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Relaxation phenomena are studied in He II at low temperatures, when they are determined only by 
phonons, and no rotons are excited. In accordance with the latest experimental data, the dispersion law of 
the phonons is assumed to be a decaying one but not much different from linear. The principal relaxation 
process in this case consists of three-phonon collisions which involve phonons moving at small angles with 
respect to one another. As a result, two relaxation processes are prominent in the phonon gas: 1) fast 
relaxation during a time Til along a given direction, which leads to an equilibrium distribution function with 
a temperature and a drift velocity 11.-11, which depend on direction; 2) a slow leveling out of the 
temperature and drift velocity for the various directions, with a characteristic time T1>TU' An expression is 
obtained for the differential transverse phonon-phonon relaxation operator for an arbitrary decaying 
phonon-dispersion law and also arbitrary value of the external perturbation that causes the disequilibrium 
of the phonons. The contribution of multiphonon processes to this operator is estimated. 

PACS numbers: 67.40.Hf, 67.20.Cp 

1. INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

The aim of the present paper is the development of 
a mathematical technique for describing kinetic phe
nomena in He II at a temperature below O.6"K, when they 
are determined only by phonons. The theory of kinetic 
phenomena in He II has been developed in detail by 
Landau and Khalatnikov[l] (see also the book of Khalat
nikov[2]). In the conSideration of the temperature range 
below O.6"K, where only phonons make a contribution to 
the kinetiCS, the above-mentioned authors have assumed 
a non-decaying phonon spectrum. On the other hand, 
comparatively recently, the results of the measurement 
of the absorption and the sound-velocity dispersion at 
temperatures below 0.6°K in the frequency range from 
10 to 2000 MHzP,f] and also measurements of the de
pendence of the absorption on the pressure[5l, have been 
found to agree with theory only if we assume that the 
phonon spectrum undergoes decay at not too high pres
sures:[ 6,7] 

(1.1) 

(w is the frequency and k the wave vector of the pho
non). Investigation of the dependence of the speCific 
heat on the temperature leads to the same condition,rs] 
Various experiments give a value y"" (4-10) X 10-17 
cm.2 The equality 

(1.2) 

holds for such small values of y: here kT = T/Ilc is 
the wave vector of the thermal phonon (for T "" O.6"K 
we have ykT of the order of 10-3). 

This form of the dispersion law is responsible for 
the peculiarity of the relaxation processes in a gas of 
thermal phonons. The basic role is played by three
phonon processes, in which, by virtue of the inequality 
(1.2), phonons which are propagated in only one direc
tion take part. More accurately, the angles between the 
wave vectors of the phonons that take part in the three
phonon collisions are of the order of 8"" yl/2kT' For 
this reason, we can separate two relaxation processes 
in the phonon gas in He II. The first is a rapid relaxa
tion of the phonons which propagate along the given 
direction. It leads to an incomplete thermodynamic 
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equilibrium; that is, it leads to the establishment of a 
Planck distribution function for the phonons along the 
gi ven direction: 

[ ro (k) -kV (x) ] 
N,""'n. h T(x) ,n.(z)=(e'-1)-" (1.3 ) 

with temperature T and drift velocity1). V, which de
pend on the unit vector K characterizing the direction.2) 
The time of establishment of equilibrium along a given 
direction will be called the longitudinal relaxation time 
and be denoted by Til' A rough estimate gives 

~"" 10' (Hu)' T', 'II ph"c' 

where u = (p/c)(ac/ap) = 2.84,[4] and p is the density 
of He II at T = O. 

The second relaxation process is a slow establish
ment of equilibrium between different directions and 
leads to equalization of the temperature and drift 
velocity at different values of K. The characteristic 
time over which the transverse relaxation manages to 
take place will be designated T 1. Our task is to calculate 
the transverse-relaxation operator. Since each single 
scattering act is through a small angle, this operator 
should be of differential form. 

What sort of problems can be stated and solved with 
the help of the transverse operator obtained by us? The 
Simplest problem of such a type is the calculation of the 
first viscosity coefficient. It reduces to a study of the 
relaxation of the seconcl spherical harmonic. This prob
lem was solved (by another method than the one de
veloped by us) in a recent paper of Benin.[9l3) For il
lustration, we give the solution of this problem by our 
method. 

There is a whole group of problems on the calcula
tion of the spreading out of the shadow created by a 
screen of some shape in the phonon flux which is emitted 
by a heated solid immersed in helium. A very interest
ing paper[10] was recently published in which this effect 
was observed. There are two limiting cases here, (1) 
linear, where the temperature of the source exceeds the 
temperature of He II only Slightly, and linearization of 
the equations of the theory in terms of this difference 
is pOSSible, and (2) nonlinear, where the temperature of 
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the He II can be assumed to be small in comparison with 00 (k) =ck[ 1+£ (k) ], (1.4) 

the high temperature of the source, as in[lO]. where ~(k)« 1 is an arbitrary function of k. 

It is interesting to construct a theory of sound ab
sorption in the frequency range Ti/ » W ~ Til. Here the 
equilibrium of the phonons is disrupted in a range of 
angles of the order of (WTlr1/6and the problem of the 
calculation of the nonequilibrium distribution function in 
this interval requires the solution of the differential 
equation. Here both the linear case (small sound inten
sity) and the nonlinear case, where the sound intensity 
"heats" the phonons.in a narrow cone of directions. 
We hope to conSider the problem of the acoustical ef
fects in He II at low temperatures in a separate paper. 

The last two problems, it seems to us, are prac
tically impossible to solve by the methods of[9], since a 
great number of spherical harmonics of the nonequili
brium distribution function arise in this case, and to 
study the phonon relaxation it is necessary to solve the 
corresponding differential equation directly. 

One could name still another series of important 
problems, including nonlinear ones, for the solution of 
which one must know the transverse relaxation operator. 
Keeping this in mind, we have not limited ourselves to 
the linear approximation in the calculation of this opera
tor in the present paper, but have considered the general 
case of an arbitrary nonequilibrium condition. 

The first calculation of the viscosity coefficient 1'/ at 
T < O.6"K was made in the extremely interesting paper 
of Maris.(ll] In it, the viscosity coefficient was deter
mined by numerical calculation. Its results are in ex
cellent agreement with the experimental data. One of 
the important qualitative results of Maris' work was the 
conclusion that T11 is proportional not to y, as was to 
be expected if the relaxation process represented its 
usual diffusion in the space of directions K, but to y2. 

Correspondingly, the transverse relaxation operator 
that we have calculated is not a diffusion operator, Le., 
an operator of second order, but is a differential opera
tor of fourth order. We shall call this the superdiffu
sion operator. 

We shall attempt to explain the physical reason for 
such a structure of the transverse relaxation operator. 
The phonon-phonon collision operator (2.2) consists of 
two components. The first describes the process of 
attachment of a given phonon to another phonon (and its 
inverse), and the second, the process of the decay of a 
given phonon (and its inverse). Each of these compon
ents would have led separately to a second-order opera
tor. If we consider the interaction of phonons propagat
ing in a narrow cone of directions, then the first proces
ses lead to a narrowing of this cone, and the second to 
its broadening. The contributions of both components in 
first order in the small parameter ykT cancel each 
other. Thus, the appearance of the superdiffusion opera
tor is essentially a consequence of the small dispersion 
in a system of particles whose number is not conserved 
in the collisions. 

It must also be noted that the phonon disperSion law 
takes the form (1.1) only for sufficiently small k. The 
characteristic value of k at which significant deviations 
from the simple formula (1.1) appear depends on the 
pressure.[5,7] Therefore, in the derivation of the trans
verse relaxation operator, do not specify the form of 
the dispersion law, but give it in the form 
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It must be noted that in constructing the theory we 
cannot assume the nonlinear increment Do W = ck~ (k) to 
the phonon dispersion law to be arbitrarily small. It 
should be greater than the indeterminacy of the fre
quency of the phonon, which is equal to T~l: 

(1.5) 

Such an inequality will occur in any event for sufficiently 
low temperatures, since the characteristic value Dow 
~ cy(T/tlc)3 is proportional to T 3 , whereas Ti/~ T5. 
However, for comparatively high temperatures, this in
equality ·can become reversed. Then, in writing down the 
phonon-phonon interaction operator, we should, within 
the limits of accuracy of the calculation, discard the 
contribution t!.w (in this case the sign of the contribution 
generally does not playa role) and the processes of 
three-phonon collisions are considered with account of 
the indeterminancy of Ti/ as was done in the well-known 
work of Simons,P21 The study of phonon relaxation in the 
Simons case is one of the interesting problems of 
kinetics. In the present work, however, we shall not 
touch on it. 

2. DERIVATION OF THE OPERATOR OF TRANSVERSE 
RELAXATION OF PHONONS 

We write down the kinetic equation in the form 

P{N}=J{N}. (2.1) 

The left side P{N} includes the time derivative of the 
phonon distribution function and the Poisson brackets. 
The right side is the three-phonon collision operator 
and is of the form 

"ft d'k' 
I {N} = - S~-. {b' (k, k', k") t+ (k, k', k").s (00" -00-00') 

4p (2,,)' (2.2) 

+ + b'(k, k', k"')t- (k, k', k"')b (00_00' _00"') }. 

Here 
,k"=k+k', k"'=k-k', oo'=oo{k'), oo"=oo{k"), oo"'=oo(k"'), (2.3) 

f+{k, k', k")=N"{N+l) (N'+1)-(N"+l)NN', 
f_{k, k', k"')={N+1)N'N"'-N{N'+l)(N'''+1), (2.4) 

'" k'k" (00'00") 'f, k"k, (OO"W) 'I, 
b (k, k ,k ) = k' k" k -w- + k" k k --:,.,-;-

kk' (t}w' II~ kk' k" (2 5) 
+kllk" (~) +{2u-l)c' (woo'w n )",' • 

For the derivation of the kinetic equations in the 
considered state of incomplete thermodynamic equili
brium, we should use a procedure of the Chapman
Enskog type. The peculiarity of the given case is that 
we have here not a single small parameter associated 
with the relaxation time, but one more small parameter 
~. We represent the operator of the phonon-phonon col
lisions in the form of a power series in 1;: 

J{N} =10 {N} +J, {N}+l,{N} + .,. (2.6) 

In the zeroth approximation, the distribution function 
satisfies the equation Jo{N} = 0, which describes the 
relaxation along the given direction K. Therefore, its 
solution is the Planck distribution No = no (tick/®). In 
this approximation, there is no sense in introducing the 
two functions V and T, since the function (1.3) reduces 
to No through the substitution (1 - K' V / c )/T = 1/ ® . 
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The first-order correction nl to the distribution 
function is found from the equation 

P{No} =lo'n,+ldNo} , (2.7) 

where J~ is the zeroth-approximation operator linear
ized with respect to the increment nl o 

The operator J 0 conserves the energy along the 
specified direction (or the momentum, which is the 
same thing in our approximation). And therefore, the 
following relation must be satisfied for Eq. (2.7) to 
have a solution: 

f[P{No}-I, {No} lkk' dk = I Io'",kk' dk~~O. 
o • 

(2.8) 

It turns out that 
~ 

J I, {No} k' dk=O. . 
This statement will be proved below. The solvability 

condition of (2.8) is not satisfied here, since 
~ 

Jp{No}k'dk 
o 

is generally speaking different from zero. The way out 
of this contradiction is to write P in an equation not of 
first, but of second approximation. Then nl should be 
determined from the equation 

(J)'-ck'v ro'''-ck'"v w-ckv 
L=exp(S'nl)--p--+exp(-S"'nl) T 

T 

= [ (ro'8' -ro"'SU')nl + ro's";ro"'s"" (nI)' ] ; (2.13 ) 

--c r k'lk"'--k+(k'8'-k'US'U)nl+ k'S"+;"'S"" (nI)'] ; . 

Here n = k x k' II k x k' I; the angle e III has a minus sign 
because the vector l" turns away from the vector K to 
a direction opposite to the vector K'. 

According to the law of sines, we have 

k' Rin 0' =k'" sin 8"1 , k" sin f}"=-k' sinS', 

The terms of first order in (2.12) and (2.13) cancel each 
other. There are then left in (2.10) only terms of first 
order in A, and A_. The resultant expression must be 
substituted in (2.2), and integration carried out over the 
angle <p', which determines the location of the plane 
(K, K'), on which the vector n depends. Here we use the 
relations [n ·Z, nj] = 0 and 

(2.14) 

Expanding further in terms of the small angle in the 
arguments of the 0 functions, we find 

b (ro-ro'-~>''') =c-'iT(k-k') 6[ (kk'/kUl ) S' 2/2_~ (k, k', kIll) 1. 
6(ro+ro'-ro")=C-'6[(kk'/kl)(J"I2-~(k", k, k')l. (2.15) 

1.'",+1, {No} =0. (2.9) where 

On the other hand, this equation means that the function 
Nl '" No + nl makes the collision operator vanish with 
accuracy to terms of first order in the dispersion, in
clusi ve. Inasmuch as it does not contain external forces, 
it is natural to expect its solution to be the Planck func
tion. But it can no longer have the simple form No in 
first order in ~. We shall seek it in the form (1.3) and 
verify that it really causes the collision operator to 
vanish with accuracy to terms of first order in ~ if T 
and v == K' vic are connected in this case by s ollle ad
ditional relation. Thus, in place of the function nl we 
have another function v( K). 

In order to calculate J {N J with accuracy to terms 
of first order in ~, we must expand the functions f. and 
L in powers of the small angle at which the scattering 
occurs, We represent them in the form 

1+= (N,"+i)NN,(eu'-i) , f-= (N,+l)N,'N;" (1-e"-) , 

where 
A = ro-ckv +oo/-ck'v' _ ro"-ck"v" 

+ T 1" Til 

w' -Ck'V' 00'" -ck"'v'" ro-ckv 
L = --T-' - +--r="'-- r 

T'=T(x') etc. 

(2.10) 

(2.11 ) 

We introduce the differential rotation operator4) 

where eijm is a completely antisymmetric tensor. 

We expand A. and A_ in powers of the angles with 
accuracy to terms of second order: 

(I)-ckv (i)'-ck'v ro"-ck"v 
A+ =----/- exp(S'nl)---- exp(S"nI)----

T T T 

~ [( ro'()' -ro"S")nl+ ro'()"+ro"S'" (nl)'] ~ 
, 2 T 

k'8'2+k"81f2 

-c [ kH' _k" + (k'S' -k"f),') nl + 2 (nl)' ] -i-, (2.12) 
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iT (x) =1 if x>O, tt (x) =0 if x<O, 
~(k, k', k"')=ks(k)-k's(k')-k"'s(k"'). 

J{N}= dk'k"k"'(N "+1)N N 'A(k" k k') 

(2.16 ) 

We obtain, finally, 

nn'c(l+u)' {Jw 

, 2 (2n) Jp 0 0 • ~ " 

o (2.17) 
1 • 1 - 2 I dk'k"k''''~(k, k', kU') (N.+1) No'No"'l( l' ;v -2 ~ ) +O(s'). 

It is clear from this expression that, with accuracy 
to terms of order ~, the collision operator vanishes as 
soon as the condition 

i-v v 
l'---2-=0 

T T 
(2.18) 

is satisfied. This is also the additional condition which 
connects the functions v and T. 

The second-approximation correction n2 to the func
tion N is determined from the equation 

P {No} =/0'",+1, {No}. (2.19 ) 

The condition of solvability of this equation is 
~ W 

J P{No}k'dk = J 1,{No}k'dk; (2.20 ) 
o • 

(2.20) is the second equation which connects the vari
ables v and To It makes the set of equations of the 
problem complete, and our purpose is to calculate right 
side of (2.20 )-tht' three-phonon collision operator. 

The integral on the right side of (2.20) is equal, with 
accuracy to a constant factor hcl (21d, to the second
order term in ~ in the expansion 

[ 
iJf!J ] W k'dk 

- o~ fflckJ{i\,}.~" 
Ot coll " (2n) 

(2021) 

This quantity constitutes the change in the energy 

W k'dk 
f!J(x)= f nckN, (2n)' ' (2,22) 
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of the phonons that propagate in the direction of K as 
a consequence of the collisions. If we neglect dispersion, 
then tff = (7T/120)a 4/(nc)3. 

For scattering at small angles, the contributions to 
(2.21) from the processes of decay (the second term of 
(2.2» and association (the first term of (2.2» cancel 
each other in the zeroth approximation. To verify this, 
we transform it so that the two terms containing 
f+(k, k', k" ( and L(k, k', k"') are reduced to one which 
contains a e' -dependent operator that acts only on one 
of these functions, for example, on L(k, k'. k"'). For 
this purpose, we note that the vectors k, k', k" , k'" lie 
in a single plane, so that the parallelogram of vectors 
k, k' , k" differs from the parallelogram of vectors k"', 
k', k by a rotation through the angle - e'" about an axis 
parallel to n. We denote this rotation operator by 
I (- e'" ). We transform in the first term in (2.2) from 
the integration variables k' and e' to the variables k" 
and e' - e", and then make the following change of vari
ables 

The latter is done in order that the notation for the 
corresponding vectors be the same in both parallelo
grams. 

We can verify that here 

i+ (k, k', kIf) -+-1 ( -a"') f+(k"', k', k) =-I( -a"')f_(k, k', k"') , (2.23) 

b'(k, k', k")-+-I(-a"')b'(k"', k', k)=b'(k, k', k"'). (2.24) 

The latter equality follows from the fact that b2 is a 
symmetric function of its arguments, and depends only 
on the moduli of the vectors and their scalar products. 
As a result, the integrals of the corresponding decay 
and combination processes can be unified: 

iNS li' ,. ~ ~ • 
[ -.] =~ Jdq/ JdkJ dk' JSina' da'k'k"b'(k, k', k''') 

at coU 4p(2n) 0 0 0 0 

. (2.25) 

x6(ro-ro'-ro"') [ : i_(k, k', k"')-k"'I(-a"')f_(k, k', k'''»). 

Now the second term in the square brackets must be 
symmetrized relative to k' and k"'. For this purpose, 
we transform in the integration from the variables k' 
and e' to the variables k' and e"', and then make the 
transformations k' ~ k"', e':;::!: e'" and take the half
sum of the resulting and initial expressions. We thus 
obtain 

iNS li' ,. W ~ • 

[~] = ~ Jdep' Jdk Jdk' JSina' d8'k'k" at coll 8(2n) p 0 0 0 0 

X b' (k, k', k"') 6(ro-ro' _rolf') {kf- (k, k', k"') 

-k'" I( -8''') f- (k, k', k"') -k' 1(8') f- (k, k', k''')}. 

(2.26 ) 

The last term in the curly brackets contains the opera
tor I (e') rather than I( - e' ) because, in the derivation 
of the corresponding expression, the vector k' was re
placed by k"', and k x k'" = -k x k' . 

We make use of the expressions 

1(8') =exp(fl'L), I(-a''') =exp (-a"'L), (2.27 ) 

where 
L=nL, L=I+I'+I"'. 

Expanding the rotation operators I in series in the 
small angles e' and e'" with accuracy to terms of second 
order, we obtain 
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[~] = ~ J"dep' j dk i dk' j sin 8' de' k'k" 
at col1 8(2n)'po 0 o· 0 

X b'(k,k', k''')6(ro-ro'-ro''') {k-k'-k'" (2.28) 
- (k'a' -k'''a''')L-' I,(k'8''+k'''8'''')L'}f- (k, k', k'''). 

The expression in the curly brackets turns out to be of 
first order in ~. This indicates a cancellation of the 
contributions from the decay and combination processes, 
of which we wrote earlier. 

Substituting in (2.28) the expression (2.10) for L, 
calculated with accuracy up to first order in the small 
quantity A_, we use formula (2.13) for A_ and expres
sion (2.15) for the Ii function. 

As a result we obtain the following expression with 
account of (2.5): 

, 4 ~ 1 
[~] = - Jdep' (L'+1)M(8) { (nl)'- -[ (nl)'+1J~}, (2.29) 

at coil noT T 

where M(e) is the following function of the effective 
temperature e(K) = T/(l - v): 

M(e)= h'e'(1+~)' j dk j dk'~'(k, k', k-k') 
32(2n) p 0 0 (2.30) 

x -& (~) k'k" (k-k')' [no (fickI8) +1] no (lick'/8) n, [he (k-k')/8]. 

The expression (2.29) does not contain terms of first 
order in ~, thus proving the vanishing of the integral . 

J II {N,} k' dk. 
o 

We can now carry out the integration over ~. For 
this purpose, we take out all the vectors n in sequence, 
beginning with the right extreme one, to the left of the 
operators I and L, uSing the fact that n commutes not 
only with n· I but also with L. We then replace the op
erator L by 1 and use the relation 

1 •• 1 
~ S n,n;n"n,n dep' = 8 a'J'm, 

o 

This gives 

[aa~L;;=alJ.m(I'IJH<i)M(8) [1.1m; -(l.lmH.m);]. (2.31) 

We carry out summation in (2.31), keeping it in mind 
that litj commutes not with all the operators li. Using 

the relations [ki. lj] = eimjkm and k·l = 0, we can ob
tain the identity 

a,;"",I,I,=I'6.m-'-+ (6,,6; .. +6, .. 6.;) l,z; 
+lj(e;nAx.xm+e;nmX"X n ) +2x.x,", 

(2.32 ) 

and with its help and with allowance for (2.18) we obtain 
the transverse relaxation operator in a form that con
tains a single unknown function e: 

[a,] 1 , , 1 - =21,I,Ml,l; - -I Ml -. 
at coll e 8 

(2.33 ) 

In accord with what was said in Sec. 1, this expression 
is proportional to I; 2. 

Let us see into what the expression (2.33) is trans
formed if the dispersion law has the very simple form 
(1.1). In this case, the function f3(k, k', k"') takes the 
form 

~ (k, k' k"') =31 kk' (k-k'). 

This allows us to introduce the dimensionless variables 
nck/e and nck'ie in the integrals over k and k' in (2.30) 
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and by the same token to separate the dependence on ® 
in explicit form. As a result we get 

[ a8] 9IiF(Hu)'or' ( 1 1 ) 
at co;;" 32 (2n)'p (lie) " 2I,II1"I,lre--I'euI's' (2.34) 

where the dimensionless constant F is equal to - . 
F= S dz S dz'z'z"(z-z')'[n,(z)+1]n,(z')n,(z-z'). (2.35) 

Its numerical value amounts to 1.0 X. 107 • 

We call attention to the fact that the expression (2.34) 
is homogeneous in the effective temperature ®. 

Thus the kinetic problems reduce to the calculation 
of a single function of the angles, which satisfies the 
equation 

• k'dk a8 J lIekP{N,} -( )' =.[-] . 
, 2n at coll 

(2.36) 

3. PROPERTIES OF THE TRANSVERSE RELAXATION 
OPERATOR. LAW OF ENERGY CONSERVATION. 
THE H THEOREM 

We shall verify that the collision operator vanishes 
when T = const and v = K' V / c, where V is a constant 
vector (this corresponds to the equilibrium distribution). 
Here the relation (2.18) is satisfied identically, as can 
be verified with the help of the identity (1 2 + 2) K = O. 
We can demonstrate that (2.33) vanishes by means of the 
identities 

l,x,=[t., x.] =0, (l,lj+Il,,) xn=lln,Xj' (3.1) 

The energy conservation law is a trivial consequence 
of the identity 

(3.2) 

where I/J is an arbitrary function of the direction K and 
the integration is carried out over the entire solid angle. 

We now calculate the entropy production as a conse
quence of the colliSions, by means of the formula 

[!!...] = SI{N}ln HN ~= S [a8] dQ (3.3) 
at coll N (2n)' at colle • 

Substituting (2.33) here and twice integrating by parts 
with account of (3.2), we obtain 

[:~ L;;" S dQM· [2 (IiI, ! )(l'li ~)- (la ! n. (3.4) 

This quantity can be rewritten in the form of the follow
ing integral, the positive definiteness of which is obvi
ous: 

4. LINEAR APPROXIMATION 

In the linear approximation, we assume that 

8=T(HZ), (4.1) 

where T is the temperature of He II at equilibrium and 
I Z I « 1. In the expression (2.33) it is not necessary in 
this case to differentiate M, and the expression takes 
the form 

[a8] =-~I'(l'+2)Z, 
at coD "t.L 

(4.2) 

where C(x) is the energy denSity (2.22) and 
1 M 
~=TT' 

(4.3) 
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In this case, when the phonon dispersion law has the 
simplest form (1.1), Eq. (4.3) transforms into 

_1 ___ 135F(1+u).''Y'T' 
't.L 2 (2n) 'pli'e' . 

(4.4) 

It must be noted that the quantity Z does not describe 
the changes of the average temperature of the phonon 
system and of the drift velocity; therefore it should 
satisfy the conditions 

S ZdQ=O, S ZxdQ=O. (4.5) 

The expression for [as/at] coIl takes the form 

in linear approximation. This quantity, with accuracy to 
a constant factor, coinCides with the variational func
tional of the work of Benin,(9) which thus represents the 
production of entropy as a consequence of the phonon
phonon collisions. 

To illustrate the method, we calculate the first
viscosity coefficient 1) of He II. In the calculation of 1), 

we must assume that Vs = 0 and (see the book of 
Khalatnikov,(Z) p. 134) 

1 ( 1.) liek '( liek ) P{N,}=-Z V'i X,Xi- 3 1l'i "Tn, T ' (4.7) 

where 

and n~ is the derivative of the Planck function with re
spect to the argument. 

Equation (2.37) takes in this case the form 

2 (x,xi- ~Il'i) Vjj=- _1_ I'(l'+2)Z. (4.8) 
3 't.L 

The solution of this equation, with account of the condi
tions (4.5), is 

(4.9) 

The dissipative part of the momentum flux density 
tensor in our case is given by 

1£ T' 
nil";' ---'S x,xjZdQ=-Tj V,;, 

. 30 (ne)' 
(4.10) 

whence 
n' T' 

Tj= 675 (ne)' 't.L' 
(4.11) 

This expression is identical with that obtained in(9).5) 

5. THE ROLE OF MUL TIPHONON PROCESSES 

The temperature dependence of the viscosity coef
ficient (4.11) in the case 1;(k) = ykZ is identical with 
the dependence of the coefficient " calculated by Landau 
and Khalatnikov(1,Z) and is due to the contribution of 
four-phonon processes of the type 2 ~ 2 (two phonons, 
colliding, are transformed into two other phonons). Ac
cording toe 1,Z), we have 

2"(2n)' ( lie)' p'e' 
TjLKh=~ T (Hu)'n' 

(5.1 ) 

The ratio of this quantity to the quantity (4.11) is 0.12 
for y = 4 X 10-'7 cmz. If we are given a larger value of 
y (as follOWS from(3-5,a,U)), then this ratio falls off like 
y-2. Thus, in spite of the same temperature dependence, 
it seems that three-phonon processes are noticeably 
more effective than the four-phonon processes. 
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Let explain qualitati vely how it is that four-phonon 
processes, which occur more rarely than three-phonon 
ones, give the same temperature dependence of the vis
cosity. For this purpose, we must estimate the contri
butions from multiphonon processes to the collision op
erator, Such an estimate has been made by us with the 
use of the Keldysh diagram technique. In the present 
work we cannot set forth the details of the correspond
ing calculations, and limit ourselves to the results. 

We shall distinguish between processes by the num
ber of real phonons participating in them. Analysis of 
the conservation laws for the processes 2 - 2, 2 ~ 3, 
and so on, shows that the phonons that take part in them 
can propagate at large angles with respect to one 
another. It turns out that for large-angle scattering 
processes, the contribution from each higher order is 
less than the contribution of the preceding one in, 
roughly speaking, the ratio r/w, where r is the atten
uation coefficient of the phonon, to which the principal 
contribution is made by the three-phonon interaction, 
such that6) r ~ Ti/, and w is the characteristic frequency 
of the phonon, usually of order Tin. The quantity Ti/ 
for thermal phonons is proportional to T 5; therefore, 
1/ WTII ~ (T/To)\ where To ~ (pn 3c 5)1/\ i.e., of the order 
of several degrees. 

On the other hand, the three-phonon collisions take 
place at small angles. As a result, as we have seen, 
T11 is proportional to (yk'f ~ T4. Thus the relative 
rarity of four-phonon processes 2 - 2 is compensated 
by the fact that they take place at large angles, so that 
the temperature dependence of the two contributions to 
the viscosity turns out to be the same. If the character 
of the disturbance is such that it covers a small range 
of angle tl.() in k space,7) then the role of the three
phonon processes turns out to be more effective, not 
numerically but literally-in the ratio 1/ (tl.l:1t. 

In the case of a decay spectrum, three-phonon pro
cesses 3 ~ 1 are also allowed. The conservation laws 
allow the participation in such processes only of phonons 
whose wave vectors are almost collinear. The corre
sponding amplitude of the transition at small angles has 
a Singularity ,(1 J Similar singularities arise at ampli
tudes of the multiphonon processes calculated in the 
higher approximations of perturbation theory. These 
Singularities lead to the appearance of quadrically 
diverging integrals. The summation of these diverg
ences in the Keldysh technique leads to the replacement 
of the Green's function of the zeroth approximation by 
Green's functions with an self -energy part due to three
phonon processes. 

The remaining integrals converge. The most im
portant contribution is made by processes for which the 
wave vectors of the participating phonons are almost 
collinear. The transition probabilities in this range of 
angles in each successi ve order acquire the parameterS) 
l!rIlLlw (tl.w = ck';). (The transition probabilities de
scribing the scattering at large angles contains the 
smaller parameter l/wTII)' 

We estimate the contribution to the phonon relaxation 
at large angles of processes of the type 3 ~ 1. The 
relaxation at large angles due to such processes is also 
described by an operator of the superdiffusion type, and 
the corresponding reciprocal relaxation time is de
scribed by multiplication of the probability of the pro
cess by .;2. Therefore, the ratio of the inverse relaxa-
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tion times due to the processes 2 ~ 1 and 3 :;: 1 turns 
out to be of the order of 1!rIItl.w« 1 (for the simplest 
dispersion law, 1!rllw ~ T2/T~). 

Thus the contribution of four-phonon processes turns 
out to be numerically small, in comparison with the 
three-phonon processes (for the processes 2 - 2) or 
parametrically small (for the processes 3 ~ 1). 

We now discuss the contribution of five-phonon pro
cesses. Just as in the four-phonon case, they are of two 
types. (1) The processes 1 ~ 4, which are allowed 
only in a narrow range of angles between the participat
ing phonons. The contribution of these processes is 
small in comparison with the processes 1 ~ 3, in ac
cord with the parameter 1/T II tl.w. (2) The processes 
2 ~ 3; these are allowed over a large range of angles. 
Their contribution is small in comparison with the con
tribution of processes 2 - 2 in the ratio 1/ WT II' 

The smallness of the contributions of processes of 
still higher order can be traced out in similar faShion. 

In conclUSion, we express our deep gratitude to I. M. 
Khalatnikov, who made a number of extremely valuable 
critical comments. We are very grateful to A. F. 
Andreev for a very interesting discussion. 

I)The distribution function (1.3) is given in a set of coordinates moving 
with the superfluid velocity vs, while the drift velocity V in (1.3) is 
none other than the difference Vn - vs, where Vn is the normal velocity. 

2)Landau and Khalatnikov [II first used the pressure-dependent tem
perature for the description of phonon relaxation processes in He II. 
They also first studied the transverse relation of phonons in He II due 
to four-phonon processes, and calculated the viscosity coefficient re
sulting from them. A comparison of the relative roles of three- and 
four-phonon processes in kinetic phenomena in He II at low tempera
tures will be given in Sec. 5 of this paper. 

3)We are very grateful to Benin for sending a preprint of his paper. 
4)It differs from the quantum mechanical angular-momentum operator 

by the quantity i/b, so that [Ii, lhl = -eikjlj, [Ii, kml = -eimjkj. 
S)The time T 1 that we introduced is connected with the relaxation time 

of the second spherical harmonic, introduced in [9), by the relation 
T1 = T2/6. 

6)In subsequent discussions, the attenuation coefficient of the phonons 
due to three-phonon processes is used as a graphic measure of the non
linear multiphonon interactions in He II. Actually, this means that 
for estimates we can express the multiphonon amplitude in order of 
magnitude in terms of the three-phonon interactions. 

7)For example, in the case of high-frequency sound. 
8)The existence of such a parameter was first noted by Zakharov [141 in 

an analysis of acoustic turbulence on the basis of classical theory. 
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