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An asymptotic expression for the wave function near a tunneling path is obtained for a classical crystal 
with weak anharmonicities. A general expression is deduced for the exchange integral, including the 
preexponential factor. The phonon-spin Hamiltonian is obtained for a crystal composed of Fermi atoms. 
The spin-phonon vertex found in this way is large compared with that for conventional magnetic materials. 
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Quantum crystals are currently the subject of intens
ive theoretical and experimental studies. The most 
striking quantum property of such crystals is the possi
bility of tunneling of atoms located near various sites in 
the crystal lattice. Fairly rough calculations of the ex
change integral for He3 are reported in [1,2J. The im
portance of these calculations lies in the conclusion that 
the exchange governs the magnetic properties of crys
talline He3. 

We shall show how such effects in a hypothetical 
almost "classical" crystal with weak anharmonicities 
can be considered in the main order of uo/a, where Uo is 
the amplitude of zero-point vibrations and a is the lattice 
constant. An important difference from the earlier 
calculations is our allowance for the interaction of spins 
with lattice vibrations, which differs considerably from 
the case of ordinary electronic magnetic materials. 

Quantum tunneling in a metastable crystal accompan
ied by the formation of a nucleus is considered in the 
paper of one of the present authors [3J and by I. M. 
Lifshitz and Yu. M. Kagan. [4J An improvement of the 
method of [3J employed in the present study makes it 
possible, in particular, to calculate more exactly the 
relevant probability. 

The potential energy of a classical crystal in the con
figuration space has-in addition to a minimum corre
sponding to the position of all atoms at some lattice 
sites-similar minima corresponding to the transposi
tions of atoms between the same sites. In a classical 
crystal, these minima are separated by a barrier which 
is assumed to be impermeable. 

Our aim is to find corrections associated with the 
finite permeability of the barrier. The main contribution 
is made by transpositions between the nearest neighbors 
and we shall confine our treatment to this case; we shall 
assume that the corrections can be added independently 
of each transposition. The problem is, to some extent, 
analogous to the one-dimensional case of a particle in a 
two-well potential satisfying the classical conditions. 
However, there is an important difference which is as
sociated with the multi-dimensional nature of our prob
lem and the prOXimity of the second well, which corre
sponds to the transposition of just two particles, whereas 
the ordinates of the other particles are assumed to be 
unaffected and the dependence of the wave function on 
these coordinates remains essentially unchanged. 

1. WAVE FUNCTION OF A CRYSTAL IN THE 
aUASICLASSICAL APPROXIMATION 

In this section, we shall find an asymptotic expression 
for the wave function of the whole crystal on the assump-
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tion that the number of atoms N is finite and we shall 
make the transition to the limit N ~ "" only in the final 
formulas. When tunneling takes place, the main contri
bution comes from regions where the potential energy 
is much greater than the average energy of zero-point 
vibrations per particle. This allows us to use the quasi
classical approximation for the wave function of a crys
tal: 

'¥=A exp (-S/h), (1.1) 

where the action S is found as the solution of the 
Hamilton-Jacobi equation with zero energy (the action 
is purely imaginary because the range in question is in
accessible to the classical treatment): 

(1.2) 

For simplicity, we shall assume that all atoms in our 
crystal are identical; U is the potential energy of the 
crystal. We shall be interested in the tunneling process 
in the configuration space of the crystal from a point 
X(l) I 0 0 0 ) d' t the " f = ,Xl, X2, ... , XN ' correspon Ing 0 mmlmum 0 

U, to a symmetric pOint X(2) = (X~, x~, ... , ~), corre
sponding to the transposition of atoms 1 and '2 • 

Integration of Eq. (1.2) is equivalent to the finding of 
trajectories, Le., of solutions of a system of ordinary 
differential equations 

d'x, au 
m--=-

dt' ax, ' (1.3) 

and these trajectories emerge from the point Xm , where 
{Xi} = X(U in the limit t ~ - "", and the action along such 
a trajectory is given by 

, 
S=2m J U(x,(t), ... , xN(t»dt, (1.4) 

since at the point X(l) itself the action S should vanish, 
as found in the harmonic approximation. 

We can easily verify that the equilibrium point X(l) i.s 
a node at which an infinite number of trajectories begins, 
so that the formula (1.4) can be used to find the action at 
any point in space reached by the trajectories in question. 

Among the trajectories beginning from X(U, there are 
those which terminate at X(2). We shall call a trajectory 
of this kind a tunneling path between X(l) and·X(2). We 
shall be interested in the action near such a tunneling 
path because this action governs the tunneling probabil
ity. Clearly, only a small number of atoms actually 
travels along a tunneling path. In our case, these are 
the two atoms being transposed and their nearest neigh
bors, so that the displacement Xi falls rapidly with 
rising i. Bearing this point in mind, we can find adjacent 
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trajectories by linearizing the equations of motion and 
assuming that 

x,(t) =s,(t) +u,(t), 

where E i (t), satisfying the system (1.3), govern the 
tunneling path so that the quantities Ui(t) are the solu
tions of the equations 

d'u, a'u m-=--I u(t) dt' ox, ax, 1(1)' • 

(1.5) 

These equations correspond to the harmonic approxima
tion for particles far from those being transposed, 
whereas, in the case of those close to the transposed 
particles, the potential energy can be considered in the 
anharmonic approximation. 

The system (1.5) has 3N independent solutions vin(t), 
which vanish in the limit t = -00 (the trajectories should 
start from the point X(l», so that an unrestricted solu
tion is 

(1.6) .... 
where cn are constants. The solution corresponding to a 
displacement of the tunneling path with time is excluded: 

ViO(t)=~,(t). (1. 7) 

It follows from the system (1.5) that 

:t [Vin (t)V'n' (t) -V'n (t)v'n' (t) 1 =0 

and, consequently, since vin - 0 in the limit t - -00, 

(1.8) 

The action in the vicinity of the point E (to) in the 
tunneling path can easily be expressed in terms of the 
solution matrix Yin' We find that 

x as l(t,) as x as 
s = ~ ax dx, = ~ as ds; + ~ 8xt dx" 

o i 0' lIt,) 

since the integral is independent of the path. Hence, 

~.. as· 's = s (tol + m ) [SI (t)+u; (t)] dx;, ax. = mXi' 
lIt,) • 

A displacement of the point X from E (to) alters the 
constants cn and the time t = to + 6t(x). Retaining terms 
to the l~COnd order inclusive, we obtain 

X· 

S = S (to) + m~;(to) [Xi - S; (tol] + ~ [~I (to) 6t (x) + ~i (to)] dx;. 
lIt,) 

We shall integrate along a path which corresponds to the 
smallest change in the constants cn and we shall assume 
that Co = 6t(x). Clearly, a suitable selection of cn and Co 
allows us to reach any point X since the system of equa
tions 

.N 
x,-s, (t.) = L\x, = L, Cnv'n(to) 

has a determinant which does not vanish because of the 
linear independence of the solutions vin' Thus, . 

S=S(t.)+mii(t.)L\xi+m J Cn'V'n' (t.)v,n(to)dcn, 

• 
and, in accordance with (1.8), the last integral is inde
pendent of the path. Finally, using cn = v~. (to)~xi 
(V.f v-~ = 6 .. ,), we find that 1 

1 n m 11 
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S=S(t.) +~g,( to) L\Xi+ I/zS,,( t) L\x,L\x;, 
S<;(t) =mvin(t) v;;';(t) , 
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(1.9) 

where the indices i are labels of the particles and of the 
Cartesian coordinates. 

The formula (1.9) represents the action in a small 
region ~ i(to) in a tunneling path. However, if ~xi ~ i (to) 
= 0, the same formula represents, in fact, the action S 
over the whole of a hyperplane perpendicular to the tun
neling path at t = to, which is due to the fact that only 
small harmonic displacements need to be allowed for in 
the case of distant atoms. The cross sections of such 
hyperplanes are of little importance to us because we 
are concerned with the region where ~i ~ Uo (uo is the 
amplitude of the zero-pOint vibrations) and the radius of 
curvature of a tunneling path is of the order of the lattice 
constant a ~ uo. 

We can determine the coefficient A in the expression 
(1.1) by deducing from the SchrOdinger equation the 

following exact equation: 

Ii' a'A Ii as aA (Ii a's ---+---+ -~-E A=O 
2m ax,' m ax, ax, 2m· ax.' ) . (1.10) 

In the one-dimensional case, the quantity (1'i2/2m)a2A/axi 
can be ignored because it gives rise to corrections of 
the order of (1'i2/U2a~)112 ~ 1 at high values of U (i.e., 
in the quasiclassicallimit). This is generally untrue in 
the many-dimensional quasiclassical case because the 
harmonic approximation applies to the distant transposed 
atoms and because in considering the excited states (i.e., 
phonons), we should include all powers in the Hermite 
polynomial occurring in A and not just the highest order. 

However, we can obtain an apprOXimate (in respect of 
the quasiclassical parameter) solution on the assumption 
that 

A=Ant,+An •• -,+ ... +Ao, if n •• is even, 

A=Ant.+An •• -,+ ... +A" if nt. is odd. (1.11) 

(E = Eo + .nksI'iWks ' where "'ks is the frequency of a 
phonon of momentum k and polarization s). 

The quantities Ank are defined by recurrence rela
tionships, exactly as (fun be done in the case of the 
Hermite polynomials: 

(1.12) 

Ii oAnb-, as (Ii a's ) A = Ii' 0' Anka - --- + -2 -a ,- Eo - liook,n.. n.,-' 2-""iJT' (1.13) m ox; ox; mx; m Xi 

Differentiation of the last terms in Eq. (1.11) gives terms 
which are small in respect of the quasiclassical param
eter and the series can be truncated. 

The solution of (1.12) can easily be obtained by as
suming Ank = AsAE' where 

s 

~ aAs!!", + (!!:..... a's _ Eo )As=O, 
m ax, ax, 2m ax? 

.!!... a As!!... "" Ii dA" = 6EA", 6E=n •• lioo ••. 
m ax, ax, dt 

(1.14) 

We can easily show (see, for example, [5J) that the de
terminant ~ = laxi/acjl, where xi(t, Cj) are the solutions 
of the system 

satisfies the equation 

ax, 1 as 
dt = -;;: ax,' 

Ii aL\ as Ii a's - __ =-_L\. 
m ax, ax, max.' 
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The solutions xi(t, Cj) are of the form 

X=Si (t+e,) + E CnVin (t+e,) , ... ' 
so that the determinant is 

_I g'l \"1 ·1 V,n' I' L1.- + ~Cn' • 
V'in Din 

n· 

The second term can be ignored because it is a small 
quantity, of the order of uo/a, compared with the first 
term, Le., we can consider ~ only on a singular trajec
tory. The first determinant is easily calculated and we 
can express the solution AS in the form 

I 1 E ) 
A.=expJ Lm S,,(t)--i- dt. 

The solution (1.14) is found equally readily and we obtain 

'( SO [ S" (t) E,]) An •• (t)=An •• exp n •• w •• t+_~ ~-T dt . 

The constant A~ks is found from the condition that, in 

the limit t = - 00, our solution should reduce to the wave 
function in the harmonic approximation 

1J'=Hn., (q •• )exp (- 2~ Sij'L1.XiL1.Xj) , 

_ 1 \"1 itR,( 
q •• - N'h ~ e xi-R,) e •• 

(eks is a unit vector of the phonon polarization, N is the 
number of unit cells in a crystal, Sij is the matrix Sij 
in the harmonic approximation). Hence, we readily ob
tain 

Ank• (t) = {elkRi [(6i (t) - Ri) + L1.xl (t)l e~!: }n"Vk' 
t_oo N 

= lim enk$(a)kstA~k8' 
t_-oo 

or 

where 

B •• =,~~ E (si(t)-R,)exp(-w •• t+ikR,)e ... 
, 

(Ilks is a constant normalization coefficient). 

The follOWing comments should be made about these 
formulas. The equations for 

in 

are of the form 

(c5Wks; k' Sf is bounded in the limit N - 00). 

The great majority of the trajectories corresponds to 
a random selection of i3ks' so that the second term on 
the right-hand side is vanishingly small on these trajec
tories (in the limit N - 00). Since our aim is to calculate 
the integrals on a hypersurface perpendicular to a tun
neling path, we can ignore the difference between tk 
and the harmonic normal coordinates on the assump~ 
tion that 
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The quantities tks correspond to some rotation of the 
axes at the pOint ~i(t) and can be used to calculate the 
Laplacian because a2/axi = a2/atkS' Using this circum
stance, we can see that differentiation of Anks in Eq . 
(1.13) reduces the power of N-ll2BkSewkst + !;ks by 2. 

Consequently, the solution of (1.13) becomes 

( 1 ) nk,-2 t [ 1 E ] 
Ank,_2 = vnk.-2 N'!' Bk,e"'k,t + ~k' exp joo 2m Sii (t) - ; dt, 

where IInks_ 2 is a new normalization coefficient deduced 
from the Hermite polynomial in the harmonic approxi
mation. 

Collecting in this way all the terms in (1.11), we fin
ally obtain 

(1.16) 

if we use Eo = HSii/2m. 

The following comments should be made on the above 
formula. We find that Bks/Nl/2 ~ a/Nlh « 1, where a is 
of the order of the sum of the displacements of atoms 
along a tunneling path. Naturally, the expression for A 
also contains other terms of the order of N-l/2; in par
ticular, they may arise from terms of the type dropped 
from the determinant ~ and from allowance for various 
anharmonicities. However, the important point is that all 
these corrections are free of the factor a since they are 
related to various effects in a hyperplane perpendicular 
to a tunneling path. A correction associated with Bks is 
the largest and gives rise to curves of the order of 
N-1(a/uo)2 in the integrals or, if allowance is made for 
all the transpositions, to terms of the order of (a/uo)2. 

If there are several phonons, the asymptotic form of 
the wave function is obtained using Eqs. (1.1), (1.9), and 
(1.16): 

If·O ~ IT H (Bk• e"'k.t + ~k ) 
..-.... ks fiks NIh II 

t (1.17) 
x exp [2~ j", (SII (t) - SilO) dt - SOh(t) - 2~ SO (I) L1.XiL1.X; l 

The formula (1.17) for the asymptotic form of the wave 
function near any tunneling path remains approximately 
valid until the occupation numbers become so large that 
we cannot ignore tlie difference between !;ks and 
(3ks exP (~st). 

Thus, the asymptotic wave function is obtained by 
finding a tunneling path and solving a system of linear 
equations (1.5) governing the matrix Sij(t). The solution 
of these equations and the method of determination of the 
matrix Sij (t) are considered in the Appendix. 

The formula (1.17) can be used, in principle, to calcu
late the preexponential factor in the formula for the 
probability of a quantum process of formation of a 
nucleus of a new phase. [3J 

2. CALCULATION OF MATRIX ELEMENTS 

The expression (1.17) gives the asymptotic form of 
the wave function corresponding to the stationary state 
of a crystal in a region near a tunneling path. If we are 
interested in transposition effects, then a tunneling path 
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corresponds to the transposition of any two atoms in a 
crystal. Since the state with transposed atoms is in no 
way different from the initial state, we have a similar 
asymptotic form on moving away from any other well 
(with transposed atoms). Thus, if the atoms are ferm
ions, we may assume that 

'I' (x., ... ,XN; a" . .. , aN) = L, (-1)Pc,P'I' " (x" ... , XN; a" ... , aN), (2.1) 
p.' 

where P represents the transposition of atoms (coordin
ates and spins) and ,\ is the number of stationary states 
in one well. 

The expression (2.1) corresponds to the case when 
reflections from various wells are neglected. In the 
region near the bottom of a well, it describes the wave 
function of an ordinary crystal and, in the region between 
the wells, it gives the correct asymptote which is gener
ated by damped waves emerging independently from each 
of the wells. According to Eq. (2.1), a wave function can 
be represented by a superposition of stationary wave 
functions from each of the wells. (A set of stationary 
states in one well is complete but ineffective because the 
asymptotic wave function which decreases away from 
one well rises on approach to another well.) The approxi
mation of wave functions by these combinations is con
sidered by Herring. [6J 

We shall now consider a specific well. We shall draw 
all the tunneling paths from this well and construct 
hyperplanes which are perpendicular to these tunneling 
paths and which halve the paths. This generates a poly
hedron n surrounding the well in question. Multiplying 
the stationary Schrodinger equation 

(H-E) '1'=0 

by \}t~ *(Xl' ... , xN; aI, ... , aN) and integrating with 
respect to n, we obtain 

ft' J '1'.'.[ (H-E) 'I')dQ + (- 2m ) P ('I'.'·V'I'-'I'V'I'.'·)dl:=O, 

where the surface integral is taken over the hypersur
face segments surrounding n. 

The function 1J!~ satisfies the SchrOdinger equation 
inside n: 

H'I' p=Ep 'I' p, 

if we assume Ep to be a level corresponding to some 
continuation of the potential outside n in the case when 
there are no other wells (i.e., in the absence of reflec
tion). Since Ep differs little from the true values of E 
and since the overlap between 1J!,\ and P1J!,\ is small, we 
find-ignoring the terms which are quadratic in respect 
of the overlap-

(Ej-E)cj= 2: L, p ('I';VP'I'j-P'I' jV '1';) dl:(-1)pcj. (2.2) 
pP 

The nondiagonal terms 1J!po*v 1J!? - 1J!?v.y~ will be ignored 
) ) p 

since they make a contribution in respect of uo/a which 
is smaller than the terms left in (2.2); moreover, we 
shall ignore the difference between n and the whole 
space in the volume integral and we shall regard 1J! p as 
normalized. 

In the surface integral, we need retain only those 
transpositions which concern the nearest neighbors and, 
moreover, near each tunneling path, it is sufficient to 
allow only for the overlap of two wave functions corre-
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sponding to wells at the beginning and end of the path. In 
general. several equivalent (in the sense of the value of 
the action) tunneling paths emerge from each well and 
reach another well. If particles cannot travel closer 
than the radius of a hard atomic nucleus, this must take 
place because the trajectories along which a particle i 
and a particle j are traveling (we are considering the 
transposition i = j) are not identical and, consequently, 
there are two tunneling paths differing in respect of the 
transposition of the trajectories of the particles i and j. 
In finding the asymptote of the wave function and moving 
away from a symmetric well, we are traveling along the 
other end of the tunneling path which, considered as a 
path from a symmetric well, corresponds to the trans
position of the trajectories of particles i and j in the 
initial path. Consequently, the quantities Bks and Sij 
are different for the asymptotes of the wave function in 
the initial and symmetric wells near the pOints on the 
same tunneling path. Therefore, we shall use (+) to de
note the quantities defined along a tunneling path moving 
from the initial well and we shall use (-) for the corre
sponding quantities defined along the same tunneling path 
moving from a symmetric well. 

Applying the transposition operator representation 
of spin variables, [7J 

where 0- are the Pauli matrices, we obtain 

(2.3) 
.j 

[we have introduced here the spin functions c,\ (a) inc Iud -
ing in c the spin part of the wave function], where the 
summation over i and j extends only to the nearest 
neighbors. As expected. Eq. (2.3) gives the usual 
Heisenberg Hamiltonian. According to Eqs. (2.2) and 
(1.17), the quantities V?"p are exponentially small and 
are given by 1) 

where we are asusming that ~ intersects a tunneling 
path at t = 0, So(oo) is the total change in the action along 
the tunneling path, and O'i' is the number of equivalent 
tunneling paths in the tra~sPosition i ~ j. The matrix 

si~)(t) = Y2(S~~ + Sl~)' and the method for the calculation 
of its eigenvalues and the corresponding traces are all 
given in the Appendix. 

We can replace the variables .0.Xi with the variables 
i:ks in Eq. (1.15) by rotating the coordinates and assum
ing that integration takes place over the whole space; 
this can be done if we introduce a factor 15 (lli.0.Xi), where 
II = x (O)/x(O) is a unit vector of the tangent to the tun
neling path. In the new representation, the elements of 
the matrix 'S( ij) (0) differ from the elements of the 

lk 
harmonic matrix (which is diagonal in this representa-
tion) only by quantities of the order of liN. In calculat
ing a small number of integrals with respect t~ i:ks in
cluding the Hermite polynomials Hnks (Bk/N1 2 + i:ks), 
we can ignore this difference because it gives rise to 
terms of the order of liN without a large factor of the 
order of (a/uo)2. Integration with respect to other varia-
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bles corresponding to the remaining degrees of freedom 
must be carried out allowing for this difference but the 
presence of the factors Hnks can be ignored. 

The necessary integrations give the following expres
sions for the diagonal elements 

[ S.(oo) 1 J' Iii) • 
V,{'=lii,,(O)a;;exp --li-+;;-__ [S" (t)-S" Idt 

_ ~ ~ n A~ii) (0) ] II (1 + 2n •• B~;)B~~) ) ~ ( nvm ' ) -, (2.4) 
2 ",,-,1 Amo NUlu'!. 1.i...J Am'!. ' 

" m 

u •• = [iii (mw •• ) I''', 

or, if we go over to the limit N - 00, we find that 

(2.5) 

where VB is .~he volume of a unit cell in the lattice. The 

quantities A (1J)(0) are the eigenvalues of the matrix 

~l~)(t) (the ~per indices denote the tunneling path). 

The expression (2.4) is valid as long as the occupation 
numbers of phonons are not very large so that only a 
small number of states is occupied, 

which limits its usefulness in thermodynamic calcula
tions to low temperatures. 

Similar calculations can also be carried out for non
diagonal elements V.~p. However, it is important to note 

1J 
that these quantities are exponentially small and, more-
over they contain the factor N-1 /2 because of the ortho
gonality of the Hermite polynomials for Bts = O. Thus, 
in the case of transitions involving a change in nks by 
unity, we obtain 

where 

( ~ nv ) -'I. [S 1 0 .. 
J,;({n.})=lii,ii) (0) 4 ~ exp -i+ml(S~")(t)-S".)dt 

,II) (+) ,_) 

_ ~ ~ In Am (0) + r ( In.~, 2B.,.,B.,., d'k')] 
2 ~ Am°· ~ VB 'VBU!.,. . 

Hence, we can see that the nondiagonal elements can be 
ignored since the corrections associated with them are 
of the second order in respect of the overlap of the wave 
functions although the phonon levels are, in fact, con
tinuous and the gaps between them are much smaller 
than the corrections due to the exchange interaction. 

The results obtained can be expressed in the form of 
the effective phonon-spin Hamiltonian 

The quantity (Bk~ + R.(-»/21/\!k acts as an effective 
-1I:S s ( .. ) 

phonon-spin vertex. It follows from Sec. 1 that B 1J is 
ks 

described by the Fourier component of a tunneling path. 
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A calculation of Bii~) for low values of k can be carried 

out in t)}tI adiabatic approximation and it is then found 
that B~JJ tends to a constant value in the limit k - 0 so 

s . . te t· . h kl/2 tl that the spm-phonon m rac lOn vants es as ,exac y 
as for a conventional magnetic material. A strong inter
action occurs only in the range of large values of k or 
with optical phonons. 

Since Eq. (2.6) is, in fact, the usual Heisenberg 
Hamiltonian representing an antiferromagnet, the various 
physical quantities can be calculated employing standard 
formulas. If the interaction with phonons is Significant, 
it can be allowed for by replaicng nk with Uk, which gives 
rise to a temperature dependence of the exchange inte
gral J. The Hamiltonian (2.6) can also be used to find 
corrections to the phonon spectra because of the exchange 
effects and, in particular, to calculate the change in the 
phonon frequencies in a magnetic field. 

The formula for the asymptote of the wave function 
(1.17) can be employed to calculate the probabilities of 
various tunnel processes in a crystal to within the main 
terms in the preexponential part provided we know the 
tunneling path and ~~.difference between the eigennum
bers of the matrix S(1J)(t) and their values in the har-

lk 
monic limit. A tunneling path can be found and the 
eigenvalues can be determined by numerical calculations 
for some specific interaction between atoms. 

In the case of solid He 3, in which the exchange (trans
position) effects should be greatest, there is an addi
tional difficulty. Although the main contribution to the 
calculation of the exchange integral is due to the range 
in which the zero-point vibratitm energy is much less 
than the potential energy and the quasiclassical approach 
remains valid, the equilibrium positions at the lattice 
sites become unstable and the harmonic approximation 
does not apply near the bottom of a well. Clearly, this 
difficulty can be avoided by introducing some self-con
sistent effective field near the bottom of the well, as is 
done, for example, in the calculation of the phonon spec
tra. 

The authors are grateful to I. M. Lifshitz, L. P. 
Pitaevskit', A. F. Andreev, and V. L. Pokrovskit'for dis
cussing a number of questions considered in the present 
paper. 

APPENDIX 

In the Appendix, we shall use two sets of indices: the 
index It. labels the unit cells and the index (] = (x, y, z) 
labels the direction of displacement of an atom in a cell. 
The equation (1.5) is rewritten in the form 

d' 'X) ~ 'X) 'X) ( 
-U'R (t)=I~ G,R;"R,(t)U"R' t), 
dt'!. ,,'R' 

(A.l) 

where 

The additional index K represents the direction of motion 
along a tunneling path. If the motion along such a path 
begins from a point XU), then K = (+). If K = (-), the mo
tion occurs along the same path but it begins from the 
point X(2) (in the limit t = -00, we have ~ (T) = XU), 
~ (-) = X(2». In both cases, the system (A.l) has 3N inde
pendent solutions vin(t) which vanish in the limit t = -00. 

At any given moment, the matrix G(K)(t) is identical 
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with the force matrix of small lattice vibrations with a 
distortion governed by the value of ~ (K)(t). It should be 
noted that this structure distortion decreases rapidly 
away from the pair of atoms which undergoes transition. 
Therefore, we may assume that the distortion of the 
force matrix is localized within a certain region {L}. 
If, for example, the interaction between atoms localized 
at the pOints RI and R2 is distorted, the force matrix 
should be supplemented by a term of the type 

(6RR,-IIRR,) (6R'R,-6R 'R,)D::,' (t). 

The time dependence of the real symmetric 3 x 3 matrix 
D~~/(t) is governed by six independent matrix elements 
and, consequently, can be represented in the form . 

D::! (t) = 1:. ~x' (t)l!m'l.(,m,. 

If we now use the representation of plane waves, which 
are the eigenfunctions of the force matrix of an ideal 
lattice (1.15) and if we sum over aU the pairs within the 
region {L}, we find that 

d2 <Xl <K> 1 ,. P'l {m)- (m) (K) 

dt'~" (t)=ook.'~'. (t)+- 1:. L,a... (t)l •• l.·.·~.·.,(t), (A.2) 
N 11. ••• m=1 

where wkf? are the phonon frequencies in an ideal lattice. 
The asterisk denotes a complex conjugate. The total 
number of terms r will be called the rank of the pertur
bation. Solutions of the system (A.2) should tend to zero 
in the limit t = - 00. 

We shall rewrite (A.2) as a system of integral equa
tions: 

t , 

(M' 1 { J ' ~ (m' (x, , ,(M' } t •. (t)=--;;;- 2 Sh[ook.(t-t)] ~1 •• Ym (t )dt +C .. exp(CJlk.t) , 
k, _"" m=1 

(A.3) 

where 

The set of constants c(K) defines unambiguously the 
ks 

solution of (A.3). We shall select these constants in such 
a way that, at a moment t = 0, we have 

~~;' (0) =~~~' (0), (A.4) 
~~:' (0) +(;::' (0) =00 [~~;' (0) +~~;' (0) 1, 

where W is a constant, which is the same for all values 
of k and s. Differentiating the system (A.3), substituting 
the result into (A.4), and solving for c(K), we obtain the 
values of these coefficients ks 

Substituting (A.5) into (A.3), multiplying term by term 
by y~(K )(t)lk(q)* IN, and summing over all k and s, we 

q s 
obtain the following system of 2r homogeneous integral 
equations: 

y:"'(t)=aq(XI(t) t { j Rqm(oo,t,t')y~XI (t')dt' 

(A.6) 
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where 
1 l(q)'l(m) 

Rqm (00, t, t') = N ~ ~. k. [ __ 00_ e"'k. (I+t·) _ e .... kli t-t',] , 4t ~ka (t)-(i)ks 

1 l(q)'l(m) 
T (00 t t') = _ ~ kI k. "'k,(t+t·) 

om " N ~2(00-ook.) e . 
ko 

The kernels Rqm(w, t, t') and Tqm(w, t, t'l depend on 
w as a parameter and the system has solutions only for 
certain values w = Ap' We shall use v (K)(t) to denote the 
corresponding matrix of solutions. It follows for the 
condition (A.4) that, at t = 0, the matrix 

S/m='/2[v(+lv(~:+v(_lv(::::1 

is diagonal and Ap are the diagonal elements of this 
matrix. 

The matrix S(t) applies at a moment t = 0. At any 
other moment to, a shift of the reference system gives 
again (A.5) but with different kernels. 

The eigenvalues Ap form a quasicontinuous spectrum 
when the number of cells tends to infinity. The trace of 
the matrix S(t) becomes infinite but, in the limit N ~ 00, 

we can calculate the difference between the traces of the 
matrices S(t) and So, 

The limit N ~ 00 in expressions of the (A.7) type and 
the calculation of the difference between the traces is 
considered in [s, 9J in the case of lattice distortions inde
pendent of time. Let us assume that the phonon frequen
cies of an ideal lattice have, in the vicinity of w = /l, a 
sequence j -fold degenerate levels separated by gaps ~w. 
A perturbation reduces the degeneracy multipliCity by r. 
The split-off r eigenvalues can be found within terms 
which are small compared with ~w in the form 

(A.7) 

In the limit N ~ 00, the interval ~w tends to zero and, 
consequently, for any function of the matrix F(S), we 
have .m~ 

Tr [F (S) -F (SO) 1 = lim 1:. [F (Ap (/L) ) -F (/-t) 1 = 1:. J F' (/-thp (/L) d/-t. 
N~~ •• • • (A.B) 

Integration is carried out over the whole spectrum of an 
ideal lattice. A set of functions xp(u) is obtained by sub
stituting (A.7) into (A.6) and going to the limit. This 
gives the following system of integral equations 

, 0 

(XI (XI ~ { J ' (XI ( , yq (t)=aq (t) ~ Rqm(/L,t,t )Ym t )dt 
m=1 -DC (A.9) 

where 

where dT is an element of the surface wks = J1. on which 
integration is carried out, and 
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1 r • 
dq (l1) = "2 ~)qm(l1) S e"'(y~+)(t')+y~-)(t')dt', (A.10) 

m_t - .... 

(A.11) 

For each value of fl, the system (A.9) has r solutions. 
Therefore, it is necessary to consider further the matrix 
of the solutions y(K) (t), as well as the matrices d (fl) pm pm 
and gpm (fl); Eq. (A. 11 ) also includes the cotangent of the 
matrlX X and Eq. (A.8) the trace of this matrix. The 
matrix X can be found by assuming that gpm (J-i) = Bpm' 
Then, (A.9) transforms into a system of inhomogeneous 
integral equations. Having found the matrix of solutions 
by, for example, the iteration method, we can apply Eq. 
(A.I0) to calculate the matrix dpq(fl). Since gpm is a 
unit matrix, the condition (A. 11) gives the matrix cot(1TX)' 
A reduction of this matrix to the diagonal form gives the 
trace of the matrix X and the required integral (A.8). 

There are also such values of fl = flg for which the 
spectral density lI(flg) becomes infinite (limiting fre
quencies) and the system (A.9) does not predict a fre
quency shift. In addition to a quasicontinuous spectrum 
of the (A.7) type, we can have-in the limit N - ",,-dis
crete eigenvalues split off from the limiting points. 
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These eigenvalues should be found directly from the 
system (A.6). Each such eigenvalue Ap makes an addi
tional contribution F(Ap) - F(flg) to the trace (A.S). 
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