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The attenuation of longitudinal sound in superconducting alloys is investigated in the free electron model 
on the basis of a gauge-invariant set of equations. It is found that at low frequencies the expression for the 
coefficient of the sound attenuation due to the electric fields differs from the BCS formula. 

PACS numbers: 74.20.0h 

INTRODUCTION 

In the study of the attenuation of sound in metals, we 
distinguish between direct deformation absorption and 
the Joule losses connected with the presence of defor
mation macroscopic electromagnetic fields. The ap
pearance of these components is determined in the final 
analysis by a single cause: the deformation of the crys
tal lattice. However, direct deformation losses are not 
due to the macroscopic currents, while the Joule losses 
are determined by just these currents. In a supercon
ductor, the current is the sum of a current of excitations 
and the superfluid current and, for a given value of the 
total current, the relative contributions of these com
ponents and perhaps the value of the dissipation also 
can change as a function of the scales of the spatial and 
temporal dispersions. In this connection, the Joule 
losses when transverse sound propagates in a super
conductor have a complicated frequency dependence 
(see, for example,[l,2]). It seems natural to expect some
thing similar in the propagation of longitudinal sound in 
super conducting alloys, inasmuch as the scales of the 
dispersion in them change, in particular, with change in 
the electron mean free path. 

An investigation of Joule losses in superconducting 
alloys was carried by Tsuneto, [3] who assumed, how
ever, the contribution of the superfluid flow to be purely 
adiabatic. The calculation of the Joule losses of a longi
tudinal sound wave is carried out below on the basis of 
a gauge-invariant system of equations for the supercon
ductor. Inasmuch as we are interested in Joule losses, 
we limit ourselves to the free electron model, in which 
the losses of the sound wave are connected only with 
macroscopic electric fields .[4] 

1. THE INTERACTION HAMILTONIAN OF 
ELECTRONS WITH SOUND 

We consider the propagation of a longitudinal sound 
wave in an isotropic metal. In the laboratory system of 
coordinates, the electrons interact with the sound wave 
through the electromagnetic fields A and rp, and 
through collisions with moving impurities. 

The motion of the impurities is taken into account by 
expansion of the potential of the impurities in terms of 
the lattice displacements. By assuming the deforma
tion of the crystal lattice to be small and concerning 
ourselves with the linear response of the system, we 
restrict our consideration to the first terms of the ex
pansion 

~ ~ aV(r-r.) 
V'mp(r,t)= ~V(r-r.)- ~ dr u(r.,t), (1) 

Here ra is the location of the a-th impurity in the un-
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deformed lattice, and u(ra, t) is the displacement of 
the impurity. Further, we consider only the Born ap
proximation for electron scattering by the impurities. 

In the diagrams, we denote the static part of the po
tential of the impurity by a cross,[5 1 and the scattering 
by the dynamic part (the second term in the expansion 
(1)) by a cross with a circle. The crosses which refer 
to the same impurity are joined by a dashed line. Then, 
in the calculation of the Green's functions, the ordinary 
crosses, which are not connected with any other crosses, 
can be ascribed to the renormalization of the chemical 
potentialP] It is not difficult to understand that, in com
plete analogy, circled crosses not connected with other 
crosses by a dashed line can be ascribed to the scalar 
electrochemical potential rp. Thus, disregarding as is 
customary/5] diagrams with crossing of dashed lines, 
we shall in what follows consider only diagrams of the 
type shown in Fig. la with all possible directions of the 
arrows on the electron lines between the dynamic and 
static crosses. 

As an example, we give the analytic expressions 
corresponding to the diagrams shown in Figs. Ib and lc, 
which, in correspondence with (1), are of the form 

d' , 
-in,mplVI'S (p'-p+k,u)G,+(p') (2:)" 

d' ' 
-in,mplVI'S (p-p', u)G:-w(p') (2:)' ' 

where nimp is the number of impurity atoms per unit 
volume. 

We shall denote the vertex with the electromagnetic 
fields A and rp by a point with a wavy line. Then the 
graphical representation of the first-order correction 
to the Green's function G~ will take the form shown in 
Fig. 2. Similar graphical representations exist also for 
the functions Gi, F~, and F 1. 
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2. DERIVATION OF THE BASIC EQUATIONS 

To calculate the sound attenuation caused by the 
electromagnetic fields, it is necessary to find the elec
tric field E produced in the superconductor by the sound 
wave. Here, since the calculations will be carried out 
in an arbitrary gauge with the use of two-gauge invariant 
potentials, the scalar q, and the vector Q, we need a 
set of two equations for the determination of these quan
tities, The first of these equations expresses the condi
tion of electrical neutrality, which can be written, for a 
harmonic wave in the laboratory set of coordinates, as 
the equality of the electron and ion components of the 
current: 

(2 ) 

where n is the number of electrons per unit volume. 

As the second equation, we can employ the continuity 
equation. However, since it is identical in a supercon
ductor with the self-consistent equation for t:. - t:. *, we 
use this equation, and this reduces the volume of the 
calculations. Thus the necessary equations in the Mat
subara technique are written in the form 

. 2e 1: J + (k k) d'p ne' , enu=-T pGh ,. __ p+-,p-- ----A(w,k" 
m, 2 2 (2n)' m 

ih1'=/g/T ~ J [F" .• _.(p+, p_)-F,:,_.(p+, p-») (:~3 ' 
where w and k are the frequency and wave vector of 
the sound wave. 

(3 ) 

(4) 

Equations (3) and (4) must be continued analytically 
in E and w to the real axis, and also averaged over the 
impurities. Here we shall use the technique developed 
by Gor'kov and EUashberg,[6,7] without however impos
ing any limitations to the path length l other than the 
condition PFl » 1, which enables us to take only the 
ladder diagrams into account in averaging over the im
purities. The technique of averaging over the positions 
of the impurities, suggested by Gor'kov and Eliash
berg,l7] allows us to obtain the answer much more 
economically than in the use of the well-known pro
cedure of[5], and consists in the fact that the averaging 
over the impurities of the superconducting Green's func
tion reduces in definite fashion to averaging of the 
Green's function of the normal metal. In this case four 
types of vertices to be averaged arise for Eqs. (3) and 
(4),l7] Omitting the calculations, we write down the re
sult immediately: 

(J G R( )G A( ) d'P> mppkl[ f am. 1 p ~m p+ ~" p- -(2)' . +c.C.=-- -'+--Dk'-' +IC.C .. 
3't tmp 3n l Qrnn T lQmn 

(8) 

Here, in correspondence with[7], 
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is the retarded (advanced) Green's function of the 
normal metal, and the following notation is used: 

3 (a-arctg a) 
ctmn = 

arctga 
~mn= --, 

a a' 

kl 
a=---

1-iQm.'t ' 

T=-, Vp 
and by the arctan z we mean the principal branch of the 
arctangent, defined in the complex plane with cuts along 
the imaginary axis (-i "", -i) and (i, +ioo). 

The expression p 'U/2T .results from the block with 
the dynamic and static crosses, joined by the dashed 
line (see Fig. 1). For terms with the vector potential A 
in (5) and (6), we must replace u by 2eTA/m. After 
averaging over the impurities and analytiC continuation 
over E and w with account of (5)-(8), Eqs. (3) and (4) 
take the form 

6n' . J de d~m d~. {( am. Qm. ) --enu= + C C 
iepp' (2ni)' i+Qm.'t Dk'-iQ",. •• 

__ pu d(e~w+:m)+,(e~S.)d (~_~) 
2 (Sm -~, ) (6" -L. ) S. s.--

J de ds", ds. {( am. 1 ) -::-:-::----::--- + C .c . 
(2ni)' i+Qm.T Dk'-iQm. 

X[~kl~VA (Sm-S.)d ,(.~-~) +~kl~"A 
3 c «(;m'-S.') (;.'-6',_) ;. 6.-. 3 c 

X es,-(e-ooHm '(!..-~)-~PpVFkU d(s.d.) 
(S,,.'-S,') (S.'-6: .. .> s, ;,-. 12 «(;m'-:-S,') (S.'-6:_J 

_ ( ~m. + C C ) [ e 2dw , 
Dk'-i12m • •• rp (S,.'-S.') (s.'-s~_J 

A == I g I mpF /21T2. Here and below, all the integrals over 
E must be understood in the analytically continued form, 
i.e., 

( e-W e) R"} - th2T"-thzr F«(;, ,6.-.) , (11) 

{
sign B (e'-d') 'I. 

_ R (" ")' , 

\;. =-~, = i(d'-B')"', 

The expressions (9) and (10) are easily integrated 
over ~m and ~n, by calculating the corresponding resi
dues. It is necessary here to consider the fact that at 
the point 1; m - ~n '" -i!r the Singularity in the inte
grand is removable and the arctangent is taken in the 
sense of the principal value. Introducing the phase of 
the gap by the equation 

~,-I'1:=4ie.1x/c 

and using the following relations 
HIA'+ RI."\( e 8-00)_00(1 8(B-oo) +1'1') (s,' s.:~w I S:\A) - 6:~~ - - s:\'\Js:~:) 1 
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(13 ) 

we obtain, after straightforward but cumbersome calcu
lations, 

S CG Q (1 e(e-!J)+.1.') ktDSd CG 1 
Q de Q+ih Q+iDk' - ---r.~ - e Q+ih ~ 

( e 8-!J) ) mu S CG-~ Q (e 8-!J)) 
x 1:- - 6.-_ = -e- de rHiDk' -;;;- To - 6.-_ ' (14) 

ku,' Q S de_.1. __ CG ___ Q __ tD Sde~--~-
3 6.6.-- Q+ih Q+iDP 6,1;,-_ Q+iDk' 

=~S de~~ (15) 
e I;.s.-_ Q+iDk" 

in which a, {3, a and D are given by the formulas for 
amm, i3mm, etc, (see above), and 

6!1o=-'I,ep divu, Q=s,+s,--; (16) 

Q=mu/e+A-Vx, tD=<p+l)!1ole+x (17) 

are the generalized gauge invariant vectors and scalar 
potentials, The choice of the potentials in the form (17) 
is dictated by the requirement of Galilean and gauge 
invariance, 

3, SOUND ATTENUATION 

We first consider the sound attenuation in a normal 
metaL In this case the equation for the phase (15) is 
satisfied automatically, and from the equation of elec
trical neutrality (14), setting A = 0, for the electric 
field[BJ 

E=i!J)Q-iktD 

we immediately find 
E= (~-CG) enul(J, 

ne2'{ ex. 
(J=-----

m 1-ian 

(18) 

(19) 

(20) 

is the conductivity of the metaL The power of the Joule 
losses of the sound wave is determined by the expres
sion P = YzRe (E* ·lien) and thus, in accord with (19), 
for the sound attenuation coefficient Y = P \ Y zp \ U \2S, 
where p is the density of the material and s the speed 
of sound, in the limit WT « 1, we obtain the Pippard 
formula[9J 

nm ( a' arctg a 
"(.=~ 3 (a-arctg a) 

(21 ) 

here a = kl. The formula (19) is valid also in the case 
WT » 1. In this limit we obtain 

(22) 

which COincides with (21) in the limit kl » 1. 

We proceed to the consideration of the attenuation of 
a longitudinal sound of frequency W « min{T, A} in 
superconductors. In view of the fact that Eqs. (14) and 
(15) are rather involved, we limit ourselves to the con
sideration of a few limiting cases. We begin with the 
case of a high concentration of impurities (kl « 1, 
AT « 1). Solving the set of Eqs. (14) and (15), we obtain 
the following for the ratio of the attenuation coefficients 
in the superconducting Ys and normal Yn states: 

~: =Re{~!J) L: /,+ ~:, 1.1,/ (/,- ~:, I, )r}, 
1,=Sde-.1.-~, 1'=Sde-.1.-~, 

S,6,-- Q+iDk 6.6.-- .fJ+zDk 
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1,= de--- ---- . S 1 (e e-!J) ) 
Q+iDk' 6, s.-- (23) 

We first consider the case of weak spatial dispersion, 
when 

Dk'<{:!J), 

or, what amounts to the same thing, 

!J),<{: (slv F ) '. 

(24) 

We can then carry out an expansion in the integrand in 
powers of Dk~ n. There are two possibilities here: 

.1.'~(S//JF)" (25a) 

.1.,<{:(slvF )'. (25b) 

In the limit (25a), Eq. (23) becomes 
"(. 2!J)/.1. 

- = Re ----::-:;:""""'-,-c:-::;:-;:
y. !J)/,/2.1.+i!J)/,IDk' 

I Dk' '2T 

((-: 1)~/2[e-("~.~),T<{:(~k' +~~~+"'::~)'] 
1 T 1 T. + u' 4 Dk' T 16.1. ' 

and in the case (25b), we have 

~=Re 2!J)/!J,. 
y. !J)/,12 !J,. +1, 

!J) !J) I (4T) 2 ->IT --n - e , 
rrl\. rrT yw 

2T!J) ( .1. 8.1. ) 
rr!J,.' 1+Tln~ , 

.1. 8.1.-' 
(1+Tln~) , 

In y=0.577. 

!J,.' 
-<{:T 
!J) 

(26) 

T»!J,. 

(27) 

The limit (24) corresponds to a small spatial disper
sion. If the spatial dispersion is large (Dk2» A), then 
we immediately get from (23) the BCS relation: 

(28) 

where fF is the Fermi function and A = A (T) is the gap 
in the energy spectrum of the superconductor for a 
given temperature T. 

Equations (14) and (15) allow a transition to the case 
of a pure superconductor (WT » 1). In contrast to the 
case of high concentration of impurities, the ratio 
ys/Yn here, for all frequencies of interest to us 
(w « min {T, A}), is determined by the BCS relation 
(28) with insignificant corrections of the order of 
(S/VF)2. 

DISCUSSION OF THE RESULTS 

As is seen from the results above, the ratio Ys /Yn 
turns out to be sensitive to the relation of the scales of 
spatial and temporal disperSiOns. In the region of weak 
spatial dispersion (24), which corresponds to the quasi
homogeneous Situation, Ys/Yn falls off more rapidly 
with temperature than in the case of strong dispersion 
(Dk2» A), whereas the BCS formula (28) holds for 
yshn. l ) Here, there exist two possibilities for the 
quantity AT in the region WT « (S/VF)z: (25a) and (25b), 
which lead to different dependences of the sound atten
uation coefficient on the impurity concentration. In this 
connection, we note that Eq. (15), in the absence of 
sound and electromagnetic fields, is the wave equation 
for the phase of the gap and in the considered case AT 

« 1 the velocity which enters into this equation is given 
by the expression 
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W~VF(nLh/3)''', T4:./1, 

w~vF(2/1'rl3)''', T>/1 

and the inequalities (25a) and (25b) correspond to the 
cases w» sand w « S. 

(29) 

Thus w is the velocity of the Bogolyubov collective 
excitations in the neutral Fermi gas with a finite path 
length of the particles of the gas, and differs from 
VF /3 1/ 2_the velocity of the collective excitations in the 
case of an infinite path length-by an amount ~(~T)1/2. 
Thus, in the case (25b) the sound wavelength is large in 
comparison with the wavelength of the collective excita
tions of the same frequency and an entirely homogeneous 
situation is realized here, which is seen from (27), 
where there is no dependence on Dk2 • In this case 
Ys irn is given by the ratio of the conductivity of the 
metal in the normal state to the effecti ve conductivity 
of the superconductor at the frequency w. The latter 
circumstance very clearly reveals the effect of screen
ing of the electromagnetic fields by the superfluid cur
rents similar to the case for propagation of transverse 
sound in a superconductor. 

A quantitative comparison of the results obtained in 
the present research with the experimental data is diffi
cult, since the regions in which the predicted phenomena 
are important have not been specially investigated. 
However, we note that a number of experiments[ 10 J on 
measurements of the attenuation of sound in supercon
ducting alloys point to a large decrease in the attenua
tion coefficient with temperature at frequencies below 
102 MHz, which can evidently be connected with the re
sults obtained here. 

The authors are grateful to L. P. Gor'kov and G. M. 
Eliashberg for a number of valuable comments and 
stimulating discussions. 

Noted added in proof (August 22, 1975) in a recent work by Schmeil and Schon 
(Phys. Rev. Lett. 34,941 (1975», it was shown that near Tc, collective excitations 
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can exist with the dispersion law w = -(i1TLl'/4T) ± [w'k' - (1!Ll'/4T)'] 112, where 
the velocity w is given by Eq. (29). This dispersion law is easily obtained by setting 
the determinant of the set of equations for the potentials Q and 4> «14) and (15) of 
our present paper) equal to zero. 

I)In a pure superconductor (WT ~ 1) such a quasihomogeneous situation 
is not realized since we always have kVF ~ w. 
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