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The magnetic susceptibility of bismuth and of its alloys with antimony is calculated. Its dependence on 
temperature and on the magnitude and direction of the magnetic field is found. The resulting features of 
the susceptibility are determined by the structure of the electron energy spectrum. 

PACS numbers: 75.30.C 

INTRODUCTION 

The magnetic susceptibility"of semimetals of the 
bismuth type has been studied theoretically and experi­
mentally in many papers. The interest in the magnetic 
properties of semimetals is explained, firstly, by the 
fact that the conditions for observing oscillations in 
their susceptibilities (the de Haas-van Alphen effect) 
are most favorable by virtue of the small cyclotron 
masses. Secondly, the constant part of the susceptibil­
ity of Bi is an order of magnitude greater than the 
typical value in metals, given by the Pauli-Landau 
formula: 

Xo= (_e )'!!!.. (£_~). 
2"c m 4 3 

(1) 

(Throughout, we shall use a system of units with 
11 = 1.) The semimetals are diamagnetic, although their 
effecti ve g-factor, appearing in (1) and equal to twice 
the ratio of the spin splitting of the levels to the cyclo­
tron splitting, is close to 2; in this case, it follows from 
(1) that xo> O. 

The correct qualitative explanation of the anomalous 
diamagnetism of Bi was given by Adams[ll, who drew 
attention to the fact that the nearby filled energy band 
makes a large contribution 

(2 ) 

to the susceptibility, where Eo is an atomic-scale en­
ergy and y is the small energy gap at the Brillouin-zone 
boundary. A quantitative calculation of the susceptibility 
of bismuth and of its alloys with antimony was carried 
out by Buot and McClure[21. They used the model pro­
posed by Lax for the energy spectrum of the electrons 
in Bi: 

£ (1 +8/£,) =a.;.p,p" (3) 

where aik is the tensor of the inverse effective masses, 
Eg is the width of the gap, and the momentum p is 
measured from the point L of the Brillouin zone. It was 
found that the susceptibility of the filled band is deter­
mined by the electrons with large momenta, when the 
dispersion law (3) emerges into the linear part E ~ p. 

In order of magnitude, the susceptibility is 

( ev )' dp ( e )' E, x- - S---- - v\n-, 
nc £ (p) nc £, 

(4) 

where v is of the order of the usual velOCity of elec­
trons in metals. Buot and McClure(2) used the energy 
Eo, cutting off the logarithmic integral, and also the 
quantity 109, as adjustable parameters, achieving agree­
ment with the measured value of X in BiSb alloys[31. 

A comparison of their results with those of Adams(l] 
shows that the susceptibility depends essentially on the 
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behavior of the electron spectrum at large momenta. 
In Adams' work the cyclotron mass far from the Fermi 
level is constant, and the corresponding integral (cL 
formula (11) below) diverges linearly. In the work of 
Buot and McClure, at large p the cross-sectional are 
of a constant-energy surface is S ~ p2 ~ E2 and the 
mass m"~ aSia E ~ 10, which leads to the logarithm in 
formula (4). 

The actual form of the spectrum over a wide range 
of momenta is not known. For this reason, a complete 
calculation of the susceptibility is impossible. It is of 
interest to calculate the particular contribution to X due 
to a small region about the points L, where a certain 
expansion of the spectrum is valid. 

In Lax's model, as can be seen from (4), the suscep­
tibility has a logarithmic singularity in Eg. However, 
the Lax model gives a poor description of the depend­
ence of the electron energy on the momentum compon­
ent pz in the direction of elongation of the electron 
constant-energy surface. In a paper by Abrikosov and 
one of the authors[4j a theory of the group-V semi­
metals was constructed, starting from which Abriko­
sov[S1 showed that for small spacing between the two 
bands at the point L the spectrum has the form 

( 8, p,' ) ( £, p,' ) " " £-2- 2M, 8+2"+ 2M, =v.P.+v.P .. (5) 

where Mi and Vi are positive constants and Eg depends 
on the concentration of Sb and the pressure. 

It can be seen from (5) that one of the principal values 
of the tensor aik in (3) is equal to zero, while the de­
pendence of the energy on the momentum in the corre­
sponding direction is quadratic. A spectrum of the type 
(5) was first proposed by Cohen[6], who, in order to de­
scribe the experimentally-known large anisotropy of the 
electron Fermi surface, put azz = 0 in (3) and took the 
dependence on pz into account by the kp-method. 

In the present paper we calculate the magnetic sus­
ceptibility of substances of the Bi type in the framework 
of the theory of[4]. It is shown that when the field direc­
tion is perpendicular to the trigonal axis, the contribu­
tion to the susceptibility of the electrons of the two 
bands described by Eq. (5) is determined by a small 
region about the extrema, Le., does not contain addi­
tional unknown constants apart from the parameters in 
(5). The result depends on the mutual arrangement of 
the bands-direct kg> 0) and inverted (Eg < 0). The 
treatment is carried out both for weak fields, when the 
susceptibility does not depend on the field, and for the 
Ultra-quantum limit, which is attainable, e.g., in pure 
bismuth in fields H> 10 kOe. It turns out that in the 
latter case the susceptibility is determined by the filled 
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band (X<[) - _H- I/ f ) and does not depend on Ego Because 
of the small size of Eg' in a weak field the susceptibil­
ity xi) - _T- I/2 in a broad range of temperatures 0 

Besides the closely-spaced bands (5), another filled 
band figures in the theory of Abrikosov and one of the 
authors[4], separated from (5) by a distance y that is 
large compared with Eg but small on the atomic scale. 
The contribution X~~ of this band and the filled bands at 
the point T is found to be of the order of -xoEoiY 
(which coincides with Adams' estimate (2» and depends 
weakly on the state of the crystaL With a magnetic field 
parallel to the Ca axiS, the contribution of the bands (5) 
to the susceptibility X II turns out to be small compared 
with the susceptibility of the other filled bands, at both 
the L- and T-points. Therefore, the quantity Xii, like 
xt), is practically independent of the composition of the 
alloy, the temperature, etc 0 

1. WEAK·FIELD SUSCEPTIBILITY 

The magnetic susceptibility is determined from the 
dependence of the thermodynamic potential on the mag­
netic field: 

eHT [ ( l1-e!~ )] 
Q (H) = - 4n'c ~ S dp In 1+ exp --T- , (6) 

n,' 

where the summation is performed over the Landau 
number n and the energy-band index I] (with the spin 
taken into account), and the integration is performed 
over the momentum component p along the field direc­
tion. 

The energy levels E~p) near the point L in a mag­
netic field were obtained by the authors[7] and are de­
termined by the equation 

S(e, p) =2neH (n+'/2±g/4)/c, 

n ( e, P') ( e, P') S(e p)=--- e----- e+-+--
, Ih.lv.v, 2 2M,h,' 2 2M,h." 

(7 ) 

(8 ) 

where hz is the cosine of the angle between H and the 
direction of elongation of the surface (5). The quantity 
S( E, p) is the section of the surface (5) cut by a plane 
perpendicular to the magnetic field; p. h = p = const. 
The two signs in (7) correspond to the two spin projec­
tions, and the effective g-factor differs from 2 by 
small quantities of the order of Eg / Mv2 (M - Mi, 
v - Vi). The formulas (7) and (8) are valid for I hz I 
» (Eg/Mv2)1/2o We emphasize that the expressions (7) 
and (8), being quasi-classical in form, are valid for all 
n, including n = O. 

In the limit of weak fields, we can calculate to order 
H2 using the Euler-MacLaurin formula: 

- - 1 1 
~F(n)= S F(n)dn+ 2 F(0)- 12F'(0). (9) 
n_1l 0 

Integrating the first term in (9) by parts and using (7), 
we obtain for the H-dependent correction to n: 

(0) 

Q(H)= - (2~)3 ~S dp {J def(e) [S(e,p)± n~: g] 
a (0') 

-'P (10) 
+ n/(!'~ ) (eH )'} 

6m(0') c ' 
'p 

m(o, __ 1_ f)S(e,p) I 
OJ! - 2n: ae n_O 

where f(E) is the Fermi distribution function. 

Differentiating (10) twice with respect to H, summing 
over the spin and letting H - 0, we find 
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and the dependence E&I]) is determined from the condi­
tion 

S(e, p) =0. (12 ) 

From formula (11) we obtain the correct expression 
(1) for the susceptibility of a free -electron gas. The 
sign of the susceptibility of substances of the Bi type is 
explained by the dominant contribution of occupied 

states with negative mass m~O') and g;>:< 2. 

2. SINGULAR PART OF Xi11lN A WEAK FIELD 

Using (8) we find the cyclotron mass near the pOint L: 

1 as(e,p) [ p' _I _,]/ (13) 
m(e,p)="2n--a-e -= e + 4h.' (M, -M,) Ih.lv.v,. 

The condition (12) and formula (8) determine the elec­
tron spectrum in the two bands as H - 0: 

e"'=~+~ (') e, p' (1 ) 
• 2 2M,h,' , e, =-2-2M,h," 4 

Substituting (14) into (13), we obtain 

m~""=±(e,+ .;: .. )/2Ih.lv.v., 

where M"l = Mil + Mi/o 

Summation over the three points L in the Brillouin 
zone can be performed by going over to integration over 
p/l hz I in (11), As a result, an expression arises that 
does not depend on the field direction in the basal plane, 
and a factor ~2 appears, Neglecting the deviation of g 
from 2, we obtain 

.. 0<1 (1) (2) 

.~,,=(_e_)- v.v'Sd /(e. )-/(e.) 
L nc 2 0 P e,+p'/2M' (15) 

e;"" = ±(e,/2+p'/2M ... ). 

The expression obtained depends on T, Eg and the 
chemical potential jJ.-quantities which can be varied in 
an experiment. For T = 0 the integrand in (15) vanishes 
in regions of p in which carriers are either present or 
absent in both bands simultaneously: f(Ep') = f(E~'). 
Therefore, with the direct arrangement (Eg > 0) of the 
bands and for jJ. > Eg/2 (the current carriers are elec­
trons), we have 

xi" = _ (_C_)' v.v, ('!!-')';'['::'-arctg ( M,(~-e,l2) )'1']. (16) 
. :tc 2e, 2 J e, 

The case jJ. < -Eg/2 (holes) is described by the formula 
obtained from (16) by replaCing MI(jJ. - Eg/2) by 
M2(1 jJ.1 - Eg/2) in the argument of the arctangent. 

It can be seen from (16) that as the number of car­
riers in the bands decreases the diamagnetism in­
creases, attaining the limiting value 

(17) 

Formula (17) describes the dependence of the suscepti­
bility of semiconducting BiSb alloys at low temperatures 
in a weak field. The Singularity in Eg in (17) is stronger 
than that obtained by Buot and McClure[21. 

The current carriers in the bands are paramagnetic, 
and for large concentrations of them (I jJ. I » Eg) the 
diamagnetism decreases with increasing jJ. according 
to the law (for definiteness, we assume that jJ. > 0): 
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,t) ( e )' v,v.M 
%.L = - -;;- (2M.f,I)'Io" (18) 

Another interesting case when the final answer can 
be obtained in explicit form is the limit T» Eg. Il. 
which, in alloys with small Eg and J1.. can be attained 
at moderate temperatures. In this case we obtain 

With the inverted arrangement of the bands and at 
T = 0, in the case I III < I EgV2 we obtain from (15) 

(19) 

1')= _ (_~)' v,v. (~)"'{In I M."'(le,1/2+f,I) "+IMe,I'" I 
X.L :Ie 2 2je,j M,"(le,ll2+f,I)"'-IMe,I'" (20) 

+(M,-+M., f,I-+-f,l)}. 

If Il> I Egl/2, the susceptibility is given by formula (20), 
in which we need only retain the first term in the 
brackets, while for Il < -I Egl/2 we need retain only the 
second. Naturally, (20) goes over into (18) at high elec­
tron concentrations (I J1.1 » I Eg D· 

The susceptibility described by formula (20) as a 
function of the chemical potential has singularities. 
Near the point J1. = I Egl/2, we have 

(1'_ (e)' v.v. I M I'j,{ M."+M" 
1:.:. -- -;:;~ -2- 2e, In M."'-M' (21) 

+2/ M'(I~~2-f,l) 1"'0 (I~,I ~ f,I)} 

and the derivative aX/all becomes infinite. There is a 
stronger singularity at the band-intersection point 

_ le,1 M.-M. 
I1=TM,+M. ' 

near which 

'I.~j) = - (...!....)·I ~ I "·v,v.in /-.!!...I· 
:Ie 2£, 1'-11 

(22) 

The singularities (21) and (22) of X~l' are connected 
with tile topology of the Fermi surface in the absence of 
a magnetic field: the first, (21), is due to the change in 
the connectivity of the surface as we pass through the 
saddle point and is similar to the singularity that we 
discovered earlier[7] in the density of states. The sec­
ond, (22), arises when the Fermi level passes through 
the conical point, in the viCinity of which the cyclotron 
mass is small. The singularities in the susceptibility 
are smoothed out at finite temperatures; in particular, 
the magnitude of the logarithm in (22) is of the order 
of In (I Eg I/T). An analogous role is played by the 
interaction of the electrons with each other and with 
impurities. 

3. SINGULAR PART OF xl111N A STRONG FIELD 

We shall consider the variation of xl{) with increase 
of the magnetic-field intenSity. So long as the cyclotron 
frequency w = eH/cm(E, p) is small compared with Il 
and T, the monotonic part of xt' is determined by the 
formulas of Sec. 2, and the osclllating component ap­
pearing in the range III k > w > T is given by the Lif­
shitz-Kosevich formula[ I. The monotonic part of the 
susceptibility is substantially changed when w » I J1. I, 
T, I Eg I. Then it is convenient to separate out the con­
tribution of the completely filled band in formula (6), 
adding (for Il > I Eg 1/2) or subtracting (for iJ. 
iJ. < -I Eg 1/2) the term with n = O. The summation over 
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the levels of this band is conveniently performed using 
Poisson's formula: 

(23) 

If we take into account that, to good accuracy, g = 2, 
the summation over the spins in formula (6) reduces to 
the result that each term with n '" 0 appears twice and 
the term with n = 0 appears once. The prime in (23) 
allows for this. Using (23), summing over the spins and 
integrating the terms with /I '" 0 by parts over n we ob­
tain 

eH ~S S- sin2nnv aen~ 
Q (H) = Q. - 2:1'e~ dp dn f(enp)--;;:;-a;;-_. . 

ell S (I) (I) I') (0) 
- 4:t'c dp(f,I-eop)f(e .. )-(I1-e .. )(1-/(8 .. )], 

(24) 

where, of the two spin branches, we choose for Enp the 
one which corresponds to the minus sign in front of g 
in (7); EDpZ ) are given by formula (14); no is the H-

independent potential of the completely filled band and 
the effect of the magnetic field on this band is taken into 
account by the sum over /I. The derivative aE/an ap­
pearing in (24) is calculated by means of (7) and (8): 

II •• 'h 

~=-')..,{(£,+-p-) +4'A'n]- , an 2Mk.' 
')..·=2eHv.v.lk.lle. 

Formula (11), which we used in a weak field, is obtained 
if we integrate the second term in (24) by parts and take 
into account that when E is differentiated with respect 
to n the factor ;\.2/(Eg + p2/2Mh~)2, which is small in a 
weak field, appears. If ;\. » I Eg\, T, then p - (;\'M)l/2 
are important in the second integral in (24); we can 
then omit Eg and replace the distribution function by 
unity. We obtain 

O(H)= O.+Dlk.HI'I, 

e~~~;1 {(2Jf.)''' I f,I- ~ I ~'e (f,I- ~ )+(f,I-<- -f,l. M. -<- M.)}. (25) 

D = (~) 'I, M"'(v.v.)" r (--.!...) ~ (~) cos"::' 
e :1""2'" 4 4 8 . 

The numerical coefficient that has appeared here is 

:1-"" 2-'" r ( ~) ~ ( :) cos ; = 0.0566. 

In formula (25) it is necessary to sum the contribu­
tions of the three pOints L. We recall that hz is the 
cosine of the angle between the field direction and the 
direction of elongation of the "ellipsoid" situated at one 
of the three L-points. The dependence on the field direc­
tion, which vanished in a weak field, remains in a 
strong field. It can be detected, evidently, in measure­
ments of the derivative of the torque with respect to the 
field direction (a 2n/acp2). 

In the semiconducting region (Eg > 0 and I J1. \ < Eg/2), 
the expression in the curly brackets in (25) is absent. 
The magnetic moment and susceptibility are determined 
as follows: 

M~t)=_2H"'D \'1111.1'/' 
~ 4 ~:' zit) = - ~: H-':'D L: 111.,1'1,. (26) 

L L 

The field-direction dependence contained here is weak: 

~ 111.1'/,,,,, 'f 
k.-..l: z· 

L 

In the semimetallic region, besides the magnetic 
moment (26) there is the moment 6M(1) due to the 
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"free" carriers with n = 0, which arises on differentia­
tion of the expression in the curly brackets in (25) with 
respect to H. For example, with the direct arrange­
ment of the bands (lOg> 0), 

The quantity (27) depends on the field direction, 
since 

(27) 

where cp is the angle between H and the bisector axis 0 

In addition, the chemical potential Il depends on the 
direction and also on the magnitude of the field o This 
dependence is determined from the electroneutrality 
condition 0 Owing to the large difference in the cyclotron 
masses of the electrons at L and of the holes at T, 
there exists a wide range of fields for which the holes 
at T are in quasi-classical levels and the electrons at 
L are in ultra-quantum levels. In this case, for 
Il > €g/2, the electroneutrality requirement gives 

where ET - Il is the Fermi-hole energy, reckoned 
from the bottom of the valence band, and mil and ml 
are the cyclotron masses of the holes for H parallel and 
perpendicular to C30 

In the limit of fields that are sufficiently large but 
for which the condition for the holes to be quasi-classi­
cal is still fulfilled, and with neglect of the deviation of 
the electron g-factor from 2, (Il - €g/2)1/2 ~ WI and 
oMI) ~ H-s • In such fields the contribution of (27) to the 
susceptibility turns out to be small compared with that 
of (26): 

(I) ., 

6X.L _ [ (_C_) 'I, mllm.L'(ET -e,l2)' ] '. 

xi' eH Mv 

4. REGULAR PART OF THE SUSCEPTIBILITY X(2) 

Inasmuch as the spectrum near L in a magnetic field 
parallel to Cs is unknown, we shall give an order-of­
magnitude estimate of the contribution of the points L 
to the susceptibility using (11). Neglecting the 6° de­
clination of the electron "ellipsoid" from the basal 
plane, and also the difference in the masses MI and M2, 
we have for the area of a section of the surface (5): 

2 :t 2 l/Z 

S(e. p,) = -;) [e' - C; + ~) - v,'p,'] dp,. 

Weare interested in the mass 

m (E, p,) = n:, S [8' - (e~ + :~ ) , - v;p,' r' dp" 

calculated with the condition (12). If 109> 0, the section 
vanishes when 10 has the following relationship with Py: 

e'=e,'/4+v,'p,'. 

The corresponding value of the mass is equal to 

[ 2M ( 8: " )] '1, _I m.,=- ~ 4+v,P, v,. (28) 

Substituting (28) into (11), we obtain an estimate of the 
contribution of the points L to X II: 

1 (ge)'(E,),/, vp 
XII,L-- ~ - In-, 

8 nc M 8g 

(29) 
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where p ~ y/v is the maximum value of the momentum 
at which it is still possible to use the expansion (5), and 
g is the characteristic magnitude of the g-factor for 
H II C s• Since a typical value of the logarithm in (29) is 
of the order of a few units, the quantity (29) is small 
compared with (17), principally by virtue of the small 
size of €g/Mv 2, which in semimetals does not exceed 
a few per cent. 

Besides the states describable by Eqo (5), the deeper 
levels near the point L, considered earlier[41, can make 
a contribution to the susceptibility Xllo This contribution 
is analogous to the contribution (which we shall estimate 
using the known spectrum[41) of the deep levels near the 
point T to the susceptibility xt). In the lowest band the 
area of the section for H 1 C 3 can vanish at PH = [10 2 
- (y + t..)2]/b2, near which 

S(E'PH)=~b-[8'-(1+6.)'-PH'bl ( ,1~ )''', 
a E -1 -11'. 

where y, t.., a and b are parameters describing the 
spectrum near T. Differentiating S, we find the mass 

(30) 

The momentum-independent mass (30) leads to Adams' 
estimate (2); the quantities y and t.. are of the same 
order. 

The contribution of the lower band at T for H II C 3 

is estimated in a similar way. The corresponding sec­
tion is 

S(f, p,} = :' (e'-t.'-y'+a'p,'-2[ 1'1'.' +(e'-1')a'p,'l"'} 

and the mass mpz - -t../trb2 for pz» y/a, whence we 
again obtain the estimate (2) for X II • 

Thus, the contribution of the point T to Xl and 
XII is determined by the large momenta and therefore 
depends little on the temperature and the carrier con­
centration in the vicinity of T. 

DISCUSSION OF THE RESULTS 

The monotonic part of the susceptibility of semi­
metals of the bismuth type and of the semiconducting 
alloys based on them can be represented in the form of 
a sum of two terms. One of these, X(2) , depends little on 
the temperature, the composition of the alloy and the 
magnitude of the field. The contribution Xl:!) is esti­
mated by formula (2) and arises from fairly deep states, 
both at the T _ and at the L-points of the Brillouin zone, 
the relative proportions of these depending on the field 
direction. The greatest interest lies in il). This term 
appears only when H 1 Cs and is determined by a small 
region about the points L. The susceptibility x(l) de­
pends on the temperature, the magnitude of the magnetic 
field and the parameters characterizing the charge car­
riers at the L-points. An estimate of the ratio x(l) / xlZ! 
by means of (2) and (17) shows that in bismuth the regu­
lar part and singular part of the susceptibility turn out 
to be of the same order. 

The dependence (26) of xt) on the field has been ob­
served in the experiment of [9J. The other singularities 
of xt)-the increase as 109 - 0 (cf. (17» and also in the 
inversion region «20)-(22))-have not yet been investi­
gated experimentally. 

We take the opportunity to thank N. B. Brandt and 
M. V. Semenov for communicating the results of the 
experiment before publication. 
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