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We investigate the properties of dilute alloys of nonmagnetic metals or of nondegenerate semiconductors 
with magnetic impurities. Two situations are considered, in which indirect exchange interaction via the 
conduction electrons leads to ferromagnetic order in the alloys: 1) the characteristic period of the Kittel
Ruderman potential is larger than the distance rc between the impurities, 2) the exchange potential consist 
of two parts, one with a large and the other with a small period of the spatial oscillations compared with 
rC' It is shown that at low temperatures most per-unit thermodynamic quantities and the electric resistivity 
contain increments proportional to the temperature and due to local spin flips. These increments deCrease 
exponentially with increase of the impurity density n, in the first case and are independent of nj in the 
second case. 

PACS numbers: 71.70.Gm, 71.55.Dp, 75.30.Et 

1. MagnetiC ordering in alloys of most nonmagnetic 
metals is due to an indirect exchange interaction, that 
oscillates with the distance, between the impurity spins 
via the conduction electrons of the matrix. The period 
of the spatial oscillations of the potential is of the 
order of ko\ where ko is the characteristic momentum 
determined by the topology of the Fermi surface,P]; 
this potential has the ferromagnetic sign at r « ki/. 
Therefore the type of ordering depends on the concen
tration and the spectrum of the electrons. If the char
acteristic momentum ko for a given impurity density 
ni for most electrons is such that konll/s » 1, then an 
ordering of the "magnetic glass" type[2] is produced in 
the alloy at sufficiently low temperature. But if koni1/ 3 

« 1, then most impurity spins are ferromagnetically 
ordered. It is then necessary to distinguish between two 
cases. 

First, the smallness of ko may be due to the low 
density of the conduction electrons. In this case the 
interaction energy of spins separatec;i by a distance of 
the order of or smaller than the average distance rc 
Rl n-1/3 is positive, and the isolated spins farther away 
than kc/» rc from the neighbors may be in a zero or 
negative molecular field. 

The contribution made by spin flips whose energy in 
the molecular field is of the order of the temperature 
T to most thermodynamic quantities and to the kinetic 
coefficients is proportional to the temperature and de
creases exponentially with increasing impurity concen
tration. 

Second, the smallness of ko may be connected with 
the complicated shape of the Fermi surface. It is 
known[ 1] that in this case ko is a vector joining on the 
Fermi surface pOints the normals to which have oppo
site directions. There may be several such vectors, so 
that the interaction potential can be approximated by a 
sum of several terms of the RKKY type, each charac
terized by a different ko. We consider a situation in 
which several of the characteristic momenta are 
smaller than nt/3 and the others are larger. Then the 
main magnetic properties of the alloy can be understood 
by representing the interaction potential as a sum of two 
terms, one of which, Vf( r), is characterized by large
scale fluctuations of period ki1> Di1/ 3 , and the other, 
Va(r), by small-scale fluctuations of period ki/ < nil/3. 
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The ferromagnetic ordering arises in the system when 
the molecular field produced by the potential Vf is 
larger than Va( ~). Since Va ( r) increases with de
creasing r, the inverse inequality may hold at r « rc, 
Le., the potential of the antiferromagnetic interaction 
of a pair of closely-lying spins may differ little from 
the energy of the spin in the molecular field. The spin 
levels in the pair are then close to each other and the 
transitions between them determine the behavior of the 
thermodynamic quantities. The corresponding contribu
tion per impurity is proportional to T and inversely 
proportional to ni. 

Thus, increments that are anomalous in comparison 
with the ordered ferromagnet are added to the thermo
dynamic and kinetic quantities in both cases; these in
crements can exceed the ordinary spin terms at low 
temperatures. 

2. Impurity ferromagnetism of GeTe alloys with Mn 
was observed in[2]. The ferromagnetic ordering is 
brought about in this case by the first of the mecha
nisms considered by us, namely, indirect exchange via 
free carriers in the matrix (holes), with density on the 
order of 1021 cm-3, so that the parameter korc < 1 for 
the samples used in[3], with impurity concentration 
~ 1 at.%. The results obtained by us in Sec. 4 are fully 
applicable to these alloys. It is however impossible to 
compare them with experiment at present, since there 
are no data for sufficiently low temperatures. 

In the alloys La1-xGdx (x ~ 6 at.%) there was ob
served[4] an anomalous behavior of the magnetic suscep
tibility at low temperatures; this behavior seems to in
dicate a ferromagnetic transition. At a certain temper
ature, the magnetic susceptibility has a sharp maximum, 
and in the high-temperature region it obeys the Curie
Weiss law X-l ~ T - a, with a ~ x. Since the Fermi 
surface of lanthanum is quite complicated and has many 
sections with small characteristic momenta, the ferro
magnetic character of the indirect exchange may be due 
to one of the mechanisms indicated above. The same 
situation seems to obtain apparently in LaAh-GdAh 
alloys, in which ferromagnetic order was observed 
recently.[4] 

Measurement of the temperature and concentration 
dependences of various physical quantities and their 
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comparison with theory would make it possible to under- where 
stand the mechanism that produces ferromagnetism in (9) 
these alloys. 

3. The indirect interaction of the localized alloys is 
described by the Hamiltonian 

;}'6=-'/, ~ V(r,-rj ) (S,SI)' 
(,j 

Here i and j are sites at which magnetic impurities 
are located, and Si is the spin localized at the site i. 
The potential V(r) for a spherical Fermi surface is 
given by[61 

( sin 2k,.r-2kFrcos 2kFr _ [' _, 
V r)=Vo . " Vo --no 

(kFr)' EF 

(1 ) 

(2) 

where ne is the number of electrons per matrix atom, 
kF is the Fermi momentum, and I is the s-d exchange 
interaction. ll 

If kFrc < 1, then V(rd> 0 and the Hamiltonian (1) 
leads to ferromagnetic ordering, with many impurities 
contained in a sphere of radius k-F. The Curie tempera
ture can therefore be determined by the molecular-field 
method: 

T,='I,S(S+1) vVo, (3) 

where 

v=4nnJk/~1. (4) 

Owing to this inequality, the fluctuations of the interac
tion energy of a given spin with the surrounding are 
small, despite the randomness in the spin distribution. 
The spin-wave spectrum is therefore determined in the 
usual manner: 

0).=2SvV,(1- 1i2!(ql2k,» . 

For a spherical Fermi surface we have 

/(z)=1 + 1-z' In 11+x I. 
2x 1-x 

(5) 

The damping of the spin waves is small if their wave 
vector q « re1 pl At small momenta q « 2kF it follows 
from (5) that 

(6) 

where a '" (%) vSV o. The density of states per impurity, 
of spin waves with frequency w « a, is given by 

1 dq 8 0),'1, 
p(O)q)= --q'--= __ ._. 

2n'n, dO), nv e" 
(7) 

The appearance of the factor v-1 in this expression for 
p is due to the long-range character of the interaction 
potential. 

In ordered ferromagnets, the spin waves determine 
completely the magnetic part of the thermodynamic 
quantities at T« Tc. In this case, owing to the random 
distribution of the impurities, an important role may be 
played by the additional contribution connected with 
local spin flips. We now proceed to calculate this con
tribution. 

4. We consider first a situation in which there is one 
characteristic momentum ko, and koIlil/ 3 < 1. To take 
local spin flips into account, we can use the molecular
field approximation, so that the Hamiltonian (1) takes 
the form 

(8 ) 
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z is the magnetization direction. 

Since most spins are oriented at T« l'c in parallel 
and are magnetized almost to ~aturation, (Sf> in (9) 
can be replaced by S. We introduce the molecular-field 
distribution function 

W(O)= ~~ Jd'r •. _.d'rN6(0)-~O)i)- (10) 

Here v is the volume of the crystal and N is the total 
number of spins. After the usual transformations we 
obtain 

Here 

1 -W(O)=-J dpe-ip·+D(.'. 
2n _00 

(11) 

D(p)=n J d'r(e tS'-("'-1)=v J dxz'(e'V(%"-1), (12) 

where x '" kFr and v is determined by (4). 

We obtain first W(O). This quantity determines the 
concentration dependence of the thermodynamic quanti
ties at low temperatures T« V o. Since v » 1, we can 
calculate W(O) by the steepest-descent method. 

We shall show that in the complex p plane the deriv
ative D'(p) vanishes at a certain point on the imaginary 
axis. From the condition D' (p) '" 0 we have 

-J dx x'V(x) e-" SV (%, cos(V(x)p.) =0, 

f dx x'V(x)e-"SV(%, sin(V(x)p.) =0, 

where p '" p 1 + ipz. On the imaginary axis the second 
equation is satisfied identically, and pz is determined 
from the equation 

f(p,) =S S dx x'V(x)e-P,SV(Z'=o. (13 ) 
o 

It is easily seen that this equation has a solUtion, and 
furthermore a unique one. Indeed, f(O) is proportional 
to the average molecular field and is consequently posi
ti ve. At large p 2 the main contribution to the integral 
(13) is made by the regions of the variable x in which 
V(x) < O. Consequently, at large pz we have f(pz) < O. 
The derivative f'(pz) < O. Thus, f(pz) decreases mono
tonically with increaSing pz and vanishes at a certain 
pz = po> O. Since 

a'D(~) I <0, 
ap ._i .. 

the direction of the steepest descent is the straight line 
p~ = po parallel to the real axis. Thus, 

W(0)=e D(Po'/(2nID"(po) 1)'1,. (14) 

It is easily seen that D(po) < O. This follows from the 
factthat D(O) = 0 and aD(pz)/apz '" -f(pz) < 0 at pz 
< po. Therefore 

W (0) -e-"' ISV,V"', (15) 

where (l is a number of the order of unity. This con
clusion does not depend on the concrete form of the 
potential V(r). Expressions (14) and (15) are valid if 
the following conditions are satisfied: v » 1, V(x) is 

00 

an alternating-Sign function of x, and J dxxzV(x) > O. 
o 
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, 
Equation (13) with potential (2) was solved numer

ically. The result was 
1.50 

p,= Sv.' D(p.)=0.845v, D"(p.) =-0.37f(SV,) 'v, 

so that 

) 0.654 
W(O =--e-'·"" SV.V'I. . (16 ) 

At low frequencies w « vSV 0 we can calculate W (w) as 
before by the steepest-descent method. The saddle point 
is now determined from the equation 

vS J dxx'V(x)exp[-V(x)p,(oo)S]=oo. (17) 

The quantity po decreases with increasing w. If 
w « vSVo, then po(w) differs little from po(O) and Eq. 
(17) can be solved by iterating with respect to the small 
parameter w/vVo. As a result we get 

W(oo)=w(o)exP{OOPQ(O)- 00' }. 
2yiD"(p,)i 

(18) 

We have discarded in the argument of the exponential 
the terms proportional to w3 , which is justified if 
w « V 2/ 3 SVO' 

At frequencies w close to the average molecular 
field energy V = 2vSVo we can obtain W(w) by expand
ing the exponential in (12) in powers of V(x) accurate 
to V2(X). We obtain for W(w), naturally, the Gaussian 
distribution 

W( )_11 15 1 . { (oo-fl'} ~_ 16n y' 
00 - V :rv 8SV,exp ---",,-, -15-;-' (19) 

The number of spins directed against the magnetiza
tion at zero temperature is 

• 
nl=n, J W(oo)doo. (20) 

Noting that the principal role is played in this inte
gral by Iwl ~ SVo, we get 

nl _ 0.435 _ ... " 
~-~e' . (21) 

This quantity is small even at values of v not greatly 
exceeding unity. 

The heat capacity per impurity is . 
CM= J dooW(oo) CM(OO) , (22) 

where 

C,,(oo)=~oo'{~Sh-'~- (s+~)' Sh-'(S+~) ~oo~. 
. 4 2 2 2 'f 

At low temperatures T« SV 0, the main contribution 
to (22) is made by frequencies w ~ T, so that according 
to (18) we can replace W(w) by W(O), and 

411'S 
CM = 3 (2S+i.) W(O) T. (23) 

The ratio of this heat capacity to the heat capacity Cs 
due to the spin waves is of the order of 

CM 11 SV, _ "" v __ vZe-O.8U~V. 
C. T 

(24) 

At sufficiently low temperatures this quantity can exceed 
unity. 

In an external magnetic field H we have in place of 
(22) 
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(25) 

where J..I. is the effective magneton. 

At temperatures T < SVo and in fields J..I.H < v2/ 3 SVO 

the heat capacity is 

C,,(H)=CM(O)exp (_ 3fJ.H _ l35 (. fJ.H )') . (26) 
2SV, v SV, 

The heat capacity depends little on the magnetic fields 
up to fields of the order of SVo/ f1. > TJ..I.-l. At the same 
time, the spin-wave heat capacity in fields jJ.H > T de
creases with increasing field like exp(-J..I.H/T). There
fore in a sufficiently strong magnetic field the entire 
spin heat capacitance is determined by the local spin 
flips. In fields J..I.H > SVo the heat capacity decreases 
exponentially with increasing field. 

Since part of the spins at T = 0 is directed against 
the magnetization, the magnetic susceptibility X differs 
from zero. 

It is obvious that the susceptibility per impurity is 

. dnl(H) I x=-2S/Lhm--- . 
dH H_' 

Using (18) and (20) we find that 

(27) 

As seen from (23) and (27), the ratio of the suscepti
bility per impurity to the heat capacity CM does not 
depend on the impurity concentration. A temperature 
and a field dependence analogous to those of the heat 
capacity are possessed at T < SV 0 by all quantities that 
are even functions of w prior to averaging over w. For 
example, for the resistivity due to scattering of S elec
trons by localized spins we have 

6.:. = ~2 {-3S'+TW(-flH) XdX [4(S'-Bs'(X» 

+xcth; ((S++)'Sh_2(S++)X-+Sh-2~)]), (28) 

where I is the s-d exchange interaction constant, U is 
the energy of the Coulomb interaction, c..p = po, and 
BS(x) is the Brillouin function. 

Formula (28) is obtained by averaging over w the 
expression for the resistivity due to electron scattering 
by the impurities in an external fieldY] We see that at 
low T the temperature-dependent part of the resistivity 
is proportional to T, whereas the spin-wave scattering 
makes a contribution proportional to T 3/ 2 P,9] With in
creasing H, the resistance due to local spin flips, just 
as the heat capacity, decreases more slowly than the 
spin-wave part. Therefore in sufficiently strong fields 
the temperature-dependent part of the reSistance, con
nected with the spin scattering of the electrons, is due 
to local spin flips. 

5. We consider in this section the properties of an 
alloy whose Fermi surface contains, besides parts with 
large characteristic dimensions (kol ~ rr/ a, where a is 
the lattice constant), also sections with dimensions k02 
that are small in comparison with rr/a. If kQ2n-l/ 3 < 1, 
then the small sections make a ferromagnetic contribu
tion Vf(r) the indirect exchange, which can turn out to 
be much stronger than the oscillating indirect interac
tion Vosc(r) due to the large sections of the Fermi 
surface. 

Let the Fermi surface comprise an assembly of a 
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large sphere-like region and several small sections 
(stubs, necks, pockets, etc.) Since Vf(r) does not oscil
late over distances r ~ k~, and since ko~ > rc, it follows 
that, as in the preceding section, the interaction energy 
of each spin with all the remaining spins coincides with 
the average energy 

Vr(r)-n,I'x(O) -n,I'p, (e,), 

where X(q) and P2(€F) are respectively the suscepti
bility and the summary density of states of the s elec
trons in the small sections. On the other hand, Vosc<r) 
oscillates strongly over distances on the order of rc, 
and therefore the interaction energy of each spin with 
the remaining ones is of the order of Vosc<rc), so that 
for a sphere it is of the order of I2pd€F)ni> where 
PI(€F is the density of states of the sphere. 

Thus, the condition under which ferromagnetic order
ing is produced in the alloy at T = 0 reduces to the in
equality P2(€F) > PI(€F). A similar inequality is ob
tained also when the large section is a cylinder. 

The role of the fluctuations of the ferromagnetic in
teraction was conSidered above. It was shown that the 
linearly-temperature-dependent parts of the thermody
namic quantities decrease exponentially with increasing 
impurity concentration. In the situation considered now, 
the oscillating potential, as we shall show, makes a 
per-impurity contribution inversely proportional to ni 
to the thermodynamic quantities. Therefore the fluctua
tions of the ferromagnetic potential can be neglected. 

The problem reduces thus to an investigation of the 
properties of a system of spins situated in the molecu
lar field Hf = VflJ.- 1 produced by the ferromagnetic po
tential and interacting via the oscillating potential 

cos2k,r 
Vo .. (r)-A (k,r)' . (29) 

For impurities located at the average distance we 
have lJ.Hf » Vosc<r), so that the oscillating potential is 
inSignificant. Their contribution to the thermodynamic 
quantities decreases exponentially with increasing T. 
The principal role is now played by impurity pairs that 
have come close together to such an extent that the en
er'gy of the antiferromagnetic interaction between them 
differs from lJ.Hf by a value on the order of T. 

To calculate the free energy of the pairs we can use 
the Larkin and Khmel'nitskii method of vi rial expan
sionsYOj For the heat capacity per impurity we have 

C 4n'S(S 1) n,AT 
"="9 + k/jI.(HF+H)' 

(30) 

where H is the magnetic field. At H = 0 the heat 
capacity is CM - Tnil. The speCific heat is independent 
of the impurity concentration. 

The longitudinal susceptibility is 

4 S( S+ ) An, 
X- 3 2 1 k/(HF+H) , 

At H = 0 we have X - Oil. The ratio 

C",/xT=n'/3j1.' 

depends only on the effective magneton, i.e., on the 
properties of the impurity and the alloy. 

(31) 

(32) 

It is easy to show that the temperature-dependent 
part of the resistivity, just as the heat capacity, is pro
portional to niT(Hf + Ht2 • We emphasize that both the 
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thermodynamic quantities and the resistivity depend 
little on the external magnetic fields up to fields 
H::::J Hf~ Tc!lJ.. 

APPENDIX 

The potential of the indirect interaction of the impur
ities is gi ven by 

V(r)=]' ~ f.-I.+< e"', (A.1) 
~81t+.-8k .. ' 

where fk is the Fermi distribution function. We calcu-
late the contribution made to V(r) by a Fermi-surface 
section in the form of a cylinder of base radius k and 
height p. We have 

/'Q' sin' pz f 
V(r)=go--' -S d'q.Ld'k.L q.L expi(~-k.L,r.L), (A.2) 

11: z: elL -S"'L 

where n is the volume of the unit cell, and k1 , ql, and 
rl are vectors in the plane perpendicular to the cylin
der axis (the z axis), 

After integration we get 

]'Q'mk' sin' pz 
V(r)= • ,1D(kr.L)' 

n z 
(A.3) 

where 
n 

lD(x) =-T[l. (x)N.(x) +l,(x)N,(x) I. 

JZ (x) and NZ(x) are cylindrical functions. At x « 1 we 
have with logarithmic accuracy 

and at x» 1 

1 1 
lD(x)=Tln~, 

ID () siD. 2x 
x = (2x)' . 

This asymptotic form was obtained in(11. 

1) An expression for VCr) in the case of a cylinder is given in the 
Appendix. 

I L. Roth, H. Zeiger, and T. Kaplan, Phys. Rev. 149, 
519 (1966). 

2p. W. Anderson, B. I. Halperin, and C. M. Warma, 
Philos. Mag. 25, 1 (1972). 

3!t. W. Cochrane, F. T. Hedgcock, and J. O. Strom
Olsen, Phys. Rev. B8, 4262 (1973); M. Rodot, J. LewiS, 
H. Rodot, and G. Villers, J. Phys. Soc. Jap. 21,627 
(1966); J. E. Lewis and M. Radot, J. Phys. (Paris) 29, 
352 (1968). 

4D. K. Finenmore, L. J. Williams, F. H. Spedding, and 
D. C. Hopkins, Phys. Rev. 176, 712 (196B). 

5 B. R. Coles, Amorphous Magnetism, Proc. Int. Symp. 
on Amorphous Magnetism, 1972, N. Y., London, 1973. 

8 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 
(1954). 

7S. L. Ginzburg, I. Ya. Korenblit, and E. F. Shender, 
Zh. Eksp. Teor. Fiz.64, 2255 (1973) [Sov. Phys.
JETP 37, 1141 (1973)]. 

ST. Kasuya. Prog. Theor. Phys. 22, 227 (1959); M. T. 
Beal-Mond and R. A. Weiner, Phys. Rev. 170, 552 
(1968). 

vo. L. MillS, A. Fert, and I. A. Campbell, Phys. Rev. 
(B] 4, 196 (1971). 

10 A. I. Larkin and D. E. Khmel'nitskii, Zh. Eksp. Teor. 
Fiz. 58, 1789 (1970) [Sov. Phys.-JETP 31,958 
(1970)]. 

Translated by J. G. Adashko 
121 

I. Va. Korenblit and E. F. Shender 569 




