue of this, 
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Xo.B(k, (0) = :;: GaB(k, (0), 

(5) 

where Vo is thE> volume of the unit cell and Ga {3 is the 
retarded spin Green function; according to (3), in the 
limit k - 0 the function Ga {3 depends on the direction 
of the vector k. We consider a uniaxial ferromagnet with 
anisotropy along the z-axis. Its Hamiltonian has the form 

H=H.+HA+H" 

H. = -~ \"1 vII,S,S" = _~ \"1 V.S.S_. 
2~ 2~' 

ll' .Ii; 

HA=-~ L (VIIII'-2611'!',.)St'S,,'=-+£ A.S.'S~., 
fI' II: 

Here He is the isotropic exchange Hamiltonian, HA takes 
into account the exchange anisotropy and the single-ion 
anisotropy, and Hd is the dipole energy. As is well­
known[9], when we transform to the Fourier representa­
tion in Hd an additional contribution to the anisotropy 
energy arises from the short distances; we have included 
this in HA' 

By making use of the diagram technique of Vaks, 
Larkin and Pikin[lO], we can write 

U.,= (V.+w,/3) 6.,+A.z.z" 
(7) 

where z is the unit vector along the z-axis and ~ is the 
irreducible part, which cannot be separated into two by 
cutting only one interaction line. It follows from the re­
lations (7) that 

(8) 

Comparing the first of these equalities with (3), we find 
that woGo = 41T){. The diagrams for ~ consist of single­
cell blocks joined by more than one interaction line; 
therefore, the corresponding integrals converge well in 
the limit k = 0, and 6 for k - 0 does not depend on the 
direction of the vector k. The same is true for Go and ){. 
Therefore, for suffiCiently small k the irreducible part 
o can be decomposed into parts parallel and perpendicu­
lar to the z-axis 2 ). As a result we obtain 

(9) 

If Gil grows without limit as T - Tc the z-axis is the 
easy-magnetization axis, while if Gl grows the z-axis 
is the hard axis. In the region of large T both functions 
Gil and Glare growing, and then the growth of one of 
them ceases. Clearly, two cases are possible: 1) small 
anisotropy: woGm = 41TXm » 1; 2) large anisotropy: 
woGm = 41T){m « 1, where Gm and Xm are the maximum 
values of the corresponding functions in the hard direc­
tion. Below, these cases are considered separately. The 
entire critical region is divided into several regions with 
different physics, and these must be considered sepa­
rately. This division into regions is represented in the 
following scheme~ in- which the relative sizes of the sus-
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ceptibilities in the easy-plane case are indicated in 
brackets: 

1. Small anisotropy 

Anisotropic dipolar Dipolar region without Isotropic exchange 
region, ADl anisotro~y, D 1 region, II 

O<'t'<TDA, TDA, <'t'<TD T>TD 
4nXII>4nX-,-> 1 X-,-"",XII""'X XII""'X-,-=X 
(4nX-,->4nXII> 1) 4nx>1 4nx<1 

2. Large anisotropy 

Anisotropic dipolar Anisotropic region without Isotropic exchange 
region, AD2 dipole forces, A2 region. 12 

O<T<TDA, 't'DA, <T<TAI 't'>'t'AI 
4nXII> 1; 4nX-,- < 1 1> 4nXIl > 4nX-,- X-,-"", Xu"",X 

(4nX-,-> 1; 4nXtt< 1) (1) 4nX-,- > 4nXtt) 4nX<1 

We turn now to the analysis of the tensor Ga {3. The 
first of Eqs. (8) is easily solved and we have 

ffioGoaWl"n'YGovr. 
Ga,=Go., , 

1 +wo (n.Go •• n.) 

G,,= (l+woG./.n./.') Gil [ l+wo(G./.n./.'+G lln,') ]-', 

GXX(YY)=G./.[ 1+wo(G./.n'~X)+Glln,')] [1+wo(G./.n./.'+G 11 n,') ]-', 

GXy=Gyx=-woG./.'nxn.[ 1 +wo(G././!./.2+G ll n,') ]-', (10) 

Gx(.), ,=G" x(y) =-oo,G./.GIln,(.)n, [ l+wo(G./.n./.'+G ll n,') ]-'. 

It can be seen from these formulas that, in the easy-axis 
case, only the fluctuations along the z-axis having mo­
mentum in the xy-plane increase without limite,]; this 
was used in[S]. In the easy-plane case the fluctuations 
in the xy-plane grow without limit, but if the momentum 
is directed, e.g., along the X-axis, the growth of a fluc­
tuation in this direction is limited. However, this limi­
tation is not so strong as in the easy-axis case; the situ­
ation does not become logarithmic, and static scaling 
theory, with slightly changed values of the critical in­
dices, should hold. 

We now formulate the principal properties of the 
static Green functions, which we shall use subsequently. 
Following Riedel and Wegner(ll], we shall assume that 
there is a scaling property with respect to the aniso­
tropy: 

where K = TlJa-' is the characteristic momentum of the 
critical fluctuations, a is a quantity of the order of the 
lattice constant, gil 1(0,0 ~ Te', A« Tc and CfJ is the cri­
tical index for the anisotropy. According to('2], CfJ c:>31.25, 
i.e., it is smaller than the susceptibility index y by ap­
proximately 0.1. If TcTCfJ > A the anisotropy can be neg­
lected; other'f~se it is important. This means that for 
T < T A (AT"C') / CfJ the growth of the critical fluctuations 
in that hard direction ceases; in this case, the corres­
ponding Green function is equal to 

(12) 

In the regions I, and D, (see the above scheme) the ani­
sotropy is negligibly small, and on gOinfi from I, to D, 
the critical indices change only slightly 2], The cross­
over region is determined by the condition GD,(O,O) 
c:::; GI (0,0). If for these functions we use the Ornstein­
Zernlke formula (which is legitimate, inasmuch as the 
Fisher parameter TJ is very small-below we neglect it), 
at the boundary we obtain 

ZD. (xn.'+k2 ) -, =z" (x,.'+k') -I. (13) 
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From the equality of these expressions at large k it fol­
lows that ZD l = ZI = Z ~ (T~afl (the same comparison 
shows that Z is alJo Wlchanged in the crossover between 
other regions). Furthermore, from (13) for k = 0 it fol­
lows that KD1 = KI1, and therefore the value of the con­
stant a in the definition of K changes slightly in the cross­
over between regions: aD l = aI1T'D 1(V01 -LlI1). 

In the easy-plane case the crossover from D1 to AD1 
should be characterized by a new anisotropy index (/J, 

different from that calculated in[12)3). However, inas­
much as the dipole forces only weakly alter the values 
of the static indices[21, it may be supposed that the new 
value of qJ is close to that obtained in[12). In this case, 
as before, we shall describe the critical fluctuations in 
ADl by the Ornstein-Zernike formula with the quantity 
K replaced by Ko in the expression for Gil' In the easy­
axis case in ADl the situation becomes logarithmic for 
the longitudinal fluctuations [S). In this case we shall as­
sume that in the xy-plane the fluctuations are described 
by the formula 

G.dk)=Z(k'+xo')-', xo=a-' (A/T,) vI., (14) 

Where the quantity Ko is, effectively, a parameter of the 
theory. In this case, by virtue of (10) and (14), for Gzz 
we have 

Z 
G .. 

Z 
-:-:-.,--:--....,...,,:-:----:-.--:~..,...,.-~-~c-- "" ,..,.-,---,-,-..,.-
k'+x'+qo' (k'+xo') n,"1 (k'+xo'+qo'n.L') k'+x'+xo 'n,' ' 

qo = (oooZ) 'I. - a-I (ooOT,-') 'I •. 
(15) 

Here qo is the dipolar momentum introduced in[3); the 
approximate equality in the right-hand side holds for 
k« Ko and n~ « 1 (we recall that in the region AD1 we 
have K2« K~« qg). It follows from (15) that the charac­
teristic momentum in ADl is Ko; it is precisely this quan­
tity which limits the range of integration in the logarith­
mic integrals of the perturbation-theory series[S). In 
our case the interaction of the critical fluctuations is 
not small (of the order of T c), Therefore, for the loga­
rithmic theory to be valid it is necessary that the effec­
tive charge be small[S). According tors), the scattering 
amplitude for the fluctuations has the form4~ 

r(k')= 1 (1+3~ln~)-' "" (31n~)-I, (16) 
1 k'+x' k'+xo' 

where y - (Koaf1» 1. The effective charge is r(O) and, 
if K2 « K~, is obViously small. Furthermore, according 
to[S) , 

X'Z-I=C' -I, (1+3Y In ~) -'I, = C-I, (xoa In-' (X~)') 'I. (17) 

and C is determined from the matching of the fWlctions 
Gil and Go = ZK~2 at the bOWldary of the regions AD1 and 
D 1 : 

-. Z ( xoa ) 'I. 
C=-'<D xo' - , In[ (x Oa)'I1:AD,] 

Za' ( x,a ) 'I, 
(xoa)'-I/v In(xoa)'-I/V . (18) 

Here we have taken into accoWlt that TADl = (Koa)1/v at 
the bOWldary of the regions. 

We now discuss the case of large anisotropy. The 
situation in the regions 12 and A2 has effectively already 
been conSidered above. Furthermore, since in all re­
gions we now have (VaGi < 1 and 

G .. =Z (x'+k'+qo'n,') -I, (19) 

this means that the characteristic momentum cutoff is 
qo. Therefore, in the region AD2 formulas (17) and (18) 
hold, if Ko is replaced by qo in them. 
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In conclusion, we give formulas, following from the 
appropriate expression in[S], for the spontaneous mag­
netization below T c: 

(!!...)' "" 3 (Xoa)'/' T,voxo' _, (31n (xoa) , ) '1, 
M 4S' 'Z 2 ( ) , o 000 a -~ 

(!!"')' ""_ 3, (qoa)'I'T, (_,) (31n (qoa)') 'I" 
Mo 4S 000 -, 

(20) 

where Mo is the saturation magnetization and S is the 
effective spin (Mo = g{1.Sv(il). The first of these formulas 
corresponds to small anisotropy and the second to large 
anisotropy. In derivinfi them we have replaced the con­
stant C. introduced in s] by woZTca2j41T. 

3. CRITICAL DYNAMICS IN THE CASE OF 
SMALL ANISOTROPY 

We shall now generalize to the case of small aniso­
trop y the results obtained in [3) pertaining to the critical 
dynamics of a ferromagnet above the Curie point. As 
in[3) we shall use the formalism of Kubo formulas, as­
suming that the quantity that can be determined by them 
for k:::::: K, Ko is the characteristic energy of the critical 
fluctuations for the fWlctions Gil and G 1 in the sense of 
dynamic-scaling theory, i.e., the energy that sets the 
scale for the energy dependence of these fWlctions (cf. 
the paper by Halperin and Hohenberg[13)): 

Gu(k, oo)=Gu(k, O)Fu h~~, k), 
k,II • .L 

(21) 

where the scale for momentum dependence of the fWlc­
tion FII 1 is set by the quantity K or Ko, depending on 
whether the easy or hard direction is considered. In the 
limit k - 0 the quantities rOil 1 describe the Wliform 
relaxation, and ' 

(22) 

The fWlctions r kll 1 are determined by the relations: , 
r.u =GI~~ (k, 0) (ioo)-I[lllu (k, oo)-Illu(k, 0) ]1.-0, . 

IDu(k,oo)=i J dte'·'([S.'(t), S_.'(O)]>, 
o 

tIl .L(k, 00) = ~-j dt e'·'( [S • .L(t), S_ • .L(O) ]>, 
(23) 

• 
where the dot denotes the time derivative. It follows from 
(6) that 

n(l)=k,lk, 

and, therefore, we have 

Illu(k,oo)= I: 1Il1I·.~(k, 00). 
iJ-=.,A,d 

(24a) 

(24b) 

(24c) 

(24d) 

(25) 

To estimate the quantities r ll 1> as in[3, 14] we shall in­
v~~tigate the structure of the ~iagrams for the fWlctions 
~lJ.i (cf. Fig. la). At the bOWldary of the regions Dl and 
AlY1 we have 41TX o:e 41TXm» 1, and, by virtue of (12), we 
obtain 

cito roo ( T, ) (T-')/9 
4ltj(,m----=_ - :»1, 

T, (xoa)' A A (26) 
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FIG. 1 

but y differs from cp by an amount close to 0.1; there­
fore, for all reasonable values of the parameters this 
inequality means that wo» A. Therefore, in the region 
1, the anisotropy can be neglected and the critical dy­
namics is described by the usual theory of exchange 
dynamic scaling[13], and Huber's result[15, 3] for cubic 
ferromagnets is valid for the critical damping. The ani­
sotropy can also be neglected in the region D , • In fact, 
if this is so, for k < qo we have, according to[31, 

r. lI=rOL =T, (qoa) 1/"(xa) ,,-I/''fJ(k/x) , 

z.=(5-TJ)/2""/,. 
(27) 

Using now perturbation theory in the anisotropy and pro­
ceeding exactly as in[3], it is not difficult to estimate the 
quantities 

A' r L AA - r:--(xa) 1/,_" (qoa) -II., 

r L Ad+r LdA-A (xa) II'. 
(28) 

In deriving these expressions we have taken into ac­
count that, unlike the dipole vertex, the anisotropy ver­
tex does not produce separation of the longitudinal and 
perpendicular (to the momentum) parts of the critical 
fluctuations, and have used the principle of coalescence 
of correlations [16] 5 • 

The expressions (28) are small compared with (27) 
in the whole region D" provided that (47TXm)1/v 
» (Koa)2--CP /v; for 2v - cp ~ 0.1, this inequality practic­
ally always holds. It remains to analyze the region AD ,• 
For this we note that the anomalous dependence of rk 
on T in the dipole region (in the present work-the re­
gion D, ) arose in[3] because of the vertices with mul­
tiple scattering (Fig. 1b), inasmuch as the bare dipole 
vertex (24d) is constructed in such a way that only one 
of the spin factors is responsible for the critical fluc­
tuations perpendicular to the momentum that grow with­
out limit, while the second contains (n" Sk ) and is there­
fore limited. Multiple scatterings lead to iAtermediate 
states in which there is no selection of the parts of the 
fluctuations perpendicular and parallel to the momentum. 
Therefore, the parts of the Green functions that are per­
pendicular to the momentum play the main role. In the 
limit T - 0 the corresponding integrals over the inter­
mediate momenta diverge and this leads to an anoma­
lous dependence of rk on T. In the region AD, we must 
elucidate in an analogous way whether amongst the dia­
grams for til there are some which, in their intermediate 
states, contain only critical fluctuations that grow without 
limit. Here, all the problems associated with the analyt­
ical continuation of the temperature diagrams, the esti­
mation of the character of the momentum and energy de­
pendences of the vertices, and so on, are solved in exact­
ly the same way as in [3]; we refer the reader to this 
paper for all the details. 

In the easy-axis case the fluctuations along the z-axis 

716 SOy. Phys.-JETP, Vol. 42, No.4 

grow without limit; it follows immediately from (24) that 
diagrams without multiple scatterings do not have purely 
longitudinal intermediate states and, therefore, cannot 
lead to anomalous behavior. Multiple scatterings also do 
not lead to purely longitudinal intermediate states. Indeed, 
all the multip Ie-scattering vertices are tensors which, 
like ~~j3, have a definite limit in the limit of zero mo­
menta6 • 

The bare vertex is a pseudo-tensor and, therefore, 
all the vertices with multiple scattering depicted in 
Fig. 1b are pseudo-tensors, which, obviously, vanish if 
all the vector indices of the intermediate particles 
(!L,v; fl." fl.2, v" V2, etc.) are equal. For finite momenta 
of the intermediate particles and finite k, this exclusion 
is partly lifted, but in this case even powers of the mo­
menta appear in the numerator, leading to the result that 
the corresponding integral is finite when T - O. In view 
of what has been said, the characteristic momentum of 
the intermediate states is the larger of the momenta 
Ko and k. This leads to the result that, in the region AD I' 
in the easy-axis case, til II "'" til l' and this quantity is ob­
tained from the quantity til in the region D 1 by replacing 
K by Ko. As a result, using (23) and (27) we find (1) = 0): 

rkJ. =T,(qoa) II, (xoa),/,-Ij,'fJ ( :, ), 

k'+x' k 
rkll=T,(q,a)lj'(xoa)'I,-Ij,_-'fJ(-) 

Jc2+X02 'Xo 

(29a) 

"'Wo (4nXIl (k» -I (xoa) "'(4nXL (0» I/"BII • 

B II =(T,Za')'fJ(0)-1. 
( 29b) 

The apprOximate equality in the right-hand side of (29b) 
holds for k« Ko. For k» Ko the quantity fklJ = rk1 
coincides with the quantity given by formula ~27). We 
see that, although the temperature dependence of rOil 
is normal, its dependence on the anisotropy A and dipole 
energy Wo is extremely complicated. 

In the easy-plane case arguments completely analo­
gous to those given above lead to the conclusion that 
the intermediate states for till are not singular, but 
there are singular states amongst the intermediate 
states for til II inasmuch as there are now two critical 
modes-along the x- and y-axes. As a result, we obtain 

_I ( k ) roJ. =GL (k) (qoa) II' (xoa) '/'-lj''fJL -;:-

"'wo(4nxJ. (k) )-' (4nXIl (0) ),'''BL, BJ. = (T,Za')'fJL (0), 

rou=T,(qoa) 1j'(xoa)'HI/'(xa) 1-2{''fJ1I (+). 
(30a) 

(30b) 

In deriving (30b) we have made the natural assumption 
that the vertex part leading to an intermediate state con­
taining two critical perpendicular fluctuations behaves 
as if there were no anisotropy. The approximate equality 
in the right-hand side of (30a) holds for k « Ko. We see 
that the energy of the critical fluctuations in the easy 
plane is normal in character, while the critical fluctua­
tions in the hard direction are rapidly damped as a re­
sult of decay into critical modes in the easy plane. 

4. CRITICAL DYNAMICS IN THE CASE OF 
LARGE ANISOTROPY 

Now the maximum value of the susceptibility in the 
hard direction is small, and instead of (26) we have the 
opposite inequality. In practice, this means that Wo « A. 
In the region 12 both the dipole forces and the anisotropy 
can be taken into account by perturbation theory; there­
fore, for the critical damping we obtain a generalization 
of Huber'S formulas [1 5, 9]: 
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A' A' 
r,.c----. ""-. T,(xa)l, T,-r; 

(31) 

In the region A2 in the easy-axis case, because G1 is 
bounded, momenta of the order of the larger of the quan­
tities k and Ko are important in all the integrals. In this 
case, if we assume that 211 = cp and TJ = 0, the exchange 
forces and anisotropy give equal contributions to the 
energy, and 

(x'+k')a' (k) wo'(k'+x')a' (k) 
rkll=T,(ka)' (x,a),' ill x, + T,(x,a),l. 'PII;;, (32a) 

k A' ( k ) 
rk.c=T,(ka)'(x,a)'I'h(-)+T-( ),,'P.c - . 

Ko c xoa Ko 
(32b) 

The first terms in these formulas describe the exchange 
contribution to r ll l' and the second term in (32a) cor­
responds to the un'iform relaxation along the z-axis; it 
must be taken into account if k < qo; cp 1 (k) falls off for 
k» Ko, and fll and fJ are such that for k» Ko we obtain 
rkll = rlU ~ Tc (ka) 2, as in the absence of anisotropy. 

In the easy-plane case in A2 there arises a situation 
analogous to that which is obtained in the region AD1: the 
energy r 1 has a normal form while r II grows with de­
creasing T, viz: 

_ ,(x'+k')a' (!:-.) A'(k'+x')a' (~) r • .c -T, (ka) ( )" h.c + T ( )'/. ¢.c , 
xoa , Ko c xoa Ko 

(33a) 

(33b) 

Here the functions hll 1 at large arguments are such that 
for k» "0 we have rkll = rk1 ~ TC(ka)5/2; the functions 
1/1 11 1 fall off for large arguments and can be neglected. , 

In the anisotropy-dipole region AD2 in the easy-axis 
case, as above, momenta of the order of k and Ko are 
important in the calculation of <1>11 l' As a result, in the 
crossover from region A2 to AD2 the transverse energy 
(32b) is practically unchanged, while in (32a) it is neces­
sary to substitute for K2 the quantity given by the Larkin­
Khmel'nitskU theory (cf. Sec. 2): 

( 
In(q,a)'-t/y) 'I. 

x'=-r;a-' (q,a) ,-'/y . 
In(q,a)'-r; , (34) 

In the hard-axis case and in the region AD2 formulas 
(33a) and (33b) remain valid, with a certain change in 
the form of the functions h and 1/1. 

5. CRITICAL DAMPING IN GdCI3• THE ROLE OF 
THE MAGNETIC FIELD 

Kotzler and co-workers have studied the critical 
properties of the ferromagnet GdCb[6, 7, la](Tc "" 2.2 K, 
easy-axis anisotropy). It was found that its static pro­
perties agree with the predictions of the Larkin­
Khmel'nitskiti:a] theory (the logarithmic dependences dis­
tinguishing this theory from the Landau theory were not 
detected). According to[7], for T < 0.4 we have 

(35) 

so that in practice we are concerned with small aniso­
tropy and the entire critical region is the region AD1• 
However, the temperature dependence of the critical 
absorption was found to be extremely strange: 
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(36) 
r'II[sec-l]=3.5·1O'-r;'I·-XI~'I.; 0.03>1:>0.004, 

i.e., for T < 0.03 the damping is anomalous. It was shown 
above that normal behavior of rOil is a consequence of 
the pseudo-vectorial properties of the bare vertices. 
Therefore, the anomalous dependence of rOil should be 
associated with a pseudo-vectorial perturbation. We 
shall show that a magnetic field can lead to the observed 
phenomenon, Le., to the result that for sufficiently small 
T we have rOil ~.,fT while, at the same time in this tem­
perature region, the static properties remain indepen­
dentof the field. 

It must be emphasized, however, that in the deriva­
tion of formulas (29) for the critical damping it was ne­
cessary to know both the static and dynamical behavior 
of the Green functions and vertices at momenta greater 
than Ko. This behavior has a scale-invariant character 
with known indices, if the dipolar-scaling region Dl 
exists. In exactly the same way, we can clarify the ques­
tion of the influence of an external field only by taking 
the scaling properties at large momenta into account. 
But for GdCla the region Dl is absent; therefore, the 
formulas obtained below are not strictly applicable to 
it. We can only suppose that estimates made with their 
help do not lead to gross errors, and, moreover, the 
qualitative result is certainly correct: if there is a re­
gion of fields in which rkll is anomalous, then in this 
region rOil ~ T1/2. 

We now discuss in somewhat more detail the condi­
tions under which an external field affects the properties 
of the system. Regarding the interaction (4) with an ex­
ternal uniform and constant field as a perturbation, we 
obtain (compare with, e.g., [16]) 

I'lG.~-' (k, 0) =-r ••• y(k, k, 0, 0) (G ... (O, O)g~Hp) (Gy,(O, O)g~H,). (37) 

By virtue of the equalities (2), this expression does not 
depend on the shape of the solid. It follows from the re­
lation (3) that oG-1 = oG(/, and the field does not affect 
the longitudinal susceptibility if 

Gil (0) r,m(O) (G"g~H,)'=GII(O) r.,,,(o) (Gil (0)g~Hi)'<1, (38) 
Goo (0) =G II (0) [1 +w,N"G II (0) ]-'. 

If we take into account the correspondences indicated in 
footnote [4], it follows from [a] that 

(
X' )_. 

r".,(0)-16nx, 3T,v,Z'lni- . (39) 

In this formula Ko ensures matching with the scaling re­
gion, where the four-point function is proportional to K. 
The fact that the magnetic field appears quadratically 
in formula (38) is a consequence of the fact that it is 
odd under time reversal. At finite frequencies this odd 
parity is cancelled by the frequency dependence and for 
W f 0 we have 

bG.,(k, w) =G •• (k, w)F.,,(k, w, 0, 0) wG,,(k, w) (G". (0, O)g~H,·). (40) 

Here wF Jllly is the three-particle vertex depicted in 
Fig. 2a; F(w) is finite at zero and is an analytic function 
of w with the property F JlllY(W) = F Jllly(-W*), which fol­
lows from the time-reversal symmetry. In addition, this 
amplitude is symmetric to interchange of the particles 
1 and 2 in Fig. 2a, but, inasmuch as this interchange is 
accompanied by the replacement W - -w, F J1.11y is anti­
symmetric in Jl and ll. 

Up to the present time, odd dynamic vertices have 
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not been considered in the literature. It is shown below 
that we need the function F f.lvy for k ~ Ko and y = z. We 
now try to analyze the quantity wF. First suppose that 
the momentum q in Fig. 2 is large (k ~ q » Ko). In this 
region of momenta the dynamic- and static-scalin~ the­
ories are valid and from the unitarity estimate of 19] we 
find that wF has dimensions k3/2. If q« k, then, in ac­
cordance with the 8eneral idea of coalescence of correla­
tions(16~ wF ~ kXq< 12)-X; obviously, for q < Ko the quan­
tity q must be replaced by Ko. Thus, for q = o and 
k~ Ko we have 

(41) 

Here, in accordance with dynamic scaling, we have used 
the energy rk to set the scale for w. The index x is 
treated below as a parameter of the theory. In the static 
theory a large momentum is always separated out in the 
form of the factor k(l/v}-l; if this property is universal, 
then x = (l/v) - 1 ~ 1/2. 

The correction (40) leads to intermediate states with 
critical fluctuations with the same polarization a (Fig. 
2b); as a result there arises a correction <1>1, quadratic 
in the field, to the Kubo function <I> II with purely longi­
tudinal intermediate states. These states arise from 
that component of the pseudo-tensorial vertex (Fig. 2c) 
with all indices equal to z. Obviously, this vertex is con­
structed from Hia,z{3 and <5 a {3' and, therefore, the com­
ponent under consideration is proportional to Hiz' Ac­
cording to the general analytic-continuation formula for 
<1>[3], by virtue of (24d) the singular contribution to i)1 
has the form 

T,'vo' J n' dx,/l, «,«, ) ID,=-- dk,dk. --A, (k,k"x"x, 
(2:t)'i :tx, ,-, 

Here A is the correction to the bare vertex (24d) (Fig. 
2b), W is the vertex part with longitudinal intermediate 
states (Fig. 2c), Xi are the energy variables and ~i are 
the discontinuities with respect to them. We must now 
estimate the transition amplitudes r az depicted in Fig. 
2c. First we shall consider a two-particle intermediate 
state. Th(i! singular contribution arises from the region 
of momenta k2« Ko. But, as we shall see below, 
k1,3 > K~. Therefore,'it is natural to make use of the 

~ [16] principle of coalescence of correlations • The depen-
dence on it1 i~ separated out immediately: r az (k1,k2) 
= Tc(k1a)(1/v)-lp (Ko,k2). Furthermore, for k1 ~ k2 '" Ko 
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we have r az ~ Ko; therefore, if k2 ~ KOj P ~ Kg-llv. For 
k2 « Ko the theory is logarithmic. In[16 it is shown that, 
for a small coupling constant y, if only one of the mo­
menta (k2) is small, the dimensionless four-point func­
tion is proportional to A~Aln(K~/k~)rl/3 = A2/~ln(K~/k~)r1l3. 
If, following the logic of 81, we assume that this for­
mula is also valid for A ~ (Koar1 » 1, then, for k1 ~ Ko 
and k2 « Ko, we have 

(43) 

We stress once more that in this expreSSion the power 
of Ko is not determined sufficiently reliably. In (42) the 
integration over k1 and k2 is performed over the two re­
gions k1,3« Ko and k1,3 ~ Ko. The contribution of the 
first region can become anomalously large if there is a 
nonintegrable singularity for k1,3 « Ko. In this respect, 
the terms containing the greatest number of singular 
functions Gzz and Gaz (cf. (10)) are suspect. The most 
singular term contains F a{3z for a f z, (3 f z. The cor­
responding integral diverges only if F is proportional 
to k- 2• But there is no reason for such a divergence, 
inasmuch as the linear power of 'JJ in (41) is made di­
mensionless by the energy of "its mode," i.e., by 
rk.L' In the second region, Ga {3 ~ Go(<5a {3 - nan(3)' (nG) 
~ w~ln, and formula (41) is valid for F. 

By virtue of dynamic scaling, the integration over Xi 
for k1,3 2: Ko does not alter the momentum dependence of 
the integrand. This enables us, as in [3], to estimate the 
integrals over k1 and k3 by truncating them, where neces­
sary, at the upper limit by the momentum qo, since for 
k> qo we have nG ~ k-2• To estimate the integral over 
k2' as in[3] we can make use of the pole expression 

G,,(k, w)"'G .. (k, O)r,,(k)[ -iw+r,,(k) ]-', 

r" (k) =G,,-' (k, 0) IDII=G.,-' (k, 0) Gil' (0) rkll, 

and the contribution of the two-particle state has the 
form 

_ T:vo Jdk (In~)-'I' "!'Jdx( ImG"(k,,x) )' 
N,(k, x) (2n)' ' k,':t x 

dk ( x' )-'1' 
-(xoa)-'T, S kr' In";" . 

max{lt,x) 2 Jr.11 2 

(44) 

(45) 

It is not difficult to convince oneself that the many-par­
ticle longitudinal states are nonsingular, and, therefore, 

, dk, ( Xo' ) -'I. 
ID, (k) ='1', (gI!H,G.,(O, 0» A.T, J ki'" Ink" ' 

mu:(Il,x) 2 Jr.zli 2 

A.= (qoa) h+>I,_' (xoa) ""_'1'_", x>-1/v+2, (46) 

A,= (xoa)'/, In'(qo'/xo'), x"'-lIv+2, 

A.=(xoa),/., x<-1/v+2, 

where <P1 ~ 1. As a result, taking (29a) into account, for 
K « k « Ko we obtain an equation for rkll: 

G,"rkll=IDI+ID, (k), 

IDII='I'o (goa) ,/, (xoa) '!.-'/' 

(where <po ~ 1), which is easily solved; we have 
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In this expression k must be replaced by K, if k < K. The 
formula with the logarithm squared holds for Ix -1/21 
« 1 and, in particular, for the "universal" x = 1'-1 - 1. 
For k < K the factor multiplying Cx coincides in order of 
magnitude with the left-hand side of the condition (38). 
Therefore, if Cx » 1, there indeed exists a region of 
magnetic fields leading to anomalous critical damping 
but not affecting the static susceptibility. In this region, 

(49) 

It follows from (38) that, if woGllNzz = 4rrXIINZZ » 1, we 
indeed have rOil ~.fi: 

For a direct comparison of the formulas obtained with 
experiment it is necessary to take two circumstances into 
account: first, we must take into account the dependence 
of all quantities on the spin S, which is important for 
large spins (for GdCls we have S = 7 /2 ~ 4) and, secondly, 
we must try to separate out the large numerical factors 
analogous to the 16rr in (39). The dependence on the spin 
arises from the fact that Z ~ S(S + 1) ~ S2. As a result, 
USing, e.g., the unitarity power [15, 19] for the vertices, we 
obtain r n ~ S-n; r 4 ~ S-4 and W F ~ S-3. Furthermore, the 
factor 16rr in (39) is not a chance factor; it is necessary, 
e.g., for the numerical agreement of the unitarity esti­
mates [16] for r4. Its appearance can best be seen by 
means of (4- E)-theory (cf., e.g.,[17 1). In exactly the 
same way, there should also be a large numerical fac-
tor of the order of (16rr)1/2 in the expression for wF. If 
we take S and these factors explicitly into account in the 
estimates given above, we obtain 

<p.=S (16n) "',p., <p. = (16T1) 'S-',p" 
(50) 

Thus, in (47) a large factor completely analogous to that 
in (38) and (39) is separated out explicitly. We now give 
certain estimates for GdCb. For GdCls we have Wo = 6.8 
X 109 sec-I; and from the estimate (Koa)2 ~ S2wo(4rrXm Tcfl 
and (35) it follows that (Koa)2 ~ 0.1 and qo ~ 2Ko. In the 
critical-absorption experiments of[7] a sample with 
Nzz = 0.03 was used, so that in the entire anomalous re­
gion (T < 0.03), in accordance with (35), 4rrx II Nzz > 1 
and gJ.lGzzHz ~ gJ.lHz (WoNzz r1 . 

For x ~ 1/2 we have Cx ~ 2 and, taking into account 
the 1/3 in (39), we may expect anomalous damping to 
exist in the region 10TH> T> TH, where TH is the value 
of T at which the magnetic field begins to affect the sta­
tic susceptibility. The experiments of[7] were performed 
down to T ~3 x 10-\ and the field was not observed to 
affect XII' This makes it possible to estimate an upper 
bound for the field that could have been present in these 
experiments. Taking (35), (38) and (39) into account and 
neglecting the logarithmic factor, we obtain 

[ ] oo.NuS' ( OO.T )'" -H. Oe G;;--- --', -- =3.2fTI'~3,..-.""O.7. 
gIJ. 16T,x.a 

(51) 

Thus, there could have been an external field of the or­
der of 1 Oe at the sample. We shall now see what anoma­
lous damping such a field will lead to. It follows from 
the cited values of qo and Ko and (36) and (50) that 
iJloex'p ~ 0.06; such a value of iJlo is not too small, inas­
mucfi as integrals over kl and k:J with factors (2rr r3 
(cf. (42)) appear in the expression for 4>11 (cf,[3]). There­
fore, there is a factor rr- 2 in the expression for l/Jo (we 
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recall that to estimate 4> II [3] it is necessary to extract a 
root). Taking (50) into account, we must suppose that 
iJll = 4 x 1O-3d (d ~ 1). Substitution of the parameter 
values found into (49) gives for the anomalous critical 
damping rOil = 3.3 x 109 H(Td)1/2, where H is in Oersteds. 

As reported to the author by Dr. Kotzler, his experi­
ments were performed in the earth's magnetic field 
(H = 0.34 Oe), so that there is an unexpectedly good 
agreement for such rough estimates between the ob­
tained value of rOil and the experimental value (36). 

We now discuss briefly the case of large anisotropy. 
From (32a) for k < Ko we obtain 

(52) 

and it can be shown that qJi/) = SqJ61 ) and qJb2 ) = 16rrS5qJ62). 
Since there is now no suppression of the fluctuations 
parallel to the momentum, the integrals over k1,3 in (42) 
contain Greenfunctions in threes and, for any x, from 
(41) momenta k1,3 ~ Ko are important. As a result, 

1D,=<p1 (gIJ.H.G .. ) ' (~: )' (x.a)"·-I . 

x 
T, S dk'k"-"'r;.:. A, 

mu(.l,K) 

Here qJl = (16rr)2S2l/Jl' and the regions in which the cor­
responding expressions are valid are indicated on the 
right. The factor (qoar4l3 in the region AD2 arose because 
now formula (43), with Ko replaced by qo, holds for r Q'Z. 
In (53), in both cases, the integrand is approximately 
equal to (k'rk'lIf l and the corresponding integrals are 
of the order of Pitmax(k K)' Therefore, taking (38) into 
account, we can write the conditions for the critical 
damping (k = 0) to be anomalous in the form 

(54) 

where B is the coefficient in (53) multiplying the product 
of the integral and (gJ.lHZGZZ )2. In the region A2 we find 
for the anomalous damping 

(55a) 

_I ( gIJ.H.)' T, ,(<p;') )' 
T,r.",~S'(16T1xa)-·' ~ -- --(4T1XII)3~ __ ~(4T1X.L)" (55b) 

000. 000 <Pl'X.Da 

Here 4rrXl = q~/K~ « 1 is the maximum value of the trans­
verse susceptibility. In addition, we have used the esti­
mate r zzzz ~ 16rrT c (Ka)S-4 and have taken into account 
that in A2 demagnetization effects are small and, there­
fore, Gzz ~ Gil = w~14rrXIl' The inequality (55b) is the 
condition for which anomalous damping occurs. The 
analogous formulas in the region AD2 have the form 

r. ll =oo,4T1X.L(x.a) (q.a)-·/' ~<p1(4T1XII)-1 II , (56a) , [Te ] 'I. gIJ.H, 4T1x 

00. 00. 1 +4T1XIIN .. 

_I S'ln(q.'/x') T, (gIJ.H,'4T1XII)' (<po"')' 
Tof"" ~ 16 ~-4T1XII 1+4 N ~--)\4T1X.L)'(q.a)·f" 

nq.a 00. TlXII" <P, (x.a 

(56b) 
Here, for r zzzz we have made use of the estimate (39) 
with Ko replaced by qo. Thus we see that in the case of 
strong anisotropy a magnetic field can lead to anomalous 
critical damping while not affecting the static suscepti­
bility. We shall not discuss here the influence of the field 
on the dynamics at finite k, since an experimental check 
of the corresponding results seems difficult. 
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In conclusion, the author expresses his gratitude to 
Dr. K6tzler for sending material on the experiments 
with GdCb and for an interesting letter discussing the 
problems of the critical dynamics, and to V. A. Ruban, 
who raised the question of the role of the magnetic field. 

I)From the Kubo formulas, the dynamical properties of a physical 
quantity are determined by the product of the inverse susceptibility 
corresponding to this quantity with the Kubo function of the time 
derivatives of this quantity. According to van Hove [4], the critical 
dynamics is called normal if the Kubo function is finite as T ~ T c. 
and anomalous otherwise. 

2)If we neglect the dipole forces, this is also true for finite k. When 
they are taken into account, the tensor properties of the internal 
Green functions depend, by virtue of (8), on their momenta, and 
this leads to terms proportional to kakj3 and (k'z)(kazj3 + kj3Za) in 
the expression for ~. However, these terms are unimportant for the 
estimates below. 

3)We shall not distinguish the values of the indices in the different re­
gions, since it will always be clear which region is being discussed. 

4)There is the following correspondence between our parameters and 
those introduced in [8]: s = Z-I, m = K2Z-1, A = Ktz-I ~ (Koa)2Tc, 
b ~ Tc, 'Y - (Koarl » I, A - (Koa)2TC' /1 -/10 - T. 

S)The estimate of the vertices with multiple scattering (Fig. I b) car­
ried out [3] in the calculation of r 0 in the exchange region showed 
that multiple scatterings give a contribution of the same order as that 
given by the bare vertices. In principle, these contributions could can­
cel, as, e.g., in the case of the Ward identity. In our case, however, be­
cause of the pseudo-vectorial character of the vertices, there is no 
cancelation. In (4 - e)-theory it is easy to convince oneself of this 
by means of the formulas from Ginzburg's paper [17]. 

6)These tensors are not symmetric under permutation of the tensor in­
dices. There is symmetry only under simultaneous permutation of 
the tensor indices and the corresponding energies. Inasmuch as, after 
analytic continuation (cr. [3], Appendix II), the energies of the lines 
I and 2, and also of 3 and 4, (Fig. I a) appear asymmetrically, the 
whole diagram with multiple scattering is nonzero. 
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