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Scattering of intense radiation by a molecule is considered in the case when such radiation alters the 
rotational spectrum of the molecule. If the energy of interaction with radiation is comparable with the 
rotational constant, the selection rules governing the rotational quantum number are modified and the 
scattering spectrum acquires new branches which are equidistant in an asymptotically strong field. If the 
radiation power is low and the polarization is linear or circular, the Stark splitting of magnetic sublevels 
results in a linear dependence of the line width on the intensity of the exciting light. However, if the 
radiation is strong and eliptically polarized, the magnetic quantum numbers are not conserved and the 
dependence of the scattering line width on the intensity of the incident light may be more complex. An 
analytic solution is obtained of the nonstationary Schriidinger equation for a three·dimensional rotator 
which has an induced dipole and is subjected to an alternating field whose frequency is considerably higher 
than the rotational frequency. The solution is expressed in terms of spheroidal functions. 

PACS numbers: 32.20.Pc 

1. INTRODUCTION 

Scattering of light by molecules is governed largely 
by the rotational structure of the molecular wave func­
tion. Changes in the rotational quantum numbers caused 
by scattering govern the Rayleigh and Raman scattering 
line profiles and widths. If the scattered radiation is 
sufficiently intense, the dynamic Stark effect modifies 
the rotational spectrum of the molecule and this should 
be manifested as a dependence of the profile and width of 
the scattering line on the radiation intensity. The pres­
ent paper is concerned with the influence of this modifi­
cation in the rotational spectrum on the scattering. 

The Stark effect of the rotational levels of a molecule 
in a static electric field is treated in many papers. In 
weak fields the rotational levels are shifted and split in 
respect of the projection of the momentum, and this shift 
and splitting depend linearly or quadratically on the field 
intensity for dipole and nonpolar molecules, respec­
tively. [lJ In a sufficiently strong field the problem has 
only axial symmetry and, therefore, the total momentum 
is not conserved. This occurs if the interaction of a 
molecule with such a field becomes comparable with the 
distance (energy separation) between the rotational 
levels. The states of a molecule with different momenta 
become mixed and the spectrum can no longer be found 
in the lowest order of the perturbation theory. An analy­
sis of the spectrum of a three-dimensional rotator with 
a permanent dipole moment [2,3J shows that, in a very 
strong field. the spectrum becomes equidistant and 
corresponds to small harmonic oscillations of the dipole 
moment relative to the field direction. 

The perturbation of the rotational spectrum of a 
molecule in a weak alternating field of nonresonant fre­
quency is a quadratic function of the field intensity 
irrespective of whether or not the molecule has a dipole 
moment. The formulas for the ~olar molecules are 
given by Townes and Schawlow. 1J The same case is 
discussed by Yakovlev et al. [4J on the basis of the well­
known Kapitza method. However, the virtual states in 
these investigations of the quadratic Stark effect of the 
rotational levels are effectively only the states belonging 
to the same vibronic term as the initial state differing 
from the latter solely by the rotational quantum number. 
These states make a contribution B/W times smaller than 
the other vibronic states (B is the rotational constant and 
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W is the frequency of the external field), Clearly, in 
contrast to the radiofrequency range, this parameter is 
very small at optical and infrared frequencies. 

We shall consider the modification of the rotational 
spectrum of a molecule by a method developed by us 
earlier in the theory of the dynamiC Stark effect. [5J This 
method allows us to extend the theory to a very interest­
ing range of strong fields. In the case of weak fields the 
results obtained for B « W give a different dependence 
of the shift and splitting of the levels on the total momen­
tum and its projection on an axis fixed in space than the 
dependence obtained in [1, 4J, 

In the second section we shall consider the field­
induced modification of the rotational spectrum of a sym­
metric top molecule whose rotational degrees of freedom 
are described in the rigid rotator approximation. In the 
next section we shall show that in some special cases the 
spectrum of such a molecule in an alternating field is 
identical with the spectrum of a rotator in a static field, 
and the interaction between the field and the rotator is 
governed by the latter's polarizability and not by its 
dipole moment. The solution of the appropriate 
Schrodinger equation is then expressed in terms of 
spheroidal functions. In the fourth section we shall obtain 
general formulas for the change in the rotational spec­
trum of a diatomic molecule in the Hund coupling cases 
a and b and for an arbitrary elliptic polarization of the 
field. In the last section we shall discuss the Raman 
scattering of intense radiation, corresponding to a tran­
sition of a molecule between quasistationary states 
formed as a result of its interaction with the field. In 
the weak-field case these formulas reduce to the well­
known results of the theory of scattering in a line wing. 

We shall confine ourselves to the case of a nonreson­
ant external field frequency. Makarov and Fedorov [6J 

considered the change in the rotational spectrum of a 
molecule in a field which is in resonance with a vibra­
tional transition frequency. In that case the adiabatic 
potential energy of rotating molecule can be obtained in 
the high-field limit. 

2. SYMMETRIC TOP MOLECULE IN A NONRESONANT 
FIELD 

The wave functions of a symmetric top molecule are 
of the form 
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( 21+1 )'1. J 
InIKM> = g;a D.,..,(e,) In>. (1) 

Here, J is the total momentum of the molecule; K is the 
projection of the momentum on the axis 3 of a coordinate 
system linked to the molecule; M is the projection of the 
momentum on the z axis in a fixed system of coordinates; 
n are the quantum numbers representing vibronic states; 
In) is the wave number of internal motion; IIi are the 
Euler angles. The energy of a molecule.in the state (1) 
is 

EaJII:=E.+BI (1+ 1) + (C'-B)K', 

where En is the energy of a vibronic state; Band Care 
the rotational constants. [1] We shall ignore the centri­
fugal perturbation of the rotational constants and the 
vibrational-rotational interaction; we shall also assume 
that II = 1. 

We shall seek the wave function of a molecule in a 
field ,ff z(t) = F cos wt in the form 

JK 

where, because of the linear polarization of the field, 
M remains an integral of motion. 

(2) 

We shall assume that the field frequency wand the 
detuning of this frequency from the frequencies of the 
vibronic transitions between the term n under consider­
ation and all the. other dipole-coupled terms is consider­
ably greater than the separation between the rotational 
energy levels. In this case the equations for the coeffi­
cients aJK become: [5] 

idJK=[BI(/+1) + (C-B)K'jaJ]{ - Feos IDt E <nIKMld.lnJ' K' M>a"K' 

"", (3) 
- ~ L (C")'KM,J'X,,,a"K', 

J' 

(C,j)'KM,J'K'lI('= '" ;ID.,. <nJKMld,ln,/,K,M,> 
~ tJ) _(02 

7I I J ,KIM t Rift (4) 

where Cij is the tensor representing the scattering of 
light by a molecule; [7] wnn' = En - En'; d is the dipole 
moment operator. 

The second term on the right-hand side of Eq. (3) 
governs the change in the wave function due to the dipole 
moment of the molec\lle and the third term describes the 
change due to its dynamic polarizability. It.is important 
to note that the' influence of a permanent dipole moment 
is negligible in the optical frequency range. This is 
physically seli-evident because at high frequencies of an 
external field a dipole moment does not have sufficient 
time to become oriented along the field and, therefore, 
the terms linear in the field do not alter the energy. The 
presence of these terms simply gives rise to quasi­
energy harmonics in the,wave function [8] but the weight 
of these harmonics is given by the factor doF/w (do is the 
dipole moment), which is always very ~r;nall at field in­
tensities such that we can still speak of qua'sistationary 
molecular state. However, the order of smallness of the 
terms quadratic in the field and originating from the 
dipole moment (compared with the polarization terms) 
is given by the ratio B/w. This is demonstrated most 
easily by a simple iteration analysis of the equations in 
the system (3). 

Following this discussion, we drop the second term 
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from the system (3) and obtain a system of differential 
equations with constant coefficients. Allowance for just 
the terms diagonal in JK and J'K' in the polarization sum 
of the system (3) gives the shift of the energy levels in a 
weak field when the mixing can be ignored. The corre­
sponding matrix element of the scattering tensor gives 
the amplitude of the elastic scattering of a photon of fre­
quency w by a level JK. The nondiagonal elements gov­
ern both the mixing of the levels by the field and the 
inelastic scattering JK - J'K' in the wing of a Rayleigh 
line. Therefore, we can say that the system (3) allows 
not only for the elastic channel but also for the contribu­
tion Uf the low-lying inelastic channels to the quaSi­
stationary states of a molecule in a field. 

Integrating the system (4) with respect to the Euler 
angles, we obtained the following differential equations 
in the matrix form for the column of coefficients aJK: 

ia=Qa, 
F' 21'+1 'I. 

QJK,J'K' = [BI(1+1) + (C-B)K'jt5U ,t5KK ' -T( 2:1+1) 

(5) 

where d is the dipole moment operator in a system (If 
coordinates linked rigidly to a molecule. [7] 

A general solution of the system (5) can be expressed 
in terms of the eigenvectors of the matrix'll: 

8 = E C,e-""I" QI,=q,I" (6) . 
where Cr are arbitrary constants governed by the initial 
conditions. Substituting Eq. (6) into Eq. (2), we can see 
that the spectrum of a molecule in a field is governed by 
the eigennumbers qr' 

The matrix Q is generally of infinite rank, but be­
ginning from certain values of J and K, the nondiagonal 
elements in this matrix can be ignored compared with 
the diagonal elements which increase proportionally to 
J2 and K2. Numerical results can be obtained if we know 
the values of the longitudinal ao and transverse ail 

polarizabilities of a molecule. We shall consider the 
Simplest case of ail = O. This is satisfied well for di­
atomic molecules in the infrared range because the main 
contribution to the polarizability is then made by the 
virtual states which belong to the same electron term as 
the initial state and which differ from the latter only by 
the vibrational quantum number ("vibrational" polar­
izability). In this case the matrix Q is diagonal in 
re spect of the index K and it is of the form 

(X) aJ' (/'-K') (I'-M') 
Qu = BI(/-t1)+(C-B)K' --4-{ 1'(21+1) (21-1) 

+ K'M' + [(1+1)'-K'j [(1+1)'-M'j } 
1'(1+1)' (1+1)'(21+1) (21+3) , 

(7) 

(K) (K) a..F'KM [(/+1)'-K'J [(/+1)'-M'j }'I' 
QI,'t,=QI+t.J = - 21(/+1) (1+2) { (21+1) (21+3) , 

Q;~~2=Q;:L, = aJ'2 
4.(/+1) (1+2) (21+3) 

{'[ (/+1)'-K'j [(1+2)'-K'j [(/+1)'-M'j [(1+2)'-M'j }'I'. 
(21+1) (21+5) 

The quantities Q~) give the energy shift in a weak 
field. In the special case of K = 0, we have 
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(0) a,,F' 21"+2/-1-ZM' 
qJ(K=O)"" Qu =BI(/H)- 4 (21-1) (21+3) (8) 

Comparing this expression with the results of other in­
vestigations [4) we see that allowance for the polarization 
terms (instead of the terms associated with the perma­
nent dipole moment) gives rise to different functional de­
pendenc~s of the shift and splitting of the levels on J 
and M. 

We can analyze qualitatively the behavior of the energy 
levels in the limit of a strong field by considering a 
truncated matrix Q of order n. If n is sufficiently high 
and M and K are fixed, the main matrix elements satisfy 
J2 »M2 and J2 »K2. If the field is sufficiently strong, 
we can easily see that the characteristic equation for the 
matrix Q is 

2+ 2e 
1 

o 

1 0 
2+2e 1 

. .. '" 1 

o 
o 

2+ 2e 

= 0, 

where E = 4q/QloF2, and q are the eigenvalues of Q. 

The following recurrence relationship can be obtained 
for the polynomials Pn(E): 

p.(e) =2( He) P.-t (e) -p._,(e), 

which is identical with the recurrence relationship for 
the Chebyshev polynomials with the argument 1 + E­

Using the explicit form of these polynomials for n = 1 
and 2, [9J we find that Pn are the related Chebyshev poly­
nomials of the second kind: 

p.(e)=U.(He), U.(x)=sin[(n+1) arccosx]/sinx. 

Thus, the spectrum of a rotator in a strong field is given 
by the roots of the Chebyshev polynomials of the second 
kind: 

k=1,2, •.. , n. (9) 

It is natural to expect the behavior of lower levels in the 
field to be stable when new high-J states are added to a 
mixed set, i.e., when the order of polynomials Pn is in­
creased. It follows from Eq. (9) that these stable roots 
may be either the roots with numbers k « n approxi­
mately equal to 1, or the roots with numbers k ~ n, ap­
proximately equal to -1. In the former case we have 
E ~ 0 and the center of gravity of the terms is not 
shifted, whereas in the latter case E ~ -2, q>,,:;; -Q'OF2/2, 
and the center of gravity shifts twice as fast as predicted 
by the perturbation theory which ignores the rotational 
state mixing by the field. We shall show in the next sec­
tion that in the special case of K = 0 these two possibili­
ties are obtained for the negative and positive polariza­
bilities, respectively. 

Figure 1 shows the behavior of the lower levels in the 
spectrum of a rotator in a field, obtained for several 
values of M. The range of values of the parameter 
g2 = QlOF2/4B < 0 corresponds to the negative polariza­
bility (see below). 

3. THREE-DIMENSIONAL ROTATOR WITH AN 
INDUCED DIPOLE MOMENT IN A STATIC FIELD 

In this section we shall show that the equation des­
cribing the influence of an alternating field on a symme­
tric top molecule with one longitudinal polarizability in 
the K = 0 state is identical with the equation for a three­
dimensional rotator in a static field whose interaction 
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FIG. I: Dependences of the eigenvalues qMJ on the field intensity 
(in units of q] /B and g2=aoF2/4B) plotted for several values of J, given 
on the right of the ordinate and several values of M. The dashed curves 
show the result of (8) obtained from the perturbation theory for levels 
with J=O, M=O, and J=I, M=O. 

with this field is represented by its polarizability {3 
provided we make the substitution {3 - Qlo/2. 

The Schrodinger equation for a rotator in a static 
field is 

(BL'_t/,~F2 cos' 8) I/l=EI/l, (10) 

where e is the angle between the rotator axis and the z 
axis selected to be parallel to the field. We can show 
that nonzero matrix elements of the operator describing 
the interaction with the field, calculated in terms of 
spherical functions YJM(e, cp) representing the wave 
functions in the unperturbed state 

QJJ.=-t/,~F'<YJMlcos' e I YJ'M>, 

are identical with the matrix elements of Eq. (7) if we 
substitute K = 0 and {3 = ao/2. 

This result can be explained as follows. The 
SChrodinger equation for a rotator in an alternating field 
is of the form 

al/l ( a.,F' i-= BL'---cos'8COS'rot).h at 2 .", 

where ao is the dynamic polarizability of the rotator at 
a frequency w, If we replace the rapidly oscillating term 
cos2 wt by its average value, we obtain Eq. (10) where {3 
is replaced with Qlo/2. The error due to this replace­
ment is of the order of Q'oF2/w. 

The substitution of the variable ~ = cos e reduces Eq. 
(10) to 

[ d d M' 
--(1-6')-+g'6'---+q].p=o 
ds ds 1-s' ' (11) 

where q = E/B and g2 = (3F 2/2B. This equation is satis­
fied by spheroidal functions. [10) In our case we have 
I ~ I ~ 1 and the solutions of Eq. (11) are angular spher­
oidal functions. Depending on the sign of g2, we can 
distinguish prolate spheroidal functions SMJ(lgl, 0 when 
g2 < 0 and oblate functions SMJ(-ig, ~) when g2 > 0. 1) 

The sign of g2 is governed by the sign of the polarizabil­
ity ao. Since, in contrast to a static field, the polariza­
bility can be positive or negative in an alternating field, 
we can have both signs of g2. 

If g2 is low, expansion of qMJ as a power series gives 

~ 

. ~IMI Zk 
qMI = k..J 2k g , 

11.=0 
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2T'+2J-1-2M' 
(2/-1) (21+3) , ... 

This formula is identical with Eq. (8) if we make the 
substitution (3 - 0!0/2. The tables in [10J give the de­
pendence qMJ(g) for several values of M and J (com­
pared with Fig. 1). 

We shall now consider the case of strong fields 
(/g2/ _ 00). The asymptotics of the spheroidal functions 
of the parameter g is different for the prolate and oblate 
functions. If the polarizability is positive, the solutions 
are the oblate functions. In the limit g2 - 00, the first 
term of the asymptotic series for qMJ is 

qMr=-,g'+2g(M+2v+1) 

or in the notation of Sec. 2: 

ErM=-i/,aoF'+F (aoB) 'I. (M+2v+1) ; 

V= { 
i/,(/_M) , 

i/,(/-M-1), 

I-M even 
I-M odd 

(12) 

T~e asymptotic forms of the spheroidal functions SMJ 
are glven by the Laguerre polynomials: 

SMr( -ig,6) - (1-6')MI'e-B(i-11il LyM[2g(1-/6 /) J. (13) 

The physical meaning of the asymptotic forms in 
strong fields can be understood on the basis of the class­
ical motion of a rotator in a strong static field (compare 
with [2, 3J ), which represents small oscillations of the 
rotator axis about the direction of the field. The greatest 
contribution to the wave function is then made by the 
points 8 = 0 and 8 = rr, ~ = ± 1. Expanding the Schrooinger 
equation as a series in 8 near these values to terms of 
the order of 82 inclusive, we obtain 

[ d' M'_i/, g' ,+, ] ----- e g -q ",=0 de' e' "', 
x= (1-s') 'l'e-iM"¢. 

This is the equation for a two-dimensional oscillator of 
frequency F(2{3B)1/2, whose solutions are given in terms 
of the Laguerre polynomials (13) with arguments limited 
to terms of the order of 82. 

The spectrum of an oscillator is equidistant and gov­
erned by the quantum number N ='M + 2v; it is described 
by Eq. (12) and has a characteristic oscillation degener­
acy. Thus, the complete spectrum of a molecule as a 
whole shifts in a strong field proportionally to F2, which 
is twice as fast as the shift predicted by the perturbation 
theory (8). The separation between the levels, which 
eventually become equidistant, rises proportionally to F. 
An additional double degeneracy follows from the equiva­
lence of the angles 8 = 0 and 8 = rr for a rotator with an 
induced dipole moment. In accordance with Eq. (12), the 
levels with even andodd values of J form separate os­
cillation spectra corresponding to 8 := 0 and 8 = rr. 

The correspondence between the rotator levels and 
the oscillator levels (12) can be obtained by applying the 
Wigner-Neumann theorem which predicts that in this 
case the terms with identical values of M and (-l)J do 
not intersect. This is shown schematically in Fig. 2. 

We shall now consider the case of negative polariza­
bility (g2 < 0), which is possible only in an alternating 
field. Here, we have to use the prolate spheroidal func­
tions. The asymptotic forms of these functions are 

SMr(lgl,;) "" (1-;')'I • .E h;N) (-1)H+' exp (- I~I 6') Hn +,(6Igl'I.), (14) 
, 
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FIG. 2. Correspondence between the spectrum of a rotator and the 
limiting spectra of two-dimensional (aO>O) and one-dimensional 
(ao<O) oscillators. 

where H are Hermitian polynomials, h are known coeffi­
cients, [10J and 

N=I-M; r=O, 1, ... ; qMr=2/g/ (N+I/,). 

The corresponding spectrum is 

ErM=F( / ao/B) '1'(N+I/2)' (15) 

As in the preceding case, the spectrum is equidistant 
with an asymptotic separation between the levels equal 
to F(/0!0/B)1/2. This corresponds to the case when the 
rotator with a negative polarizability is oriented perpen­
dicularly to an alternating field. The main contribution 
to the wave function is given by the values of 8 close to 
rr/2. Following the treatment described above, we obtain 

[ d' 1 
-~+M'-2-g'-r;'-q ]x=O, (16) 

where T = rr/2 - 8 and in the limit /g2/ - 00, we have 

( d' 
~ + g'-r;'+q ) x=O. 

This is the equation for a one-dimensional oscillator 
of frequency F(/0!0/B)112. Its spectrum is given by Eq. 
(15) and the wave functions are expressed in terms of 
the Hermitian polynomials (14). Thus, the motion of a 
rotator can be represented by the motion in a plane per­
pendicular to the direction of the field and by harmonic 
oscillations relative to this plane. The rejected term 
M2 - 1/2 in Eq. (16) is small compared with g2 and it 
gives the spectrum of a two-dimensional rotator. In this 
limit the energy of the rotator oscillations is independent 
of M. This corresponds to an infinite order of the de­
generacy of each oscillator level (15), namely a level of 
energy EN corresponds to an infinite set {JM} with 
J = M + N. 

Figure 2 shows schematically the correspondence be­
tween the rotator and oscillator levels for a negative 
polarizability in a strong field and, as in the preceding 
case, this correspondence can be obtained with the aid of 
the Wigner-Neumann theorem. 

4. ROTATIONAL SPECTRUM OF A DIATOMIC 
MOLECULE IN AN ELLIPTICALLY POLARIZED FIELD 

In this section we shall obtain general formulas 
describing the perturbation of the rotational spectrum of 
a diatomic molecule by a strong optical field. We shall not 
restrict our discussion to a linearly polarized field. The 
polarization structure of quasistationary states of a 
molecule in an alternating field is in many respects 
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similar to the structure of such states of an atom, dis­
cussed in (llJ. If the polarization of the radiation field is 
elliptic, there is no special direction in space and the 
projection of the total momentum is not conserved. 
Quasistationary states of a molecule in such a field are 
obtained by constructing the correct combinations of 
unperturbed states of the molecule even for weak fields 
in the absence of mixing of states with the different 
values of J. The mixing of states with different values 
of M is then allowed for and it corresponds to inclusion 
of the influence of the stimulated scattering of light by a 
molecule, accompanied by a reorientation of its total 
momentum in space, on the formation of quasistationary 
molecular states. It is evident that such a reorientation 
does not occur in the linear and circular polarizations 
because of conservation of the projection of the total mo­
mentum on the direction of polarization in the former 
case and on the direction of propagation of radiation in 
the latter case. 

The most important forms of the coupling between the 
orbital and spin momenta of a diatomic molecule are the 
Hund cases a and b, which we shall now consider in 
turn. 2 ) 

Case a. In this type of coupling the interaction be­
tween the electron spin and the orbital momentum is 
stronger than the separate interaction of each of these 
momenta with the molecular axis. The wave functions of 
a free molecule are described by the quantum number 
n = A + ~, where ~ is the projection of the spin on the 
axis. This number is identical with the projection of the 
total angular momentum on the molecular axis. 

In the case of arbitrary polarization of the incident 
radiation the quantization axis z can conveniently be the 
direction of propagation of the radiation. The electric 
vector of the incident wave can be expressed in the form 

E(t)=Re (Fe-i.'), 

where F is the complex amplitude and Fz = O. The equa­
tions for the coefficients ll'JM in the expansion of the 
wave function of a molecule in a field 

¢n.(t)= E aJM(t) exp (-iEn.t) InQIM> 

are analogous to the equations in the system (3): 

ia=Qa; QJM,J'M.=BI(I+1) {)"'{)MM' -+ EF<'F'(CiA)/OM"'OM" (17) 
ih 

where cik is the light scattering tensor of Eq. (4). The 
number K is now replaced with the number n, but the 
mixing of states with different values of 0 is ignored 
because it corresponds to a change in the electron func­
tion of the molecule by the field. 

It follows from the above formula that the equations 
for M = M' are governed by the coherent (M f. M') and 
noncoherent (J = j) matrix elements of the unshifted­
scattering tensor (J = J'). The coherent and noncoherent 
channels make the same contribution to ll'JM for any 
field intensity but at high radiation frequencies the non­
coherent matrix elements tend to zero faster than the 
coherent elements. [7] At high field intensities we must 
bear in mind, as has been done in Sec. 2, the scattering 
channel involving a change in the frequency (J f. J'). 

In subsequent transformation we shall replace the 
Cartesian components F with spherical components and 
we introduce polarization tensors of an electromagnetic 
wave: 
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PJm (F) = {-E C;;IPFpF;, (18) 
PO 

where I = FF* is the radiation intensity. 

The tensors P can be expressed in terms of the Stokes 
parameters ~ i: [12J 3) 

§,=I sin 2'1', s,=A, 6,=1 cos 2'1', 

where I and A are the degrees of linear and circular 
polarization, and cp is the angle made by the direction of 
maximum linear polarization with the x axis. This angle 
can be reduced to zero by a suitable rotation of the 
coordinate system and then the components of P become 
real: 

We shall assume that such a rotation has already been 
made. 

USing the well-known formulas for the matrix ele­
ments of the dipole moment operator, [7J we shall trans­
form Q to 

The formula (19) can be simplified considerably by 
ignoring the dependences of the energy factors in ll'j on 
the quantum number 0', which is possible far from p 
the resonance frequencies of a molecule. Simple calcu­
lations yield 

. I ( 2/+1 )',. \""1 J'M' iO I'. 
QJM, J'M,=BI(I+1){)JJ'{)MM' - 4 21'+1 .t..l CJMimC'-PIPC/Qi'PimrL/, 

imp (20) 

The rotational spectrum of a molecule in a field is 
governed by the spectrum of the matrix Q. Since Pjm 
= 0 for m = ± 1, the field mixes only the magnetic sub­
levels which differ in respect of the values of M by 
± 2, ± 4, .... If I = 0, we find that Pjm ~ 0mO and the 
value of M is conserved because a definite direction ap­
pears in space (the direction of propagation of the inci­
dent wave). The magnetic quantum number is conserved 
also for A = 0 if the quantization axis is selected to be 
the x axis but it is difficult to deduce this directly from 
Eqs. (19) and (20). 

A reversal of the sign of the pseudoscalar quantity A 
reduces the matrix elements QJM, J'M' to the matrix 
elements QJ-M, J'-M'. If J is an integer, the matrix 
elements which differ in respect of the sign of the mag­
netic quantum numbers belong to the same set of mixed 
states because 2M is an even number. If J is a half­
integer, which is possible if the number of electrons in 
a molecule is odd, these matrix elements occur in dif­
ferent sets. Therefore, if A = 0, the two sets are iden­
tical and the spectrum of a molecule is at least doubly 
degenerate, in agreement with the Kramers theorem. 

Case b. In this type of coupling the interaction be­
tween the orbital momentum of electrons with the axis 
is stronger than the LS interaction. This is always true, 
particularly for the singlet terms. The integral of mo­
tion of a free molecule is then N, which is the momentum 
of the molecule apart from its spin, and the projection 
of N on the molecular axis is A. 
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The rotational part of the energy of an unperturbed 
molecule is [lJ 

EN1=BN(NH)+CA(I-S) (l+SH)/2N(NH) , 

where S is the spin of the molecule; J = N + S; Band C 
are the rotational constants. 

The equations for the coefficients aNJM in Lhe expan­
sion of the wave function of a molecule in a field in 
terms of the InANJM) states are 

ia=Qa, QNJM. N'l'M,=ENJ fJNN '{)n,{jMM' 

- ~.E (_1)H+N'+i[ (2NH) (2N,H) (21H) (2jH) )'/'Cj:;:~C::':';, 
N1Pim 

x CN~~~'IpW(N1N'1; N,j)W(jNI'S; N'I)Pjm(F)a/, (21) 

where the quantities Qlj differ from the corresponding 
quantities in (19) by th~ substitution n, n' - A, A'. 

The properties of the eigenvalues of the matrix Q 
mentioned above in case a apply also to case b. 

5. SCATTERING OF INTENSE RADIATION BY A 
MOLECULE 

In discussing the scattering of high -intensity optical 
radiation by a molecule we shall employ, as is usual in 
problems of this kind, the "strong + weak field" scheme. 
In the present case a strong classical field modifies the 
spectrum of a molecule and one of the photons of this 
field (a quantum of a weakly quantized field) undergoes 
spontaneous scattering. For SimpliCity, we shall assume 
that before this scattering a molecule is in a definite 
state, which is typical of steady-state conditions when 
the intensity of an exciting light pulse is much longer 
than the rotational relaxation time of a molecule (this 
time usually does not exceed 10-11 sec). Otherwise, the 
scattering amplitude should be quantum -mechanically 
averaged over the distribution of states. 

When a photon of frequency w is scattered by a state 
Inilli) causing a molecule to undergo a transition to a 
state Infllf), a photon of frequency w' = (En. + qll' + w) 

1 1 
- (Enf + qllf) is emitted. Here, qll are the eigenvalues of 
the matrix Q for the term In); II is the number of a 
quasistationary state in this term; 

I '\1 (v) 

nv> = ""'"" f. InK>, . 
where f is the eigenvector of Q and K is the set of quan­
tum numbers representing the state of a free molecule. 
For a symmetric top we have K = {JKM}, whereas for a 
diatomic molecule we have K = {JM} in case a and 
K = {NJM} in case b. 

The seattering amplitude is expressed in terms of the 
scattering tensor of a free molecule: 

A '\1 ( 1) .+, ,. () /(v/)' /(v,) Vj'l,=.l....J - e_p e_q Cpq 'M.fK i 'IC, K,' 

where e' is the polarization vector of a photon w' and e 
is a unit vector of the polarization of the incident wave. 

The scattering of weak radiation by a free molecule 
cannot alter its momentum by more than ± 2. This gives 
rise to, in particular, five branches in the Raman and 
Rayleigh scattering spectra corresponding to changes in 
the momenta by 0, ± 1, and ± 2. In a strong fiel~ the mo­
mentum selection rules no longer apply and a large num.., 

600 SOy. Phys.·JETP, Vol. 42, No.4 

0, rel. units 

__ --------------1-1 
____ ---3-3 

I 

10 g2 

FIG. 3. Field dependences of the light scattering cross sections for 
M=M'=l; the change in J is given alongside each curve. 

ber of scattering lines may be observed. Moreover, the 
relative intensities of the scattering in these five 
branches then depend also on the intensity of the strong 
incident radiation. 

Figure 3 gives the field dependences of the cross 
section for the scattering of intense radiation by a rota­
tor. In weak fields the transition 3-7 and similar tran­
sitions are forbidden. It is clear from Fig. 3 that the 
forbidden lines can appear only if the interaction of a 
molecule with the field is comparable with the rotational 
constant. 

In the estimates we can use the fact that the theor­
etical parameter g2 governing the appearance of new 
scattering branches becomes of the order of unity for 
heavy molecules such as CsI with B ~ 103 MHz in fields 
F ~ 104 V/cm. It is assumed that the polarizabilities 
governed by the resonance term for which the dipole mo­
ment of the transition to the ground term is of the order 
of 0.1 D when the de tuning from resonance is ~ ~ 10 cm-1. 
Experimental observation of the forbidden branches may 
be difficult because the states with low values of J are 
weakly populated at room temperature. 

Another manifestation of the perturbation of the rota­
tional spectrum may be an induced broadening of the 
nonresonance scattering line. The field splitting of the 
various M sublevels, which is a linear function of the 
field intensity, should result in a linear intensity de­
pendence of the scattering accompanied by a change in 
M if the field is polarized linearly or circularly. In the 
elliptic polarization case an increase in the field inten­
sity gives rise to scattering lines corresponding to tran­
sitions with I~MI > 2, which again causes line broaden­
ing. However, in reality the intensity dependence of the 
line width is more complex and is governed by the speci­
fic situation. 

We are grateful to partipants of a seminar led by 1. L. 
Fabelinskil for discussing our results and for valuable 
comments. We are also grateful to V. P. Makarov for a 
discussion and providing us with a text of his paper [6J 

before publication. 

l)Here M and J are nonnegative integers and J;;;'M. The notation is re­
lated to the circumstance that SMJ(O, n~YJM(O, 0), but in the 
presence of a field the quantity J no longer represents the momentum 
of a level. 

2)This treatment is inapplicable to n terms because of the A degeneracy. 

3)Introduction of the Stokes parameters is also very convenient in the 
case of totally polarized radiation, which is discussed here, 
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