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We study resonance nonlinear wave interactions in which negative energy waves take part in 
nonequilibrium inhomogeneous media. Th~ inhomogeneity of the medium leads to a detuning of the phase 
synchronism of the waves and may tum out to be a factor suppressing the explosive instability. We obtain 
criteria for the sUPIJression of the explosive instability for various inhomogeneities. including small-scale 
ones. We obtain for a strongly inhomogeneous medium a solution with an oscillatory character. We study 
especially the regions near points where the phase synchronism is satisfied exactly. Depending on the phase 
relation in these regions, there occurs an appreciable growth in the intensities of the waves or, on the 
contrary, an efficient suppression of the instability. We show that the explosive instability may develop at 
definite phase relations also in a strongly inhomogeneous medium and the development of the explosive 
instability then has a stepwise character while the development length of the "explosion" is increased by 
the inhomogeneity. We consider examples of the non-linear interaction in a nonequilibrium inhomogeneous 
plasma. 

PACS numbers: 52.35.Gq, 52.35.En 

1. INTRODUCTION 

Nonequilibrium media have interesting properties 
which are connected with the possibility that in such 
media negative-energy waves may exist. [lJ Media in 
which negative-energy waves exist include plasma-beam 
systems,L2-4] a semiconducting and magnetoactive 
plasma with inhomogeneities of a well-defined form, [5-7J 

and a plasma with an admixture of particles with inver­
sion of level populatiC'ns. [8] Interactions in a system of 
particles and waves, amongst which are negative-energy 
waves, is often accompanied by a removal of energy 
from negative-energy modes with the simultaneous in­
crease of the amplitude of the latter, which leads to an 
instability. It is interesting that resonance three-wave 
interactions involving negative-energy waves develop. 
Depending on the relation between the frequencies in the 
system of waves the nonlinear interaction process can 
then proceed in two ways. If the negative-energy wave 
has the lowest frequency, there occurs a strong exchange 
of energy between the low-frequency and the high-fre­
quency waves, i.e., an effective generation of high­
frequency waves is possible in an nonequilibrium medium 
through low-frequency pumping. In the opposite case the 
nonlinear interaction leads to the simultaneous increase 
in the amplitudes of all three waves. 

In the simplest models [7,9] which describe such an 
interaction one observes that the amplitudes of all inter­
acting waves increase to infinity after a finite time-the 
so-called explosive instability. Of course, depending on 
the actual physical situation, the model must be supple­
mented by factors which remove this singularity. For 
instance, the linear damping of the waves leads to a 
strong excitation of the explosive instability. [10] If the 
oscillations reach appreciable intensities as a result of 
the nonlinear interaction it becomes extremely important 
to take into account the reaction of the oscillations on the 
properties of the medium. The influence of such kind of 
factors on the development of the explosive instability in 
the framework of the weak-nonlinearity approximation 
has been considered for very different situations (see, 
e.g., [11]) 1vhen, as a rule, the explosive instability is 
suppressed and its further development is periodic or 
quasi -periodic in nature with a characteristic amplitude 
that depends on the stabilizing parameter. 
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In the present paper we consider another situation 
when the wave amplitudes do not increase to such values 
that it becomes important to take into account higher 
order nonlinearity while the stabilization and the whole 
development of the explosive instability is determined by 
the inhomogeneity of the medium. The explosive insta­
bility, as the result of resonance interaction of waves, 
is extremely sensitive to the detuning of the phase 
synchronism of the waves: Rabinovich and Reutov[ll] 
have shown that for not too high initial wave intensities 
even a small constant detuning stabilizes the explosive 
instability and establishes a periodic regime. In this 
connection it is qualitatively clear that the inhomogeneity 
of the medium will first of all lead to a detuning of the 
wave phase synchronism with a transfer of oscillations 
from the region where they interact efficiently and, as a 
result, to a suppression of the explosive instability. [12] 

One must note that formally such a problem leads to 
the study of a nonlinear Hamiltonian system under the 
influence of an external force: in that case the motion of 
the system is infinite when there is no external force so 
that even taking into account the influence of a "smooth" 
inhomogeneity causes well-defined difficulties. [12] In 
the present paper we give a rather complete analysis of 
such a problem for different forms of inhomogeneities 
using the approach developed earlier. [13,14] Below we 
obtain a solution for the case of a strongly inhomogene­
ous medium. The nature of this solution is appreciably 
different near points where the phase synchronism holds 
exactly and far away from those points. Near the phase 
synchronism points a peculiar phase effect is displayed: 
depending on the phase with which the solution approaches 
such a point the region near the latter turns out to be a 
region of strong instability or, to the contrary, a region 
of strong stabilization of the explosive instability. The 
development of the "explosion" turns out to be possible 
for well-defined conditions and in strongly inhomogene­
ous media where there are only narrow isolated regions 
of wave phase synchronism. The nature of the singular­
ity of the solution is then independent of the form of the 
inhomogeneity, for instance, also if it is random. We 
obtain the criteria for the suppression of the explosive 
instability for different scales of inhomogeneities, for 
instance, also when it is small-scale. In conclusion we 
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discuss some examples of nonlinear wave interaction in 
a nonequilibrium inhomogeneous plasma. 

2. INTEGRALS OF MOTION. NATURE OF 
SINGULARITIES IN INHOMOGENEOUS MEDIA 

If we excite in a stationary manner a negative-energy 
wave at the boundary of a nonlinear nonequilibrium med­
ium' the development of the nonlinear interaction will 
have the stationary (a/at = 0) nature of a spatial explo­
sion (see also [11,12]). Following this formulation we 
shall consider in what follows the development of this 
instability in inhomogeneous media. In a weakly non­
linear and weakly inhomogeneous medium 
(kL » 1, kl »1), each of the interacting waves will 
have the form of a narrow packet in k-space (the z-axis 
is at right angles to the boundary of the nonlinear med­
ium): 

aj(z, t) exp {i(CiI,t-k;z)+i<pJ(z,t)}. (1) 

Here aj(z, t)exp{i<pj(Z' t)} are the slowly varying com­
plex wave amplitudes; L and I are characteristic dimen­
sions of the inhomogeneity and of the nonlinear interac­
tion, Wj and kj are the frequencies and wave vectors of 

the waves and satisfy the phase synchronism conditions: 

(2) 

The wave with frequency Wl is the negative-energy wave. 

We assume also, in agreement with all what has been 
said above, that the damping or growth rates of the 
waves are small and that the properties of the medium 
depend only on z; we then get the following set of equa­
tions for the moduli of the complex wave amplitudes 
aj (z) and their relative phase difference <l>(z) = <P2(Z) 

+ <p3(Z) - <Pl(Z): 
00, 

V,-=~a2a,cosl]), 
dz 

da2 

V2-= ~a"a,cos 1]), 
dz 

da, 
V, a;- = ~a,a, cos 1]), 

dl]) =M(z)_~[·a,a, +~+~]sinl]). 
dz V,a, V2(l, V,a, 

(3) 

Here f3 is the coefficient of the nonlinear wave interac­
tion, Vj are the group velocities of the waves (we shall 
assume that the group velocities of the waves have the 
same sign Vj > 0), and the quantity ~k(z) determines the 
detuning of the phase synchronism which is connected 
with the inhomogeneity of the medium. 

The set (3) has integrals of motion (of the kind of the 
Manley-Rowe relations in the theory of parametric 
amplifiers) with the phySical meaning of the simultaneous 
growth or damping of the intensities of all three waves: 

V1nl- VZn2=m l" V1nl- V3nS=m2, 

nj(z)=a;'(z). 
(4) 

After introducing the dimensionless variables 

x=z/l, n(x)=n,(xl)/n,(O), x(x)=I6.k(xl). 

r, =m,/V.n, (0), r,=m'/V2n, (0), J= (V, V,) 'I'/~n,'/' (0) 
(5) 

and using Eqs. (4) we can reduce the set of Eqs. (3) to a 
Hamiltonian system of two equations for the relative in­
tensity of the waves n(x) with negative energy and the 
relative phase difference of the waves <l>(x): 

dn a~ 
'dx = 2[n(n-r,) (n-r,) pcos I]) ~~, 
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dl]) [(,(n~r.) (r-r2) )'" (n(n-r,) )'" -=x(x)- + --'-
~ n n-~ 

( n(n-r2) )'''] . a~ + -, -- sIllI])~--. 
n-r, an 

The boundary conditions have the form 

n(0)=1, 1])(0)=1])0, r",";;1. 

(6) 

(7) 

The Hamiltonian £(n, <l» of the set of Eqs. (6) is the 
function: [12J 

~=2sinl])[n(n-r,) (n-r,) J"'-xn. (8) 

The set of Eqs. (6) has also the following integral of mo­
tion: 

, S" da r,=2 sin I]) [n (n-r,) (n-r2) J'" - dx, x (x,) a:;;- , (9) 
, 

where the constant ro is determined by the boundary 
conditions (7). We note that the Hamiltonian is connected 
with the integral ro as follows: 

• dx 
~=r, - S dx, n(x,)­

dx, , 
(10) 

and is a rigorous integral of motion only in a medium 
with a constant detuning of the phase synchronism. 

We use (9) and substitute sin <l> into the second of Eqs. 
(6) and integrate the resultant equation by parts, USing 
the boundary conditions (7). Substituting the integral 
expression for .(x) obtained in this way into the first of 
Eqs. (6) we reduce the set (6) to a single integro-differ­
ential equation for n(x): 

~: = 2[n(n-r,) (n-r,) p' cos [ 1]), + J dx, x(x,) 
, 

(11) 

l' 1 1 1 .. dn 
--Sdx, (--+-+-) (r,+S dx,x(x,)-)] . 

2 n n-r, n-r2 dx, , , 

The argument of the cosine is the phase <l>(x). 

By studying (9) and (11) near the singularity we can 
show that if the explosive instability develops in an in­
homogeneous medium the form of the singularity for the 
relative wave intensity n(x) is the same as in a homo­
geneous medium (including also the case of random in­
homogeneities): 

n(x)-(x-xo)-', Ix-xo l<t:1. 

This fact follows at once from expanding (9) and (11) 
near the Singularity Xo, as sin <l>(xo) is independent of the 
form of the inhomogeneity. 

3. STRONG INHOMOGENEITY 

We shall take an inhomogeneity to be a strong one in 
the case when the detuning of the phase synchronism due 
to the inhomogeneity of the medium K (x) leads to an ap­
preciable advance of the phase <l>(x), which is the argu­
ment of the cosine in Eq. (11), over lengths of the order 
of l. The asymptotic solution of Eq. (11) turns out for 
that case to be quite clear and is also very useful for a 
qualitative analysis for the problem in the general case. 
We restrict our considerations to the case where Eq. (1) 
together with the boundary conditions is of the form 

dn [S 3 S dx, S·· dn ] -=2n"'cos dx,x(x,)-- -- dX2-X(X2) , 
dx 2 n (x,) dx, 

(12) 

, " 
f,=I]),=r,=r2=0, nCO) =1. (13) 

It is convenient to look for n(x) in the form 
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n (x) ""'[ 1- j dx, cos (j dx,x (x,) + II (x,) ) r, (14) 
o 0 

when the phase advance II (x) satisfies the following equa­
tion: 

3 • dx, .. dn 
ll(x)"", --I-I dx,x(x,)-, (15) 

2 0 n(x,), dx, 

where we must substitute expression (14) for n(x). The 
physical meaning of using Eqs. (14) and (15) to introduce 
the new unknown ll(x) instead of n(x) consists of the fol­
lowing: When K(X) is large the phase advance ll(x) turns 
out to be a slowly varying function and Eq. (14) is in that 
case the solution where one can easily estimate the in­
tegral in it using the stationary phase method. 

We first of all consider the solution (14), (15) in the 
region where there are no stationary phase pOints. The 
main contribution to expression (14) is then connected 
with the integration limits, when the conditions 

Jx-'I<1, ,d;:', < 1 (16) 

are satisfied, and the solution takes the form 

l' -, 
n(x)"'[1- x(x) sin (Sx(x,)dx,+ll(X) )], (17) 

o 

Expression (18) shows that ll(x) leading to a slow phase 
advance must be taken into account in (17) if we are in­
terested in the exact phase of the solution, since ll(x) can 
give a phase advance of the order of unity over apprec­
iable lengths. 

We now turn to the form of the solution near the 
stationary-phase pOints Xc for which 

dll 
x(x')""'-d;"(x,)""o. (19) 

The stationary-phase pOints are the pOints where, as we 
see from (19), the phase synchronism conditions are 
satisfied exactly. When the inequalities 

, dlx'I-'h .,. 
--- <1 

dx ' 
, dx 

x ,""-(x,) 
dx 

(20) 

hold, the expression for the integral occurring in Eq. 
(14) which is asymptotic in the parameters (20) can in 
the region near the point x = Xc be obtained by the sta­
tionary phase method. Let ~c == ~(xc) be the phase dif­
ference with which the interacting waves arrive in the 
stationary phase point. 

Since estimates show that the contribution of the 
quantity ll(x) to the solution in the region near x I'::! Xc is 
small, the approximate solution takes in that region the 
form 

n(x) "'[1-",(x)j-', Ix-x,I";(jx'I)-\ (21) 

",(x)"", (1:'1 )",cos«J,[ 1+sign(x-x,)C ((~ f'x-x,,)] (22) 

--} C:,J" sign (x') sin «J, [ 1+sign(x-x,)S (( I~'I f' (x-x,) )] 

Here C(x) and S(x) are Fresnel integrals, defined by the 
equations 

2 1/ % 2 -II,' x 

C(x)= (ri)' !dt cos t', S(x)= (-;-) I dtsint'. 

The nature of the solution (21), (22) is essentially de­
termined by the sign of the function lJi (x), which deter-
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mines whether the region close to Xc turns out to be a 
region of strong stability or, on the other hand, a region 
in which the wave intensity increases significantly. The 
maximum value lJi m is easily found from (22): 

( n )'1. 
", .. = m [2 cos «J,-sign(x'Ysin«J,j. (23) 

The sign of lJi m, and hence the nature of the solution, is 
determined by the magnitude of ~c in (23). For instance, 
when sign K' = -1 we have 

sign ", .. =1, -arctg 2<<<J,<n-arctg 2, (24) 

sign ", .. =-1, n-arctg 2<$,<2n-arctg 2. (25) 

Equations (21) to (23) show that even in a strongly in­
homogeneous medium the explosive instability can de­
velop near pOints of exact phase synchronism. The con­
dition for the suppression of the instability near these 
pOints is the following: 

3(nl I x't ),"<1, sign "'m=1. (26) 

It is clear from (17) that far from the stationary 
phase pOints in strongly inhomogeneous media the solu­
tion is oscillating in nature with small periods and 
amplitudes while oscillations of the intenSity occur near 
some average value which is determined by the contribu­
tion from the preceding stationary phase points to the 
solution. The solution, after paSSing through p stationary­
phase pOints, will thus take the form 

p 1 % , ~2 

n(x)=[ 1-1:"'1- x(x Sin(S x (x,)dx,+ll(x) )], (27) 
J=1 ), 0 

where lJij is the contribution to the solution from the j-th 
stationary-phase point and is given by Eq. (23). The 
solution (27) shOWs that even when the local stability 

p 
condition (26) is satisfied a build-up E l/Jj with positive 

j=l 
sign may occur, and as a result the explosive instability 
may develop at some large distance from entering the 
nonlinear medium. 

A numerical analysis of the problem (12), (13) was 
made on an electronic computer and it showed that the 
analytical results given here describe the singularities 
of the solution for possible situations very well. For 
instance, one can clearly see in Fig. 1 the regions of fast 
oscillations of the solution and also the narrow regions 
near the stationary phase pOints Xc = 1T/2, 31T/2. Curves 
1 and 2 demonstrate the phase effect described by Eqs. 
(21) to (23) where curve 2 corresponds to the stable case 
near the stationary-phase points, sign l/Jm = -1, and the 
phase ~c incident onto the interval is given by inequali­
ties (25). The curve 1, on the other hand, corresponds 
to the case sign l/Jm = 1 and as a result to the develop­
ment, ultimately, of the explosive instability. 

FIG. 1. Numerical solution of (12), 
(13) for ,,(x) = a cos bx. 1) a = 40; 2) 
a = 35.8. 
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4. STABILIZATION CRITERIA 

We shall distinguish between local stability of the 
solution n(x) at lengths of the order l, and the asymptotic 
stability as x - 00 of the solution at large distances. 
Equation (27) shows that a locally stable solution (see 
(26)) can, nonetheless, turn out to be unstable at suffi­
ciently large distances. We must note that the problem 
of the asymptotic stability (as x - 00) of the solution n(x) 
is, apparently, in the general case rather complicated, 
since it is clear from the considerations given above that 
the stability may depend on various detailed characteris­
tics of the solution such as the phase <l>c' At the same 
time, of most practical interest is the consideration of 
stability over distances of the order l. 

We restrict ourselves in what follows to a study of 
the local stability. We turn to Eq, (11). A sufficient con­
dition for the stabilization of the instability at a dimen­
sionless distance of the order unity is the occurrence of 
a maximum in the function n(x), or 

dn 1 - =0 
dx %,",,1 ' 

d'n -I <0 dx"l. x""i • 
(28) 

One can show that the stabilization criterion (28) depends 
weakly on the initial conditions ro, <1>0, rlo and r2. When 
ro = <1>0 = r1 = r2 = 0, Eqs. (28) become 

, 3 I d x. d Is x(x,)dX,--S _XI-S dx,x(x')~1 ;;.;-, 
o 2 " n(x,) " dx, 2 

-x (1) +3n'" (1) <0. 

(29) 

(30) 

The upper limit of the integrals in Eq. (29) is unity as 
we consider the boundary of the stability region and the 
maximum of the solution lies close to unity. The mean­
ing of the first condition (29) is that it is necessary for 
the stabilization of an instability that the inhomogeneity 
of the medium leads to an appreciable advance in the 
phase difference of the waves. The second condition (30) 
leads to the important conclusion that the maximum 
value nmax of a stable solution in an inhomogeneous 
medium can not be too large: 

(31) 

One must, of course, choose in each actual case the 
stronger of the inequalities (29) and (30). We turn to the 
condition (29). The unknown solution n(x) occurs in the 
integral in (29). Since n(x) increases near the boundary 
of the stability to large values, we can obtain a rather 
good estimate of the boundary of the stability region by 
substituting in (29) the unperturbed solution n(x) 
= (1-xr2, For the case K(X) = K'X we get in this way 
from (29) the follOWing condition for the suppression of 
the explosive instability: 

x'>3n. (32) 

The results of a numerical analysis (see Fig. 2) show 
that the solution turns out to be stable when 

x'>10.5. (33) 

we consider the case of a small-scale inhomogeneity 

L/I""b- '«.1, (34) 

where L is the scale of the inhomogeneity. 

Let K(X) = af(bx), where f(bx) is a periodic alternating 
function of period L. It is clear that the first integral in 
(29) in that case gives a contribution of the order a/b. 
An estimate shows that the second integral also makes a 
contribution of the same order of magnitude, and the 
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FIG. 2. Numerical solution of (12), 
(13) for ,,(x) = ,,'x. I) ,,' = 10.5; 2) 
,,' = 10.7; 3) ,,' = 18. 
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FIG. 3 FIG. 4 

FIG. 3. ,,(x) = a cos bx. 0) parameters corresponding to stable solu­
tions; +) parameters corresponding to unstable solutions. 

FIG. 4. Curve I) ,,(x) = ax for 0 < x < 0.8 and ,,(x) = 0 for x;;' 0.8; 
a = 20. Curves 2 and 3) ,,(x) = a/x2 for x;;' 0.2 and ,,(x) = 0 for 0 < x 
< 0.2. a = 20 for curve 2, a = 25 for curve 3. 

condition for the stabilization of the solution takes in 
that case the form 

aa/b=aaL/l';;<n/2, (35) 

where il' is a numerical coefficient of the order of unity. 
The diagram showing the stability of the solution for the 
particular case K (x) = a cos bx as function of the param­
eters a and b illustrates the stability criterion (35) well 
(see Fig. 3). In conclusion we note that the result of the 
passage of interacting waves through a layer of a strongly 
inhomogeneous medium will be an increase in the length 
1 of the explosive instability to a quantity of the order of 
the dimensions of that layer. The solution can, generally 
speaking, then be of the form of growing intensity oscil­
lations with a subsequent development of the explosion 
(see Fig. 4). 

5. SMOOTH INHOMOGENEITY 

We make a few remarks that refer mainly to the reg­
ion where the smooth-inhomogeneity approximation is 
applicable; the basic results for this case were obtained 
by Davydova and Oraevskil. [12J If we neglect in (12) in 
the cosine the quantity 

3 • dx," dx 
-S-Sdxin-2 n(x,) dx, ' 

o 0 

(36) 

we get the solution of the problem (12), (13) for K (0) = 0 
for a smooth inhomogeneity: [12J 

:Ie 1 :CI 2 

n(x)= [ 1- S dx,cos (z- S dx,x(x,) ) r ' (37) 
o 0 
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which differs formally from (14) for a strong inhomo­
geneity by the coefficient % and the absence of the phase 
n (x). The Hamiltonian fin (10) is then assumed to be 
an integral of motion; this is valid when we can neglect 
the quantity 

(38) 

which is equivalent to dropping the phase advance (36). 

For the particular case K(X) = K'X the stabilization 
criterion following from (37) has the form 

Ix'I>2n. (39) 

The difference between (39) and (32), (33) is caused by 
the fact that in the stable case an estimate shows that 
the omitted terms (36), (38) are no longer small. To ob­
tain the solution in that case for large x we must use 
Eqs. (14), (17), and (18) for a strong inhomogeneity, 
since the criterion (16), which takes the form 

1/,,'x~1, (40) 

turns out to be satisfied. 

When the criterion (20) 

(nl I x' I )"'~1 (41) 

is satisfied, Eqs. (21) and (22) correctly reflect the solu­
tion near x = 0 and Eq. (23) determines the asymptotic 
value near which n(x) oscillates when x » IK'I-1• 

plasma, of external fields, etc.) is in actual cases de­
termined by how these parameters occur in the disper­
sion laws of the interacting waves. We consider two 
characteristic examples. In a strongly anisotropic mag­
netoactive plasma where the average kinetic energy of 
the ions in directions at right angles to the magnetic 
field is appreciably larger than the longitudinal kinetic 
energy a cyclotron instability develops on the branch of 
oscillations with negative energy with a characteristic 
linear growth rate Ylin "" (m/M) I12w1 (WI is the ion 
cyclotron frequency). [15J The characteristic growth rate 
for the nonlinear interaction Ynl will then be of the order 
of magnitude of 

Tni "'" (elnoT,) '(mIM) "'CUi, 

(E is the initial energy density of the wave, no the plasma 
density, and T e the electron temperature) and when 
Ynl » Ylin the explosive instability can develop. [6J 

We estimate under what conditions the inhomogeneity 
in the magnetic field prevents the development of the 
explosive instability. We shall for the sake of simplicity 
assume that the magnetic field changes linearly with a 
characteristic inhomogeneity length L ~ (wildw/dzrl. 
Recalling the dispersion law for the case considered, 
w(k) "" pWi ± (Te/M)I/~JI (p is an integer)f 6,15J we get 
~k(z) and 1 in the following form: 

f1k(z) ""'PCU, (MIT,) '''zIL, 

Z"", (T/M) "'YnI-'= (noT/e)' (TJm) '''I CUi. 

(46) 

(47) 

We note, finally, that in the stable case, when n(x) os- Substituting (38), (39) into (36) we get finally the fol-
cillates near some average value, the solution (37) ceases lowing condition for the suppression of the explosive 
to be valid when (see (8) to (10), (38)): instability due to the inhomogeneity of the magnetic field: 

" 

• dx , , dx .,' I dx, n(x,)- "'" ii-x ~Ix(x)iil, 
o dx, dx 

i.e., at distances x for which 

x;<>x(x) Ix'I-'. 

6. CONCLUSIONS 

(42) 

(43) 

The analysis given above shows that the nature of the 
development of the explosive instability in inhomogene­
ous media is determined by the following important 
parameter: the magnitude of the advance of the relative 
difference in the phases of the waves due to the inhomo­
geneity, 

I 

I dzfik(z) 
o 

over a length l. If the inhomogeneity of the medium is 
sufficiently large sO that (depending on the scale of the 
inhomogeneity) one of the following conditions is satis­
fied: 

I 

I dz f1k(z) ;;'3n/2, LlI;<>1, (44) 
0 

I 

I dz fik(z)~:n;/2, LlI~1, (45) 
0 

the explosion will not develop and the nonlinear interac­
tion of the waves has an oscillatory nature. Conditions 
(36) and (37) show that the strongest stabilization of the 
explosive instability is produced by inhomogeneities of 
scale 1 and that inhomogeneities with larger or smaller 
scales turn out to be less stabilizing factors. 

The stabilizing effect of different parameters (in­
homogeneities in the density and temperature of the 
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x''''''p(noT,Ie)'(Mlm)"''r.lL;<>3n. (48) 

Here re == (Te/m)ll2mc/eH is the electron Larmor rad­
ius. Using the results of Sec. 3 (Eqs, (21), (23)) we can 
easily estimate the maximum energy density of the 
waves Emax in the stable case (see (40)): 

ern,.ie- (1- (nix') ''') -'. 

When a low density ion beam moves through a mag­
netized plasma an explosive instability may develop 
when there is an interaction between the low-frequency 
oscillation branches with a characteristic nonlinear 
growth rate [9J 

( CU')' (n ) "I, ( e ) 
YnI-1O' k~' n: noT. CUpi. 

Here wpi is the ion plasma frequency, u and n' are the 
velocity and density of the ion beam. Estimates similar 
to the ones given above lead to the following criterion 
for the stabilization of such an instability due to the 
inhomogeneity in the plasma density or temperature: 

_, ( ku ) 3 ( n' ) 'I, ( noT. )' u 10 - - - --~3n. 
Wpi no e (j)piL 

In conclusion we make a few remarks referring to the 
nonlinear interaction of waves in strongly inhomogeneous 
media where the phase synchronism conditions are only 
satisfied in separate narrow regions of space. It was 
shown in Sec. 3 that in the regions near the phase 
synchronism points, depending on the phase relations, 
both an efficient development of the explosive instability 
(which is intuitively understandable) and a strong stabil­
ization of it with an appreciable simultaneous damping of 
the intensities of all the waves may occur. Under condi­
tions of favorable phase relations the explosive instabil-
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ity may develop also in a strongly inhomogeneous medium 
where there are only narrow regions of phase synchron­
ism which are widely separated from one another. The 
development of the explosive instability then occurs 
stepwise and the development length of the "explosion" 
increases due to the inhomogeneity (see Fig. 1). 

The authors are grateful to Y. A. Ignatchenko for 
useful discussions. 
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