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The helicon electrodynamics features related to the de Haas-van Alphen effect are considered for an 
uncompensated metal with a closed Fermi surface of arbitrary shape. The analysis is carried out in the 
local limit in which the metal can be characterized by a static magnetoresistance tensor and a static 
differential magnetic permeability tensor describing the anisotropy of the de Haas-van Alphen effect. The 
amplitude of the de Haas-van Alphen effect is assumed to be arbitrary but within the limits defined by 
the thermodynamic stability of the homogeneously magnetized state. It is shown that the de Haas-van 
Alphen effect can strongly influence not only the phase velocity but also the damping and polarization of 
the helicon in the general case. The pronounced effect of the off-diagonal components of the differential 
magnetic permeability tensor is noted; these c~mponents sometimes· appear even for very small deviations 
of the magnetic field from the symmetric direction. Resonance excitation of waves in a plate is discussed. 
The possible relation between periodic magnetic structures in metals and helicons is considered. 

PACS numbers: 75.20.En 

INTRODUCTION 

The propagation of electromagnetic waves in pure 
metals in a magnetic field at liquid helium temperatures 
is essentially determined in many cases by the effects of 
temporal and spatial dispersion. [IJ However, there 
always exists a region of rather low frequencies where 
these effects do not have to be taken into account and 
one can use the local relations between the field and cur~ 
rent vectors just as in the static case. This frequency 
range is determined by the conditions: 

(0),;<1, (0)<(0)" kl<1, kr,<1, (1) 

where wand k are the frequency and wave number of the 
wave, we and re are the frequency and radius of the mo­
tion of electrons in the magnetic field, T and 1 are the 
time and the mean free path. The quantities we' k, and 
re depend on the magnetic field in such fashion that the 
range of frequencies where the conditions (1) are satis­
fied can be broadened materially by increasing the mag­
netic field. However, in this case, it may be necessary 
to take into account the quantization of the electron 
orbits in the magnetic field. 

If the quantum effects are small, then the "local elec­
trodynamics" of the metal are completely determined 
by the static magnetoresistance tensor. [2) The action of 
quantum effects on the wave propagation in the metal in 
the local limit considered here can manifest themselves 
either in oscillation of the components of the magneto­
resistance tensor (the Shubnikov-de Haas effect), or in 
oscillations of the magnetization (the de Haas-van 
Alphen effect). 

In a number of experimental researches, [3,4J it has 
been shown that the de Haas-van Alphen effect plays the 
essential role in most cases; this effect leads to oscilla­
tions of the phase velocity of the waves. However, in 
some cases, for example, in the situation with a magnetic 
breakdown, oscillations of the magnetoresistance turn 
out to have the decisive effect on the wave propagation. [5J 

In this paper we consider the influence of only the 
de Haas-van Alphen effect on the propagation of helicons 
in metals under the local-limit conditions described by 
the inequalities (1). It was shown in[6J that for suffi­
ciently small wave amplitude, this effect can be taken 
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into account by the introduction of the differential mag­
netic permeability tensor. The solution of the wave equa­
tion and the dispersion relation were obtained in[6J with 
the diagonal components of the magnetoresistance tensor 
neglected. At the same time, the wave -propagation 
problem considered here can be solved completely with­
out adding any limitations on the magnetoresistance 
tensor, as is indeed done below. The relations thus ob­
tained describe the influence of the de Haas-van Alphen 
effect not only on the phase velocity of the helicons, but 
also on the ratio of the real and imaginary parts of the 
wave vector, and also on its polarization. 

THE DIFFERENTIAL MAGNETIC PERMEABILITY 
TENSOR 

It was already noted in the Introduction that the local 
electrodynamics of the metal without account of quantum 
effects are determined by the magneto-resistance ten­
sor, which describes the linear relation between the cur­
rent and the electric field of the wave: 

e=pj. (2) 

If the amplitude of the magnetic induction field of the 
wave b is small in comparison with the periods of the 
de Haas-van Alphen effect, then the connection between 
the fields hand b can also be represented by a linear 
relation [3J : 

(3) 

where 6ik is the Kronecker symbol and Mi are the com­
ponents of the oscillating magnetization of the metal. 

We call the tensor ~ the differential magnetic perme­
ability tensor of the metal. We note several of its 
properties: 

1) J.Lik = J.Lki· 

2) The conditions of thermodynamic stability which 
we shall assume to be satisfied, require that the deter­
minant Illikl and all its principal minors be positive. In 
particular, this means that all the diagonal components 
of the matrix J.Lik must be positive. Violation of the con­
dition of thermodynamic stability leads to the appearance 
of diamagnetic domains [7J or periodic structures. [8J 
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3) The components of Ilik are oscillating functions 
not only of the magnitude but also of the direction of the 
constant magnetic field Bo in which the metal is placed. 
The periods of the corresponding dependences can be 
very small, so that even an insignificant deviation of the 
direction of Bo from symmetry by an angle of the order 
of liN, where N is the number quantum magnetic level 
nearest to the Fermi surface, can lead to off-diagonal 
components of iJ.ik that are comparable in value with the 
diagonal terms. 

As to the amplitudes of the oscillations of iJ.ik' it is 
assumed that it can take on any value in the limits deter­
mined by the conditions of thermodynamic stability of a 
homogeneously magnetized state. 

WAVES IN UNBOUNDED SPACE 

We consider plane waves of the form exp{i(wt - k· r)}, 
assuming that the constant magnetic field Bo makes an 
arbitrary angle e with the wave vector k. Substitution in 
Maxwell's equation, with allowance for the relations (2) 
and (3), leads to the wave equation 

~ 4ni{J) 
[kxPIkxllbll=-b. 

c' 
(4) 

We introduce a Cartesian set of coordinates with unit 
vectors Ul, Uz, U3, where U3 II k. Since the vector b is 
perpendicular to k, it can always be expressed in a form 
of linear combination of the vectors Ul and Uz only. Fur­
thermore, it is easy to see that it suffices to consider in 
Eq. (4) only the two-dimensional tensors p and ~, which 
act on the (U1UZ) plane. 

The directions of Ul and Uz in the plane perpendicular 
to k are chosen along the prinCipal axes of the symmetric 
part of the two-dimensional tensor p, so that this tensor 
takes the form 

(5) 

The latter inequality determines the region of exis­
tence of the helicons and is usually satisfied in uncom­
pensated metals with closed Fermi surfaces at low tem­
peratures in a sufficiently large magnetic field, which 
makes an angle e < %1T - (weTfl with k. [zJ 

The wave equation (4) can be represented in the form 

_k2plZ~b=4ni{J)b/ c', (6) 

where R is a two-dimensional tensor with the compon­
ents: 

(7) 

The problem thus reduces to finding the eigenvectors and 
eigenvalues of the tensor R. The eigenvectors can be 
represented as 

b±=ul+~±U" ~±=~.e±iq>~, 

~. = I ::: 1'1" cos <pp = 21::~::1 'I •• 
(8) 

The eigenvalues are of the form 

(9) 

With the aid of (6), we obtain the dispersion relation 

• 4n{J) {. ( n )} k± =-,--exp -! -±<PT . 
c P121. 2 

(10) 

Since CPy is usually near 1T12, Eq. (10) then determines 
one weakly and one strongly damped wave. 
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The magnetic field h of the wave can be obtained by 
substituting (8) in (3). The electric field and the current 
density are calculated with the help of Maxwell's equa­
tions. In particular, the transverse electric field is 

(11) 

Thus all the characteristics of the helicon are deter­
mined by the complex numbers y! and {3! and by giving 
the directions of Ul and Uz on the plane perpendicular 
to k. 

There is greatest interest in the situation in which 
(see (5)) O! 1 « 1 and O! z « 1. In this case, it is conven­
ient to use the approximate expression for the compon­
ents y" and {3" which contain terms of no higher order 
than first in O!l and 0!2. Then, in place of (8) and (9), we 
have 

cos <P~ 
atJ.1z-(X.zJ.11 

2(11111,)'" 

(12) 

(13) 

(14) 

(15) 

Substitution of (15) in (10) shows that the quantity yo 
determines the oscillations of the real part of the wave 
vector, i.e., the oscillations of the phase velocity of the 
helicon, [3,4J and A is identical with q from [6J. The ratio 
of the imaginary and real parts of the wave vector and, 
as will be seen below, the quality factors of the resonan­
ces of the standing waves in a plate are determined by 
the quantity cos CPy' 

Generally speaking, as is evident from (15), this quan­
tity should be an oscillating function of the magnetic 
field. However, if O!l = O!z = O! and IllZ = 0, then 

(16) 

The coefficient for O! in Eq. (16) is equal to unity for 
III = Ilz and differs little from it when III f. Ilz, with the 
exception of the immediate vicinity of the boundary of 
thermodynamic stability. 

If 1112 = 0, but 0!2 = O!l + E, then the oscillating part of 
cos CPy has the form 

(17) 

In those cases in which IllZ has a value that is appreciable 
in comparison with unity, oscillations of the damping of 
the helicon always take place. 

In the consideration of the polarization of the helicon, 
we can omit components of the order of O! in (12). Sub­
stitution in (8) shows that the field b± is polarized along 
an ellipse with semiaxes 

<p~+1) (Ill)'{, <p~±1) 
8 1=U,COS--+ - uzcos--, 

2 11, • 2 

. 6+<p~ ( III ) 'I, . 6±<p~ 8z=u,sln--+ - uzsln--, 
2 11, 2 

(18) 
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For an isotropic metal with a spherical Fermi sur­
face, if we choose the U2 axis perpendicular to k and Bo, 
we get 

k= {O, 0, k}, B.= {B. sin 6, IIBo sin 6, B. cos e}, 

n'={~2' ~2'0}, n'={;2'- ~2'0}, b={b"b"O}; 

(24) 

2n({}M/{}B)sin' 6 
cosq>~= [1-4n(oM/oB)sin'6l'" ct. 

(19) furthermore, it is clear that in the given geometry the 
amplitudes of both components in (23) are equal: ml 

With the exception of the immediate vicinity of the 
boundary of the stability region, we have ({J B ~ (j ~ 1(/2. 
It is seen from Eqs. (18) in this case that the axes of the 
polarization ellipse are parallel to the vectors Ul and U2, 
and the ratio of their lengths is equal to Ilea. A similar 
situation occurs in an arbitrary metal if the magnetic 
field lies in the plane of symmetry, and al, aa « 1. 

If the magnetic field deviates from the symmetry 
plane, even by a small angle, then another situation is 
possible, for example, in indium or aluminum (see 
below), in which 

(20) 

here (13) yields 

(21) 

and the semiaxes of the polarization ellipse are equal to 

(22) 

and make 450 angles with the vectors Ul and Ua. 

Thus the de Haas-Van Alphen effect can have a sig­
nificant influence not only on the phase velocity but also 
on the damping and the polarization of the helicon. 

Very strong effects should be expected, as was shown 
above, from the off-diagonal components of Illa. We shall 
demonstrate by a single example, that the amplitude of 
the oscillations of these components can be appreciable. 

As a medium in which the helicon is propagated, let 
us consider indium. Under certain experimental condi­
tions' which include the magnitude and direction of the 
magnetic field and the temperature and quality of the 
crystal, the de Haas-van Alphen effect in this metal [9J 

is determined by the portions of the Fermi surface which 
have the form of tubes which lie in a plane perpendicular 
to a fourfold axis of fourth order, and which form a 
toroid in the shape of a square. The oscillating magnetic 
moment corresponding to each tube is directed along it, 
independently of the direction of the magnetic field, so 
that the total moment can be written in the form 

. 2nFo . 2nF. 
M=m,n,sm-B +m,n,sm-B ' 

fit D z 
(23) 

nl and na are unit vectors directed along the tubes, while 
ml and rna are amplitude factors that depend on the 
direction of the magnetic field. Therefore generally 
speaking ml -f rna. The dependence of the amplitude of 
the magnetic moment on the magnetic field will not be 
taken into consideration. 

Let the wave propagate perpendicular to the plane in 
which the tubes lie. We choose the coordinate system so 
that the basis vectors Ul and Ua are directed along the 
diagonals of the square toroid, and U3 II k. The magnetic 
field Bo makes an angle f) with the wave vector and is 
almost parallel to the (UlU3) plane, so that it makes only 
a small angle (j with this plane. The order of magnitude 
of this angle will be made clear later on. Thus, the co­
ordinates of all the vectors in the problem are as follows: 
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= rna = m. 

With~the help of (23), we obtain the components of the 
tensor Il: 

J.I'=J.I,=1-4nAcos---cos ---II . 2nF. [2nFo] 
Bosine Bosine' 

. 2nF. . [2nFo J J.l12=4nA Slll--.-sm ---II .. 
Bo sm 6 B. sin () (25) 

If Cl = 0 in (25), then 1112 = 0, but rotation of the field by 
an angle 

1 Bosin 6 
1I'=4"-F-.- (26) 

is sufficient to make the amplitude of the oscillations of 
Illa the same as for III and Ila at Cl = O. USing the values 
Fo = 4.6 X 106 Gfor indium [9J, we obtain Clc r:::< 0.10 in a 
field of 2 x 104 G. Rotation of the field through such an 
angle has no effect on the magnetoresistance tensor; 
however, as shown above, it significantly changes all the 
characteristics of the helicon. To observe this purely 
quantum effect, we must naturally prepare a very nearly 
perfect crystal, so that the disorientation of its individual 
parts is less than Clc ' 

EXCITATION OF A WAVE IN A HALF-SPACE 

Since we are dealing with low-frequency waves of the 
acoustic range, they are usually excited with a coil 
carrying an alternating current of given amplitude. If 
the metal has a plane surface, then the coil is so placed 
that its field is parallel to this surface. We shall there­
fore assume that, on the surface of a metal that fills the 
half-space X3 > 0, where X3 is the coordinate in the 
direction of the unit vector U3, the field h, tangent to the 
surface and parallel to the unit vector Ul is produced by 
an external source. The choice of the basis vectors 
Ul, Ua, U3 is the same as above. 

To make use of the results already obtained, we re­
solve the field h in the metal (its part parallel to the 
surface) into the components h.. = Ilb±, where JJ. is a 
two-dimensional tensor. Then the boundary condition at 
the surface takes the form 

(27) 

where 11-, are complex coefficients subject to determina­
tion. Simple calculations yield 

~-J.l'+J.l12 
1]+ = (~ __ ~+) L1 ' (28) 

The transverse part of the electric field e, the magnetic 
induction b, and the current density j can also be repre­
sented as linear combinations of the natural solutions 
for an unbounded metal with the same coefficients 11 T 

and 11-. Of course, each component should be multiplied 
by exp [i(wt - k±X3)]' The time-averaged value of the 
energy flux through the surface of the metal is 
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With the help of (11), we get 

_ C [( wP"lo ) 'f, [ (n 'l'T )] S=s;-Re ~ '1+exp i 4+2 

component JJ.12 has a value that is not too small in com­
parison with unity. But if /l12 '" 0, then the shape of the 
resonance curve is not distorted; however, all the re­
maining characteristics-the resonance frequency, the 

+ ( WP"lo ) 'f, [ . ( n 'l'T ) ] -- '1-exp I ~-~ • 
4n 4 2 

(29) height and width-can oscillate upon variation of the mag­
nitude or direction of the magnetic field. 

In the zeroth approximation in O!l and 0!2, we have 

TI+='1-=Il,/2i\. 

Substituting (15) and (30) in (29), we get 

s = 1~n ( w:~' f ~ . 
RESONANCE IN A PLANE PARALLEL PLATE 

(30) 

(31) 

Let the metal fill a plane -parallel layer -d < X3 < d 
and let the external source produce the same field of 
unit amplitude h '" Ul on both surfaces. The fields hand 
b evidently depend on the coordinate X3 in the same 
fashion. In particular, the field b inside the layer is of 
the form 

(32) 

For bj:, k±, and TJj: we must use (8), (10), and (28). 

If we record the helicon signal with a receiving coil 
whose turns are perpendicular to the turns of the exciting 
coil, then the emf at the open ends of the receiving coil 
can be calculated in the following way: 

1 d d 

V, = - ~~J (bu,)dx3, 
C dt 

_d 

where b must be substituted from (32). The result can 
be represented in the form of a sum of resonant com­
ponents, as was done by penz:[lO] 

x,E 
o 

where 

1 1 ( 1 +Cl,Cl, ) 'f, 
-:----::-;----:----;-:-+ ill 12 ---

(2n+1)' i+iQ(wlw,,-wnlw) i\ 

'0 1 WnIW} 
xi..;, (2n+1)"1+iQ(wlw n-wnlw) , 

o 

(33) 

n2 c2 

wn= (2n+1)'--p"i\'f'(1 +Cl,Cl,)'f,. (34) 
d' 16n 

The relations (33), (34) are exact and in the absence 
of the de Haas-van Alphen effect they go over into the 
corresponding formula given by Penz. Lio] 

A synchronous detector, constructed in such fashion 
that it responds either to the real or to the imaginary 
part of the expression (33), is employed in the usual ex­
perimental scheme for detecting the signal V2 of (33). In 
the absence of the de Haas-van Alphen effect the reson­
ance curve has either a symmetric or an anti symmetric 
shape as a function of the frequency. As is seen from 
Eq. (33), the shape of the resonance curve in the experi­
ment described above can be strongly distorted if the 
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CONCLUSION 

The formulas obtained in the paper are a general 
character in the limits of validity of the conditions (1), 
and certain particular variants discussed in the text, by 
no means exhaust the abundance of possibilities which 
are determined principally by the shape of the Fermi 
surface of the investigated metal. 

We turn our attention to still another circumstance. 
The fact is that the helicons exist in the metal not only 
in the form of waves, excited from without, but also as 
elementary thermal excitations. We now trace how the 
frequency of such an excitation with a certain wave vec­
tor k depends on the temperature. If the experimental 
conditions are chosen in such fashion that, upon lowering 
the temperature, we reach the boundary of stability 
(~ '" 0) of a homogeneously magnetized state at finite 
temperature, then, as is seen from the dispersion rela­
tion (10), the frequency of the helicon vanishes on this 
boundary. In the local theory, the vanishing of the fre­
quency takes place simultaneously for all branches of the 
spectrum that correspond to the given direction k. How­
ever, in the nonlocal case, when the components of the 
tensors p and il depend on k, one can imagine that any 
sufficiently narrow region of k space turns out to be 
separated out in the sense that the stability boundary for 
it will be achieved earlier for the highest temperature. 
Then the transition of the metal into an inhomogeneously 
magnetized state, corresponding to the given helicon 
mode, can take place. Thus, the considerations given 
above indicate the possibility of consideration of periodic 
diamagnetic structures [8J as a consequence of the 
"freezing" of certain helicon modes. 

The author is grateful to L. P. Gar'kov for discussion 
of these considerations. 
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