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Coherent elastic scattering of fast positively charged particles in a single crystal is considered. The cases of 
movement of the particles along a a crystallographic plane and crystallographic axis are considered in 
detail. Expressions are obtained for the total and differential scattering cross sections. The dependence of 
the cross sections on the single-crystal thickness is investigated. It is shown that for relatively thick single 
crystals the dependence of the total elastic-scattering cross section on thickness is periodic. 

PACS numbers: 61.80.Mk 

1. INTRODUCTION 

In interaction with the atoms of a material, a fast 
charged particle transfers to the atom a momentum of 
the order of the inverse screening radius K = me2(Zi'3 
+ Zr 3 )1/2 (fI. = c = 1, Z2e and Z1e are the charges of the 
inCident particle and the atom of the material), so that 
the characteristic scattering angles are ~ K/p« 1. In 
this case the longitudinal component of the momentum 
transfer t..pll ~ pe2 ~ K2/p rapidly _decreases with in
creasing energy of the particle. Therefore in scattering 
of fast particles large longitudinal distances (Ap)111 
~ PK- 2 are important. In view of this the crystal structure 
of the target can ap pear in the scattering of very fast 
particles when the incident-particle wavelength A ~ 1/p 
is much less than the lattice constant a, provided that the 
longitudinal wavelength transferred exceeds the distance 
between the atoms, PK-2 > a. 

Ter-Mikaelyan [1] has discussed in detail the coherent 
scattering in a single crystal on the assumption that per
turbation theory is valid for description of the interaction 
with a single crys tal, 

..!:...S dx U,(r) <1, (1) 
a~ 

where {3 = piE, the X axis is directed along the motion of 
the particle, Uo(r) is the potential of an individual atom, 
and L is the thickness of the single crystal along the X 
axis. 

In terms of perturbation theory, all atoms located in 
a length (APII )~fr scatter coherently and the cross sec
tion is proportional to the square of the number of atoms 
in the effective region 

(2) 

When we depart from perturbation theory (Ze 2L/{3a» 1) 
we should expect a substantial change in the behavior 
found by Ter-Mikaelyan. The use of perturbation theory 
is based on the assumption that the same plane wave 
hits the first atom and the subsequent atoms of a string. 
In reality the scattering by the first atom changes the 
flux of particles incident on the following atoms and this 
fact leads to a substantial weakeninlf of the scattering as 
a result of the diffraction shadow. [2 The coherence 
length in which scattering amplitudes from different scat
terers add effectively in this case (Ze2L/{3a» 1) is al
ready not determined just by the kinematiCS, but is also 
determined by the dynamics of the processY]For single 
crystals which are not too thick 

(3) 
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the high-energy approximation is applicable. [4,5] The 
total cross section for elastic scattering of fast charged 
particles whose initial momentum is parallel to the axis 
of the atomic string has in the high-energy approxima
tion the form [2,3] 

(4) 

Thus, for L « PK- 2 the dependence of the total cross 
section on the crystal thickness becomes very weak, 
namely, logarithmic. This is explained by the fact that 
atoms in the region of the diffraction shadow at the end 
of the string play practically no part in the scattering. 
'A further increaSe in the·thickness of the single crystal, 
L» PK- 2, should lead to disappearance of the diffraction 
shadow and to appearance of a substantial (nonlogarith
mic) dependence on thickness. For L» rK-2 the high
energy approximation is no longer valid. 4] In this con
nection a new rigorous approach is proposed to the the
ory of diffraction scattering of fast charged particles 
in extended objects. 

2. DIFFRACTION SCATTERING OF POSITIVELY 
CHARGED PARTICLES BY A SYSTEM OF 
CRYSTALLOGRAPHIC PLANES 

The motion of fast charged particles in a single crys
tal is determined by the total potential of the lattice 

U(r)~ I>'o(r-R)=a-' .E u, (2: n )exp (; 2~'t 1l1'). 
, " 

(5) 

In motion of a particle in a single crystal at a small 
angle to a crystallographic plane there is a strong cor
relation between successive collisions of the particle 
with the atoms of the crystal. Therefore the average con
tinuous potential of the crystallographic planes adequately 
describes the problem of charged-particle scattering in 
a single crystal when the entry angle, Le., the angle be
tween the incident-particle momentum and the crystallo
graphic plane, is less than Lindhard's critical scattering 
angle[6,7] 

n _ ( 2rcZ,Z,e' ) 'I, 
vo<ocr- --, - , 

xa E kin 
(6) 

where Ekin is the kinetic energy of the incident charged 
particles. 

In accordance with this, a screened Coulomb poten
tial leads to the following expression for the continuous 
potential of a system of crystallographic planes: 

U(x)=a-' S .Edy,dZ,Uo(lr-R,I) 
E, 
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i2n Z,Z',e' . ~ exp{-'-xlx-sal}, O";z..;L 
= xa L..J 

1=_00 

0, -oo<z<O, L<z<+oo' (7) 

Thus, the total potential of the lattice (5) can be rep
resented in the form of the sum of two terms: 

U(r) =17(x)+W(r), 

where U(x) is the average continuous potential of the 
crystallographic plane, and the second term, W(r), takes 
into account the deviation of the total potential from the 
average potential (7). Incoherent electromagnetic inter
action processes due to the potential W (r) can be dis
cussed by means of perturbation theory. The matrix ele
ments of the transition due to the potential W(r) are dif
ferent from zero for longitudinal momentum transfers 
greater than the reciprocal lattice vector ~ l/a. There
fore the potential W(r) leads to incoherent scattering at 
a large angle: 

8> (pa)-'f,. (8) 

We shall consider small-angle coherent scattering 
determined by the average continuous potential U. To 
investigate the motion of fast positively charged par
ticles in the averaged potential of the atomic planes, we 
shall write the exact wave function of the particles in 
the form (for simplicity we limit ourselves to the case 
of entry of the particle parallel to a crystallographic 
plane) 

Sdk ----
exp(ipz)+ ~A(k)exp{ikx-izl'P'-k'}, -oo<z";O 

J dkdq -- --
1jl(r) = (2n)' U .. (x) [B,(k)exp(izl'p'-k')+C,(k)exp(-izl'p'-k')], 

O~z";L, 

J dk ----
-D(k)exp{ikx+izl'p'-k'}, 
2n 

(9) 

where Uqk is the solution of the one-dimensional Schro
dinger equation with the periodic potential (7), which ac
cording to Bloch's theorem can conveniently be written 
in the form 

U,.(x) =e""u',.(x-sa), sa";x"; (s+1)a. (10) 

The asymptotic form of the wave function (9) is deter
mined by the following relation: 

lim 1jl(r) = S~D(k)exp{ikx+izl'P'-k'} 
1-++00 2n (11) 

in which D(k) does not have a singularity as k -0: 

D(k) =D(k) -(2n)/I(k). (12) 

Comparing Eq. (11) with the asymptotic form of the wave 
function in two-dimensional scattering theory, we find 
the relation between the scattering amplitude and the co
efficient D: 

( p )'/, f(8)=-i ~ D(k=p8). (13) 

To find the coefficient D (k), we join the wave functions 
(11) and their derivatives at the points z = 0 and z = L~ 
As a result we obtain a system of integral equations for 
A(k), B (k), C (k), and D (k): 

1+ S~A(k)e;''''= J dqdk U,.(x)[B(k)+C(k)], 
2n (2n)' 
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p-S~:A(k)e;'rl'p'-k'= J dqdk U,,(x)[B(k)-C(k)]l'p'-k', 
2n (2n)' 

S ~D(k)exp{ikx+iLl'p'-k'}= J dqdk U,.(x) [B(k)exp(iLl'p'-k') 
2n (2n)' 

+C (k) exp (-iL l' p'-k') 1, 
(14) 

S
dk ---- -- J dqdk 
~D(k)exp{ikx+iLl'p'-k'} l'p'-k'= (2n)' U,h(X) 

X[B (k)exp (iLl' p'-k') -C(k)exp( -iLl' p'-k') 11' p'-k'. 

The effective values of k in the expressions obtained 
are substantially smaller than the total momentum p. 
This means that in the second and fourth integral re
lations of (14) we can replace the pre-exponential factor 
~byp. 

Then the system of equations (14) is greatly simpli
fied: 

J dqdk 
1= (2n)' U,,(x)B(k), 

dk - S dqdk -, (15) 
S -D(k)exp{ikx+iLl'p'-k'}= --U,,(x)B(k)cxp(iLl'p'-k). 

2n- (2n)' 

Using the orthogonality of the functions Uqk(x), 

+-
S dx U'ok, (x) U,: •• (x) = (2n)'1) (k,-k,) I) (q,-q,), 

We obtain from Eq. (15) 

-- Jdqdk -- • D (Pi) =exp( -iL l' p'-p,') (2n)' exp(iL l' p'-k') Qo(q, k)Qp, (q, k), (16) 

where 
+- • 

Q;/q,k)='£ exp{i(q-pt)sa} S dxw .. (x)exp(-iptx ). (17) 

Consequently the scattering amplitude can be represented 
in the form 

/(p,) =-i (L) 'I, S dq dk Qo(q, k)Q; (q, k) {exp[iLl'p'-k'-iLl' p'-p,' J-1} 
2n (2n)' t 

_i(L)'I'[S dqdkQo(q,k)Q; (q,k)-(2n)'I)(p,)]. (18) 
2n (2n)' t 

If the entry angle eo« ecr (see Eq. (6)) and 
4rrZ1Z2e2E/K3a2 » 1, then we can neglect the penetration 
of the particles through the potential barrier (7), and in 
this case the particle executes transverse oscillations 
between neighboring pairs of planes. This circumstance 
permits simplification of the expression for the scatter
ing amplitude: 

j(Pt)= ,EI)Pf'2nltO{J :: Qo(k)Q;, (k)[exp (iLl'p'-k'-iLl'p'-pt'-1 1 
1=0 

+ [S :: Qo(k)Q.;(k)-(2n)l)(k) ]} (-i) ( :J/. N., (19) 

where Nx is the number of crystallographic planes, . . 
Qo(k)= J dxw'(x), Q,,/(k) = J dxw.(x)exp(-iptx ). (20) 

For analytic calculation of the scattering amplitude 
(19), we first approximate the potential (7) by the expres-
sion 

{ +00 sa-x-'<x<sa+x-' 
17(x) = ' , 

0, sa+x-'<x< (s+1)a-x-' 

where s = 0, ± 1, ± 2, ..• In this case wk(x) have the 
form 

(7') 

\
Sin{k(X-X-')}, x-''';x'';a 

( 2 )'1. (21) w.(x)= --_-, 0, xlxl";!, 
a-2x exp( -iqa) -sin {k (x+a-x-')}, -a+x-'..;x";-x-' 

N. P. Kalashnikov and M. N. Strikhanov 642 



where k(a - 2/K) = 7Tn (n = 1, 2, ..•. ). 

The possibility of use of the approximation (7') sug
gested for the potential is due to the following circum
stances: For L> /3a2K/Z1Z2e2 the flux density of scat
tered particles inside the plane (x < K- 1 ) is negligible[2,3 j 

in addition, in scattering in a long plane of atoms the ef
fective impact parameters are much larger than the 
screening radius K- 1 and consequently the exponentially
falling-off potential (7) leads to the same results as 
those obtained for the sharply-cut-off potential (7'). 

Substituting the exp licit form of Qo(k) and Qp (k) into 

Eq. (19), we find that the second term in the amplitude 
(19) represents the amplitude of diffraction by the un
penetrated band of width 2K-1: 

t () -2' (2P )'1' sin(PI)c') 
diff PI - , -- . 

n PI 
(22) 

In contrast to this, the first term in Eq. (19) depends on 
the thickness of the single crystal L, which leads to 
fundamentally new relations in diffraction in extended 
crystallographic planes. Us ing the two- dimenSional op
tical theorem 

( 2n )'1' 0",= P 1m/CO), (23) 

we obtain the following expression for the total cross 
section for elastic scattering in a single crystal: 

where 

{ 8d, '\'I 1-cos (an'+~n') } 
Otot=Nx 4x- 1 + -;z ~ n2 ' 

n'L 
a = 2pd' ' 

n=2m+1 

n' L 
~ =~- (pd)-' and d""a-2x-'. 

8 pd' 

(24) 

(25) 

Since 0' » /3, the total cross section for elastic scat
tering varies almost periodically with crystal thickness. 
A maximum occurs at the thicknesses 

2pd2 

Lm==-- (2m+1) , m=O.1.2,... (26) 
n 

It is easy to find from Eq. (24) that 

m"" [ 16d ~ ] a", =N, 4x-' +-;z.t..J (2k+1)-' =N,[4x-'+2d]=2aN.,. (27) 
11.=1 

Thus, as we should expect, a~F does not depend on the 
thickness L. The minimum value of the total cross sec
tion is achieved at 

and 

2pd' 
Lml• = -- (2m), m=O. 1. 2 .... , 

n 

m.. { , 8a , ( , ( ao') [ (i) 'j, ] ) } a,,, =N. 4x- + n'l. (2~) I. Re ii, exp i8f D'I. ao 2f ' 

(28) 

(29) 

where 0'0 = 0' - 27Tm and D l/2 (Z) is the parabOlic cylinder 
function.[81 The resulting expression (29) can be simpli
fied substantially in two limiting cases. For the condition 
(I~/8/3» 1 

mi. [ , 8d {nL ( nL ) } 'I. ] 0,,, =N, 4x- +-- --, -E --- , 
n 4pd' 4pd' 

(30) 

where E(x) is the integral part of x which does not ex
ceed x. In particular, for L « pa 2 we have 

(31) 

In this case, L« pa2, the result obtained describes the 
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diffraction scattering of fast positively charged particles 
by a single isolated crystallographic plane. The presence 
of other (neighboring) planes leads to saturation of the 

. total cross section (27). 

~ the opposite limiting case, 0'~/8/3 « 1, the value of 
a Faln is significantly less than the value (30) and has 
the following form: 

m··~N {4 -'+2'/ r('/.) n (L ) "'} O'ot ,..... ~)(. '--cos- - . 
n 8 P' 

(32) 

Thus, in contrast to the maximum value of the total cross 
section (27), the value at the minimum slowly increases 
with thickness. 

UsingEq. (19), we find an explicit expression for the 
differential scattering cross section: 

da = N.pa' 32 {11l( la-2nl) 1 '\'I exp(-ian2
)[ (-1)' exp(-ipla) -1] I' 

dQ. n' .t..J p .t..J n'-pt'a'n-' • 
,~O .-, (33) 

The expression obtained for da/dn can be simplified 
greatly in the case 0' = 2= + 0'1, (11 « 1, and m is in
tegral, so that 

L= 2pd' (2m)+(M), (M)<.pd'. (34) 
n 

In the case considered the cross section is 
da ~'" 1 (p .) 'I, sin (p~Le2/4) . ( 2p ) 'I, sin (p9/x) I' 
~=N.a Il(Pla-2nl) -4 -- +2, -- . 
d~~ n p9 n pfl 

1_0 (33') 

Thus, on increase of t.L the effective scattering angles 
decrease and the scattering at small angles increases. In 
particular, for L « pa2 we obtain the differential cross 
section for scattering by Nx isolated extended planes: 

~f!...=N. 16 sin(pL9'/4) . 
dQ np e' (35) 

If the condition L « pa2 is satisfied, we can neglect 
multiple scattering by different crystallographic planes, 
since the effective angle for scattering by an individual 
atomic plane e eff ~ 1/,;pr;- is less than alL. 

We now consider the case of motion of fast positively 
charged particles in the exponentially falling potential 
(7). The eigenfunctions wk(x) have in this case the form 

2i { 2ik / 2ko)} ( 2ik) [ 2ko ] w. (x) = -;- exp -;-In -;- r 1 - --;- K"A/. X e-""12 , (36) 

where Kv(z) is the MacDonald function [8] and k~ 
= (47TZ1Z2e2/Ka2)E. The transverse momentum is quan
tized as follows: 

( 
nn , k<.x 

k
n

= a-4x-'ln(2ko/x) 
nn 

--------, k~x 
a-4,c' In (kol kn) 

Using the condition of completeness of the system of 
eigenfunctions wk(x): 

f dk 1o,,(x) 10; (x') =6(x-x'), _00< (x, x') <+00, 
2n 

(37) 

we can calculate in explicit form the coefficients Qo(k) 
and QPi(k): 

4i { k ( 2ko ) } nk Qo(k)=~exp 4i~In -- , 
X" X X x sh(nklx) 

4i { k (2ko)} ( k-Pl ) ( k+p,) Q.,·(k)=--exp -4i~Jn - r i-- r -i--- . 
xJt I< X X iG 

(38) 
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Substituting the explicit form of Qo(k) and Q* (k) into 
Eq. (19), we find the expression for the tot;P!cross sec
tion. 

Near the atomic strings p - Ri the sum in Eq. (42) can 
be replaced by an integral, and by means of the integral 
representation of the Hankel function[8] 

(I) (k ) - f d'q e"P 
H. fl - (:!n)' k'-q'+ill 

Let us investigate the dependence of the total cross 
section for elastic scattering on the thickness of a single 
crystal in the case of small and large thicknesses L. For 
small thicknesses we obtain 

xa'/Z,Z2e'<L<p,,-2 (43) 
we have 

Thus, it is directly evident from Eq. (43) that near atomic 
, (2nZ,Z,e') (J",=N.4x- In --,-L . 

xa 
(39) strings the wave function goes to zero. 

It follows from the expression obtained that for a thin 
single crystal there is a logarithmic dependence of the 
cross section on thickness. This result was first ob
tained in ref. 3 by means of the eikonal approximation. 
PhYSically this result means that in the region of the 
diffraction shadow (L < pK- 2 ) the atoms of the single 
crystal play practically no part in the scatteringP] 

In the case of large thicknesses (L» pK-2), i.e., when 
the eikonal approximation is inapplicable, we find 

(40) 

The expression obtained for the exponentially falling po
tential coincides with expression (24) for a sharply cut 
off potential. This circumstance is quite evident, since 
in diffraction scattering by extended objects, large im
pact parameters much greater than the screening para
meters K- 1 are important. 

3. CONCLUSION 

Let us investigate the case of motion of a fast posi
tively charged particle in a single crystal parallel to 
some crystallographic axis. With complete analogy to 
the above, we write the potential of the single crystal in 
the form 

U(r)=U(p)+W(r), 

where 

_ -a- ",-,K.(xlp-R,I), O';;;;z,;;;;L 
/

2z,z,e' \"'1 

U(p)= , (41) 
0, -oo<z<O, L<z<+oo 

is the average potential of a system of atomic strings. 
We saw above that in the process of diffraction scatter
ing by an extended plane (for L» pK- 2 ) the effective im
pact parameters significantly exceed the transverse di
mensions of the plane. Therefore we shall approximate 
the potential of a single crystal with a cubic lattice with 
the following expression: 

where 

U(p)={ +00, p'';;;;x-' , O';;;;z,;;;;L (41') 
0, p'>x-', -oo<z<o, L<z<+oo 

p'=[ (x-8.a)'+ (Y-8,{l)'] "'. 8.a';;;;X< (8.+1) a, 
8,a';;;;y< (s.+t)a, 8., s,;"O. ±1. ±2 •.... 

The wave function of a particle moving inthe poten
tial (41) is obtained by generalization of Eq. (10) to the 
case of two-dimensional transverse motion. The eigen
functions of the transverse motion have the form 
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Now, following the scheme developed earlier, we find 
the amplitude for scattering of fast positively charged 
particles in a single crystal. The differential cross sec
tion obtained for scattering by a system of atomic strings 
depends almost periodically on the thickness of the single 
crystal. The total cross section for elastic scattering 

-2 -'N + 2N.La' L: {1- cos[a(n;+n:)+~(n.'+n.')21} 
Otet- n)( .L -- (44) 

n' n n (n.'+n.')'IH~t) (2nl'n.'+n.'/xa) I' ., , 
reaches its maximum value at Lmax = pa2 (2m + 1)/21T: 

(J", "",N.La' 1 +-In' - - (n.'+n.')-', mo< [4 ( ax )] -, 8 L: 
n' n1 n' 

n.,n, (45) 
n.=2k+1, n.=2I, 

and reaches its minimum value for Lmin = pa~/1T 
(m = 0, 1, 2, ... ) : 

where 
I'!L = pa' {nL _ E ( nL )} . 

n pa' pal 

It should be emphasized that for L « pa2 the upper 
formula of Eq. (46) coincides with the cross section for 
scattering by Nl isolated atomic strings. For L« pa2 

we can neglect multiple scattering by the different atomic 
strings. Therefore for L» PK- 2 for one isolated string 
of atoms we obtain from Eq. (44) 

(J",=2nx-'+2L/p{Hn-' In' ('Y'px-'/L)}, (47) 

where C = lny i:::l 0.5772 ... is Euler'S constant.[8] Thus, 
for L» p K- 2 the cross section O"tot is characterized by 
a linear dependence on the length of the atomic string. 
In the opposite limiting case, L « PK-2 , the total cross 
section is practically independent of the length L: 

4 ( L )'1. Ot.,=2nx-% + -_- -- . 
x'l'n jJx-' 

(48) 

The differential cross section (L » pK- 2 ) for scatter
ing by an isolated atomic string has the form 

do =It(e)I'=~ 1-cos(t/,LpO') In-'''('P'O'. (49) 
dQ ' p' 0' 4x' 

It follows from the expression obtained that the effective 
scattering angles 

Oeff-(1/pL) 'I. (50) 

falloff with the length of the string and turn out to be 
much smaller than the effective angles of diffraction by 
an impenetrable disk, Bdiff ~ K/p. The differential scat-
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tering cross section has a sharp peak near zero angle 
(8 < l/fPL): 

-=L'ln- . do \ 1'L}-' 
dQ px-' (51) 

Consequently, in diffraction scattering by a long string 
(L» pK- 2 ) the effective impact parameters, Peff 
~ v'L7P. are significantly greater than the transverse 
size of the string K- 1 • 

In conclusion the authors express their sincere grati
tude to Yu. M. Kagan and M.l. Ryazanov for helpful dis
cussions. 
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