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A nonlinear theory of the propagation of high-frequency surface electromagnetic waves of amplitude 
sufficient for the ionization of the gas is developed for a plasma half-space. The dispersion characteristics of 
the wave and the structure of the electric field as functions of the wave amplitude and the exponent in the 
ionization law are analyzed on the basis of the exact solution to the nonlinear Maxwell equations that 
corresponds to a power-law dependence of the electron concentration on the field intensity. It is shown 
that as the wave amplitude increases the boundary of the transparency region for the plasma shifts toward 
the higher-frequency region. The propagation of the wave is then possible only when the amplitude exceeds 
some threshold value for the given frequency. The case of a plasma with an initial electron concentration 
exceeding the critical value for the wave frequency is considered in detail. 

PACS numbers: 52.40.Db 

When the amplitude of waves propagating in a weakly 
ionized plasma exceeds the plasma field Ep or the break-
down field Ei, the nonlinear effects connected with the 
heating of the electrons and the ionization of the plasma 
become important [IJ. Below we consider the problem of 
the propagation of surface electromagnetic waves in a 
semi-infinite plasma that gets ionized in the wave field. 
Dissipative effects are neglected, which can be done 
when the wave frequency is high compared to the effec
tive collision rate. 

1. Let us consider a plasma with an initial electron 
concentration nO, occupying the half-space z ~ 0, and 
bordering on a homogeneous dielectric; the plane z = 0 
corresponds to the plasma boundary and the coordinates 
x, y denote the position of a point on it. Along the plasma 
boundary in the direction of the y axis propagates a sur
face electromagnetic wave of amplitude sufficient for the 
ionization of the gas. 

We shall assume that the penetration depth of the 
wave field into the plasma is much greater than the 
characteristic scales of electron diffusion and electron
concentration redistribution resulting from the heating 
of the electrons in the inhomogeneous field and that the 
lifetime of the charged particles is less than their time 
of diffusion from the skin layer. Then the dependence of 
the electron concentration on the wave field can be writ
ten in the form 

n=n./(IEIE."), 8/18IEI>O, (1.1) 

where Eo is some effective ionization field, the concrete 
form of which is determined by the ionization mechanism. 

An important particular case of the dependence (1.1) 
is the power ionization law: 

n=n.{ 1+, EI E. I m}, m>O. (1.2) 

Such a dependence can apprOXimate any ionization law in 
a finite interval of variation of IE I. 

We shall henceforth be interested in the propagation 
of the wave under conditions when the change in the wave 
amplitude over a wavelength as a result of the ionization 
of the plasma is small. Seeking the solution to the 
Maxwell equations in the form of a running-along the 
y axis-wave, ei ( hy -wt), we obtain for the field in the 
plasma the equations 
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Ij'" 
E.l.=-b, 

e 
(1.3) 

where we have introduced the following dimensionless 
quantities: 

b=HjE., E.l. =E,IE., E,,=E/E., 

~=zwlc, Ij=(hc/w)'. 

The dependence of the electron concentration on the 
amplitude of the wave field leads to a situation in which 
the permittivity of the plasma 

w ' 4rce'n 
e(E)=1---7-/(IEI'), w~'=--', 

w m. 
(1.4) 

determining the electromagnetic properties of the 
plasma, also becomes dependent on the field amplitude, 
thereby making the Eqs. (1.3) nonlinear. Because of this, 
the equation for the magnetic field, the solution of which 
can be reduced to the solution of the prOblem 

d [ 1 db] e(b)- --- =(Ij-e(b)]b 
d~ e(b) d~ , (1.5) 

w ' { 1 [ db )' db) =1- w: f -;z- Ijb' + (df' ]), (1.6) 

also turns out to be nonlinear. The Eq. (1.5) admits of 
the following solution: 

21j-e S· 
-e-b'-eIEI'- IEI'de=C, 

" 
(1.7) 

where El is the value of the permittivity of the plasma at 
the boundary, = O. Now solving (1.4) for IE 12: 

IEI'=f-'[ (1-8)/(1-8.) 1. 

where r 1 denotes the inverse of the function f, we obtain 
an expression determining the magnetic field of the 
wave as a function of the permittivity: 

21j-e b'_e/_'( 1-e)+ Sf-'( 1-8 )de=C. (1.8) 
e 1-e.., 1-e. 

Notice that the existence of this relation is not connected 
with the condition afla IE I > 0, which is characteristic of 
the ionization law. It is of a general character, and can 
be used not only for the analysis of the ionization
related nonlinearity for different ionization laws, but 
also for the analysis of any nonlinearity connected with 
the local dependence of the permittivity E of the plasma 
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on the modulus of the electric field IE I. For example, a 
particular form (of the dependence (1.8)) corresponding 
to the nonlinearity connected with the action on the 
plasma of the potential of the high-frequency forces of 
the surface-wave field was used in [2J. 

For a power-law ionization we have 

IE!'=[ (80-8)/(1-80) ]21m, 

and the dependence of the magnetic field on the permit
tivity, (1.8), can be expressed in terms of elementary 
functions: 

b- ------_ _ [8 28+m80 (80-e ) '1m] 'I,.' 
21'\-e 2+m 1-e, . (1.9) 

The constant of integration in (1.9) has been determined 
from the condition that the field vanish deep inside the 
plasma (Le., when E = Eo). 

USing (1.9), we can easily derive from (1.6) the fol
lowing expression determining the implicit dependence 
of the permittivity 10 on the coordinatel: : 

.. db [ (e,-e) 'Im ]' -'I, ~ = J- e' -- -1'\b'(e) de. 
• de 1-8, 

(1.10) 

The expressions (1.3), (1.9), and (1.10) completely deter
mine the field of the surface wave in the plasma. This 
field should be matched by the continuity conditions for 
the tangential components of the electric and magnetic 
fields to the wave field in the dielectric, which field can 
be found from the solution to the linear equations. The 
condition of continuity of the magnetic field at the plasma 
boundary determines the permittivity 101 at the plasma 
boundary and, consequently, the modulus of the electric 
field, as functions of the field amplitude B in the dielec
tric and the permittivity of the unperturbed plasma: 

8,=<p(B; eo). 

The continuity condition for the tangential component 
of the electric field can be written in the form 

1 ( db ) 1 , - - =-(1'\-8,)'·B. 
E, ~ t-o 8, 

(1.11) 

For the field that decreases as we go into the plasma, 
(db/dl:) /; = 0 < 0, and from (1.11) follows the inequality 
101102 < O. The dispersion equation for the. wave then has 
the following form: 

8,'8, [8, (m+2) - (28, +m8,) ] 
(1.12) 1'\ = 2(m+2)8,e,'-(e,'+8,') (28,+ m80) . 

For a wave of relatively small amplitude, which Virtually 
does not change the electron concentration of the plasma 
as compared to the initial concentration: 

_ ( C )' _ eoe, [1 2e,(1-eo) I I'] 
1'\ - vph - 8,+e, - 8,(e,+8,) (m+2) E, (1.13) 

where IEll = IE(O)I. In the zeroth approximation in the 
field, we obtain the well-known-in the linear theory
dispersion equation [3J • 

The second term on the right-hand side of (1.13) is 
always negative and, consequently, the ionization of the 
plasma by the wave field leads to a phase velocity that 
is greater than the phase velocity obtained in the linear 
theory for the same values of 102 and Eo. This was to be 
expected, since a change in the plasma permittivity . 
through an increase in the plasma-electron concentration 
is equivalent to a decrease in the wave frequency. In the 
case of a strong field, for which /10'1/ » 102, Eo, we have 
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FIG. I. Dependence of the critical frequency of the wave on the elec
tric-field intensity for different values of the exponent m in the ionization 
law: I) ni=O; 2) m=l; 3) m=2; 4) m=4. 

FIG. 2. Dependence of the phase velocity of the wave on frequency 
for different electric-field intensities for m=4: I) IE,12=5; 2) IE,12=20; 
3) IE,12=50. 

1) ~ lOa, and the phase velocity of the wave tends to the 
velOCity of light in the dielectric . 

The existence domain for the surface waves is deter
mined by the requirement that the wave be attenuated 
inside the dielectric, Le., that 102 < 1) (E) < 00. The mini
mum initial electron concentration (nO)m at which the 
propagation of surface waves in the plasma becomes 
possible and, consequently, the maximum wave frequency 
wM are determined by the equation 1)-1(E) = 0, and are 
functions of the wave amplitude: 

[ n, ] -, [00' ] . m.w' 
- = -, =F(E), n,=-. -,' 
nc m (i).... M 4ne. 

For a wave of small amplitude, we obtain 

e,=-8,+ 2 (1+e,) IE,I' 
m+2 ' 

(1.14) 

(1.15) 

Thus, the ionization of the plasma by the wave leads to a 
shift of the critical frequency [w/woolM toward the region 
of higher frequencies, and leads, as it were, to a 
"transparentization" of the plasma at higher frequencies. 

In Fig. 1 we show the dependence of the square of the 
critical wave frequency, normalized to the plasma fre
quency of the unperturbed plasma woo' on the electric
field intenSity at the boundary for the case 102 = 1 
(vacuum) for different values of the exponent m in the 
ionization law. The curve 1 corresponds to the depend
ence [w 2/w!,]M = 'la, which is well-known in the linear 
theory. 

To the existence domain for the surface waves corre
sponds the region 

O<w'/w~'<F(E) 

below the corresponding curve. It can be seen that as 
the amplitude of the wave increases, the existence domain 
expands toward the region of higher frequencies, the ex
tent of the expansion increasing with the exponent m. 
This means that, in contrast to a weak wave, an ionizing 
wave can propagate in a plasma with a relatively low 
initial electron concentration: no < 2nc ' However, its 
propagation is possible only when its amplitude exceeds 
some threshold value, determined by the dependence 
(1.14), Le., by the curves 2, 3, and 4 in Fig. 1. The 
threshold value of the amplitude decreases sharply as 
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the wave frequency tends to the boundary of the usual 
transparency region for the plasma w = w //2. Under 
these conditions all the nonlinear effects ;'ill be mani
fested in relatively weak fields. 

Figure 2 shows the frequency dependence of the phase 
velocity of the wave for a number of values of the ampli
tude in the case when the exponent in the ionization law 
m = 4. Near the critical frequency the phase velocity 
increases very rapidly with decreasing frequency; the 
increase of the amplitude of a wave of fixed frequency 
entails the increase of the phase velocity. The wave can 
be effectively slowed down only when its amplitude is 
close to the threshold value for the given frequency. 
These results are in qualitative agreement with the ex
perimental results[4,5J. 

Analysis of the dispersion curves for different values 
of the exponent m in the ionization law and comparison 
with the preceding results show that the influence of m 
on the dispersion characteristics of the wave is qualita
tively equivalent to the influence of the corresponding 
variation of the wave amplitude at fixed m. 

2. According to (1.3) and (1.9), the components of the 
electric field in the plasma as functions of the permit
tivity E are determined by the following formulas: 

E.L=~[_e_2e+me. ( e.-e )'lm]'I. 
e 21']-e m+2 1-e 

(2.1) 
i [ 2 ( e.-e) '/m ,] 'I, E II =- e -- -1']b . 
e I 1-£. 

The dependence of the fields on the coordinatel: is de
termined through E by the formula (1.10). As can be 
seen from these formulas, the behavior of the fields in 
the plasma essentially depends on the value of the per
mittivity Eo of the unperturbed plasma and on the expon
ent m. Below we shall consider the case Eo < 0 in detaiL 
The permittivity E will then be negative everywhere in 
the plasma: El:5 E :5 Eo < O. It is not difficult to verify 
that in this case Ob/OE < 0, and the magnetic field in the 
plasma decreases with increasing E from B at the bound
ary E = El to zero at E = Eo. 

The value of the permittivity at the plasma boundary 
decreases monotonically with increaSing wave amplitude, 
i.e., OE1/oB < 0, while the electron concentration at the 
plasma boundary monotonically increases. In the limit
ing case of weak fields, E "'" Eo, IE - Eol « I Eol, and from 
(1. 9), (1.10), and (2.1) we obtain 

[ 21'].-e ] mf2 
e=e.-(eo-e,)exp[-m(1']o-eo)"·~], e,=eo-(l-eo) --B' , 

. 802 

b=Bexp [-(1'].-e.)"·~], 

where 170 = E2IEol/(IEol- E2)' The penetration depth of the 
field into the plasma 

/)=/).=k-' [( I e. l-e,)/1 e. I']'" 

coincides in this approximation with the penetration 
depth 1>0 in the linear theory. These results indicate that 
the field in sufficiently deep layers of the plasma for any 
amplitude of the wave at the boundary will always fall off 
exponentially. 

It is worth noting that the nature of the increase of 
the permittivity and, consequently, the decrease of the 
electron concentration as we go into the plasma depend 
on the exponent m in the ionization law; for m > 1 the 
electron concentration falls off more rapidly than the 
field, while for m < 1 it falls off more slowly. For 
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m = 1 the electron concentration and the field falloff 
at the same rate. 

Allowance for the next corrections in the field leads 
to the following expression for the penetration depth: 

/)=/) {1+[2e"-(m+2)(e,+eo)'] (l-e,)Bm [ e,-e. ]m/'} (22) 
2(m+2) (le.l-e,)eo' eo(e,+e.) '. 

For IEol < [1 + (2/(m + 2))1I'2]E2 the second term in the 
brackets is positive, and the ionization of the plasma by 
the wave field leads to an increase in the penetration 
depth as compared to 1>0. For IEol > [1 + (2/(m + 2))1/2]E2 
the sign of the second term in the brackets changes, and 
the wave field decreases 1>. At the point 

fe.I=[1+(2(m+2»)"'je, (2.3) 

the correction, due to the ionization of the plasma by the 
wave field, to the skin thickness vanishes. 

Since for m F 0, I Eol < 2E2, the value of I Eol at which 
the penetration depth 1> 0 in the linear theory has its maxi
mum value, the ionization of the plasma by the field will 
lead to a shift of the maximum of 1>, as compared to the 
maximum of 1> 0, toward the region of smaller I Eol values 
and to the flattening of the maximum. In this case there 
will be observed near the limiting value of I Eol a sharper 
increase in the skin thickness 1> in comparison with 1>0. 
Beyond the maximum, the ionization of the plasma by the 
wave field will, as compared to what obtains in the linear 
theory, lead to a decrease in the skin thickness. 

At sufficiently large wave amplitudes, when IE I » I Eol, 
the field near the plasma surface can be assumed to be 
independent of the parameters of the unperturbed plasma: 

b_leI Cm +2l!>m, E.L_leIC'-ml/'m, EIl-lel'lm. (2.4) 

However, the behavior of the fields essentially depends 
on the value of the exponent m. At small values of m 
both components of the electric field behave aimost iden
tic ally as lEI increases: El ~ E" ~ IEI1/m; form »2, 
E 1 decreases, while E" tends to some value not depend
ing on the wave amplitude. For m = 2, Ei ~ const and 
does not depend on the wave amplitude, while E" ~ IEI1I2 
and increases. 

In contrast to E Ii' for which the variation of the ex
ponent m affects only the growth rate, the transverse 
component of the electric field turns out to be more 
sensitive to changes in m: As we pass through the point 
m = 2, this component changes from being an increaSing 
to being a decreasing function. However, as in the linear 
theory, the longitudinal component of the field always 
predominates over the transverse component. 

The electron concentration at the plasma boundary 
increases with increaSing amplitude of the wave (of en
ergy W): 

(2.5) 

Since m/(m + 2) ::0:: 1, this dependence is relatively weak 
(being a square-root dependence), and only when m »2 
does it approach a linear dependence. This seemingly 
unexpected result is connected with the nonlinearity of 
the problem and is characteristic not only of a surface 
wave, but also of a strictly transverse field penetrating 
the plasma [6J. Near the critical frequency, where vph 
~ 0 and, consequently, 17 ~ 00, 
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(2.6) 

where EM = E (W = wM)' As was to be expected, the wave 
field in this case degenerates into an electrostatic field. 

3. To investigate the spatial structure of the wave for 
any wave amplitude, let us consider the effective pene
tration depth of the field into the plasma [7J 

1 -
6= kBSb(~)d~, 

o 

which, after going over to integration over E, can be 
written as follows: 

1 S" d(b') [( e,-e ) '1m ] -'I. 6=- __ 2-' e' --. -T]b' de. 
kB de 1-e, (3.1) 

" 

In the limiting case of a weak field, from this formula 
follow all the preceding results pertaining to the penetra
tion depth of the field into the plasma. 

The effective penetration depth of the field into the 
dielectric is equal to 

1l,=1/k(T]-e,)"'. 

Near the critical frequency, oa ~ 0 ~ 11-1 /a - 0, and the 
wave field shrinks toward the plasma-dielectric inter
face from both sides. 

Let us consider the derivative of the penetration depth 
of the field into the plasma with respect to the wave 
amplitude: 

(3.2) 

Since 

(3.3) 

and the phase velocity of the wave increases with in
creasing amplitude, i.e., a11/aB ~ 0, the second term on 
the right-hand side of (3.2) is positive. As in the linear 
theory, the penetration depth of the field into the plasma 
behaves in a nonmonotonic fashion as IE I and, conse
quently, the wave amplitude increase. 

Indeed, near the threshold value of the amplitude for 
a given frequency, 11 - 00 and, as follows from (3.3), 
ab/a11 :::; -11 -3/a. Since the phase velocity in this case 
increases rapidly with increasing wave amplitude, the 
absolute value of the derivative a11/aB is large, but fin
ite. The second term on the right-hand side of (3.2) 
predominates over the first, and the derivative ao/aB 
tends to zero, remaining positive all the time. 

For a large wave amplitude the phase velocity tends 
to the velocity of light in the dielectric, i.e., 11 - lOa and 
a 11/aB :::; 0. In this case the first term on the right-hand 
side of (3.2) plays the dominant role, and the penetration 
depth of the field into the plasma decreases with in
creaSing wave amplitude: 

ll';"constlB-MB. (3.4) 

This result is interesting still in that it indicates the 
existence at high fields of a universal dependence of the 
penetration depth 0 on the wave amplitude. On the value 
of the exponent m will depend only the quantity d and the 
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FIG. 3. Dependence of the pene
tration depth of the field into the 

o/Ao 
0.08 

plasma on the electric-field intensity OOq J 
form=l: 1)-y=1;2)-y=1.2;3)-y= . 
1.9. O.OZ 

J 

0~LZ~_q~-5~~8--~10~ 
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value of the minimum amplitude starting from which this 
dependence is valid. 

In Fig. 3 we show the dependence of the penetration 
depth of the field into the plasma, divided by the wave
length Ao in vacuo, on the amplitude of the electric field 
at the plasma boundary for different values of the param
eter y = w!,/w a• The exponent in the ionization law m = 1 
and lOa = 1. To a change in the parameter y corresponds 
either a change in the wave frequency for a given initial 
electron concentration no, or a change in the initial elec
tron concentration at a fixed frequency. The curves 
1, 2, and 3, which correspond to different values of the 
parameter y, are shifted relative to each other, owing to 
the difference in the threshold fields. As y approaches 
the usual region of transparency of the plasma, i.e., for 
y ~ 2, the threshold field, as was to be expected, de
creases. The flattening of the maxima in the curves 
corresponding to higher threshold fields is clearly dis
cernible. An explanation of this fact has already been 
given in Sec. 2. 

Further, it can be seen from a comparison of the 
curves that as we go over to a less dense unperturbed 
plasma the value of the maximum decreases; beyond the 
maximum in this case is observed a slower decrease 
of 0 with increasing field. To explain these results, let 
us note that the propagation of a wave in a less dense 
unperturbed plasma requires a higher threshold field 
and, consequently, a higher electron concentration at the 
plasma boundary. This leads to a decrease in the pene
tration depth of the field in the region of the maximum, 
where the permittivity E1 of the plasma at the boundary 
is comparable to the permittivity of the second medium, 
and the electron concentration in the plasma begins to 
determine the quantity O. In the region beyond the maxi
mum, for one and the same amplitude of the field at the 
boundary, a less dense unperturbed plasma has a lower 
electron concentration at the boundary, which creates 
more favorable conditions for the penetration of the 
field deep into the plasma. 

The penetration depth of the field into the dielectric 
monotonically increases with increasing wave amplitude: 

all, 1 aT] 
afj= - 2(T]-e,)" 88;;>0. 

Thus, for a sufficiently large wave amplitude the wave 
field is expelled from the plasma and the wave propa
gates primarily along the dielectric. The electric field 
of the wave in the dielectric then becomes a transverse 
field. In the plasma, on the other hand, as was shown 
earlier, the longitudinal component of the electric field 
predominates. 

4. The energy flux density in the plasma averaged 
over the oscillation period is equal to 

~ • CT]'/' b' 
S=Re-[ExH ]=---E.'--

Bn 4n lei' 
(4.1) 
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As in the case of a homogeneous plasma, this quantity is 
negative and vanishes near the critical frequency: 
S "'" T}-1/2 - O. The energy flux decreases together with 
the wave field as we go into the plasma. For a relatively 
small wave amplitude, or at pOints sufficiently far from 
the boundary, this decrease will be exponential. 

For a sufficiently large wave amplitude 

and the energy flux density is equal to 

S""- (cl4n)Eo'e,"'1 el"m. 

(4.2) 

(4.3) 

It can be seen that, in contrast to what is obtained in the 
linear theory, the energy flux density in the plasma does 
not decrease with increasing lEI, but increases. 

It is worth noting that as the exponent m in the ioniza
tion law increases, the energy flux density tends to some 
limit 

S,=- (cl4n)E,'e;", (4.4) 

not depending on the wave amplitude and determined only 
by the effective ionization field and the electric proper
ties of the dielectric. Such an unusual behavior of the 
energy flux denSity is connected with the dependence of 
the electron concentration in the plasma on the wave 
field. As the amplitude of the wave in the plasma in
creases, the magnetic field and the electron concentra
tion· increase. The increase, however, of the electron 
concentration leads, in its turn, to the increase of the 
modulus I E I and, consequently, to the decrease in the 
case when m > 2 of the transverse component of the 
electric field E l' For a sufficiently large wave ampli
tude the growth of the magnetic field is compensated by 
the decrease of E 1.0 which explains the appearance of 
some wave-amplitude-independent limiting value of the 
energy flux density. In the m :s:: 2 case such a compensa
tion does not occur, and the energy flux increases with 
increasing I E I. 

For a sufficiently large wave amplitude the total en
ergy flux in the plasma 

1 • 
S=-SSd~ 

k , 

can be estimated with the aid of (3.4) as follows: 

S "" S I :~o.s "" - (c/ 4n) ED 'e, 'I. leI ('-ml/m Ll. (4.5) 

For m > 2 the total energy flux in the plasma decreases 
with increasing amplitude, while for m < 2 it increases. 
For m = 2 the total energy flux in the plasma does not 
depend on the wave amplitude: 

(4.6) 

The increase of the energy flux density in this case is 
exactly compensated by the decrease of the penetration 
depth of the field into the plasma. 

In conclusion, let us estimate that interval of the 
plasma and wave parameters in which the assumptions 
made above that we can neglect the collision rate, diffu
sion, and the redistribution of the concentration of the 
plasma electrons as a result of the heating of the plasma 
in the inhomogeneous field are valid. These assumptions 
can be reduced to the following inequalities [8J : 

(4.7) 
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where 1 is the mean free path of the electron, Da is the 
coefficient of ambipolar diffusion, 2me/M is twice the 
ratio of the electron mass to the atom mass, p is the 
coefficient of volume recombination, and I) is the pene
tration depth of the field into the plasma. 

Let us give an example when these inequalities are 
not inconsistent. According to [9J , the electron -neutral 
collision rates in the plasmas of such inert gases as Ar 
and Ne at an electron temperature Te ~ 1-3 eY can be 
estimated from the formula 

'V (sec-I) ",,3·lO'p (Torr). 

The coefficient of ambipolar diffusion, the mean free 
path, and the coefficient of dissociative recombination 
characteristic of the inert gases [10J are equal to 

Da(cm 2/sec) ""10'/p (Torr), l(cm) ""'lO-'/p (Torr), 

For a wave of frequency w = 6 X 1010 sec-1 (" = 3 cm), the 
inequalities (4.7) are always fulfilled in the pressure 
range 10:s:: p (Torr) :s:: 20 for a plasma of electron con
centration 1010 cm -3 and above, with the exception of the 
case when the surface wave propagates under conditions 
of very strong retardation. 

The authors are grateful to Yu. G. Gurevich and A. P. 
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comments and to E. A. Kaner for his attention to the 
work. 
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