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We study the problem of the transformation of an electromagnetic wave into a sound wave in 
superconductors. We consider the limits of London and Pippard superconductors. We show that the main 
contribution to the transformation coefficient in Pippard superconductors comes from volume forces, while 
the surface forces play a lesser role. This also leads to an appreciable weakening of interference effects. 

PACS numbers: 74.20.Gh 

The problem of the transformation of an electromag­
netic wave (EMW) into a sound wave has been studied in 
a number of papers.(1-4] However, much still remains 
unexplained, in particular, the justification for the ap­
proximations used in the elasticity equations for super­
conductors with allowance for the forces that the elec­
trons exert on the lattice. In this connection a number 
of models which have been invoked to explain the ex­
perimental data(2] on the transformation coefficient at 
low temperatures appear to be unconvinCing. It is there­
fore necessary to analyze the whole problem altogether 
more rigorously. 

We conSider the case usually realized in an experi­
ment,£l] when an EMW of frequency wand vector poten­
tial Ax{z) is normally incident upon a plane supercon­
ducting plate of thickness d(d > 1i, d < l; Ii is the pene­
tration depth of a weak magnetic field and l the electron 
mean free path). The z-axis is at right angles to the 
plane of the slab which occupies the region 0 < z < d and 
is directed into the dielectric half-space. We study here 
a sufficiently pure superconductor (l > ~ 0, oil « 1). 
Other limits as far as the impurity concentration is 
concerned are discussed separately. The Hamiltonian of 
the system has the form 

H= S d'xH(x), H(x)=H.+HBCS, 

H.= [(j)+(x')o, C~ (P-o,+A(X) )'-Il+U(X) ) (j)(x) L_: (1) 

HBCS =~(j)+ (x) o.(j) (x), 

U(x) is the potential connected with the scattering by the 
randomly distributed impurities, c;o{x) are electron 
operators in the Nambu representation: 

and ax and az are Pauli matrices. 

The Hamiltonian of the interaction with the ion oscil­
lations can conveniently be written in a system of co­
ordinates moving with the deformed lattice (see below). 

The basis of the following analysis is given by the 
Kontorovich equations(5] which describe the oscillations 
of the ions under the influence of an EMW and the forces 
which the electrons exert upon the lattice. These equa­
tions are the appropriate ones to describe both the 
normal and the superconducting(4] state of the metal. 
One obtains them very simply by USing the local con­
servation laws[4] and they have the following form: 

Pii.-~an=-<-iWmj.(xt)+l-'t .. (xt) ), 
do oz (2) 
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i I x{) = _1_(;;,_;;,.) «(j)+ (x't)cp(xt) -6(x' -x» 1.·_. - -=-- n (xt)A.(xt), 
2m m 

T,., I x) = - _1_< (IJ x- V,,) m (V.- V,,),. «(j)+ (x')a,cp (x) +1\ (x' -x» 1,,_.) 
~m 

-6m" Ig-'I.l', n(xt) ={cp+ (xt) a,cp (xt) -6 (x' -x) L'_1. (3) 

where axz is the stress tensor and g the electron­
electron interaction constant. Terms quadratic in the 
field have been omitted in (3). 

It is important that the averaging in (2) and (3) is 
over the non-equilibrium state which is described by 
the total Hamiltonian (1) in the laboratory frame of 
reference (moreover, the usual averaging over the ran­
dom distribution of impurity atom is performed here). 
It is convenient to go over to the comoving frame of 
reference for the explicit calculations. It is well 
known[6,7] that the new Hamiltonian in that frame has 
the form 

1J'=1I+1I .. " 

lhnt= S "Axt) (;,umj.(xt) - !: ,,,(xt) ) d'x. (4) 

The operators in (2) and (3) are then also transformed. 
As a result the right-hand side of (2.) takes for trans­
verse sound oscillations the form 

(5) 

where No is the number of electrons per unit volume. 

In the approximation that is linear in Hint and in the 
electromagnetic field we get correlators proportional, 
respectively to ux(xt) and Ax(xt). All terms containing 
Ux must be transferred to the left-hand Side of Eq. (2) 
and if the sound wavelength A > ~ 0 (~o is the coherence 
length) they enter into the renormalization of the elas­
ticity moduli. If A < ~ 0 it is necessary to take into ac­
count the dispersion of the elastic moduli. Neglecting 
furthermore terms ~ m/M we get the equation 

d'u 1 
i.','u,+--:=-,/(z), /(z)=!,+/" 

dz- ps-
(6) 

c ~ dk 
/;=-iwm--J :-e"'A(k)Q(kw), 

4JTe 2;( 
(7) 

(8) 

where we have expressed the stress tensor in terms of 
the ion displacement 

a, , =s'pdu.ldz; k,=wls; 

s is the sound velocity in the superconductor, p the 
metal density. and A(k) the Fourier transform of the 
vector potential. When writing down (7) and (8) we 
neglected a small contribution from the ion current to 
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A and also neglected the damping of the sound which in 
a superconductor is also small. The range of frequen­
cies used for studying the transformation of EMW into 
sound is usually of the order of 108 to 109 Hz, Le., 
w « ~ (0). The frequency dependence of the potential 
A(k) can thus be neglected. Q(qw) is the kernel in the 
expression for the current j(q) = -(C/41T)Q(qw)A(q). 
The correlator in the formula for fg can be evaluated 
simply and has the following form: 

([ TXh j.1 > •.• =-( [T,,, jxl) _,.=-wN n ~(1-g(ql), (9) 
q 

where g(x) = r2{X-1 + x- 3 } arctan x _ X-2}, 

N =N f~ dx 
• 0 ch'[x'+(.1(T)/2T)']" , 

(10) 

The force fg is connected with an incomplete drag of 
the electrons by the lattice. In that case after the scat­
tering the electron velocity is on the average the same 
as the lattice velocity, Le., the scattering is inelastic 
and can be connected only with normal excitations and 
this is described by the appearance of the factor Nn . 

We note that in the limit of a normal metal 

iro "vue:!t 
j(q)=-o,g(ql)A(q), 00=--, 

c m 

and the expression for f(z) takes the form:[B) 

[ j (z) ] 1 aA 
j=-e ENo-~(1+iUlT), E=- -;;71' 

where T is the electron mean free flight time. 

The boundary conditions for Eq. (6) at the free sur­
face and at the surface separating the superconductor 
from the dielectric (z = d) have the form 

dUx, 1 
-,_ =~(T .. (O», 

("" : __ 11 p~ 

= PIS,' du, 
ps' do 

dux, 1 - - - .. (T.,(d» 
dz ,~d ps' 

u, (d) =lIr(d), (11) 

where p 1, s 1, and U1 are the density of the dielectric, 
the sound veloCity, and the amplitude of the ion oscilla­
tions in it. 

The amplitude of the oscillations in the dielectric 
U1(Z) satisfies an equation such as (6) without a right­
hand Side. The solution of this equation is a traveling 

-) ik2Z sound wave: U1(Z = u1e (we drop the time factor 
everywhere). 

We write down the formula for the transformation 
coefficient :[ 1,111 

a=f wd/ 1 1" W= 2 P,S,(~'lll,(d)I'. 

P is the Poynting vector of the incident EMW, 

a="!"J Il({J)k.) I' dj 
2 z'p , 

where 
d 

[(wk.) = J f(z)cos k.z dz+( T .. (0»- (cos k,d) (T •• (d», 

(12) 

o 

(Z') -'=p,s,[ (p,s.) , cos' k,d+ (ps)' sin' k,dl-'. 
(12a) 

The integration of I(wk1) in a is over the surface of the 
film. 

In the low-temperature region w « T « ~ (0), where 
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it follows from (10) and (11) that the surface forces 
(Txz(O» and (Txz(d» are small, the nature of the re­
flection of the electrons from the surface is not very 
important for London superconductors (0 > ~o) and the 
result for a is the same as the one obtained earlier ,£4) 

When the temperature approaches the critical one the 
increase in the number of normal excitations and the 
law for their reflection from the boundary of the slab 
strongly affects the transformation coefficient. In what 
follows we shall assume that the scattering from the 
surface is diffuse. In that case the vector potential 
A(k) has the form[9) 

A(q)=i6H,L(q), (13) 

. . ..' [ Jt q f~ In(y'+Q(y» ] }_(q)~(q-+Q(q)-exp, --- .• dy, 
2 Jt, y'-q-

L(q)=-L'(-q); L(q)=_I- if 6;"~.; (14) 
. q-i/b 

l(X)'" [3Jt X ] L(q)=- --. expi ---q>(x) 
qo l+x·' 4 Jt 

2 ( C In(Hy') 
q> x)=J---dy. 

y~_x"l 
x=.i.. > 0, 

q, 
q,-' = -=.6, 

l'3 o 

6=6 (T=O) ( .1 (T) th .1 (T) ) -'f,. 
.1 (0) 2T 

(15) 

The function <p(x) has been tabulated by ShapovalPl 

From (13) and (11) we get for the surface forces the 
expressions 

6' 
(T .. (O) )=-iweH'2:Nnam. 

6' 
(T .. (d) )=iweH, Z'Nnbm, 

(16) 

(17) 

where m = 1, 2 and correspond to the London and 
Pippard limits. When 6> /;0 we get a1 = :YBl/O, b1 "" 0, 
(l/O« 1); 

(18) 

The last formulae were obtained using the fact that 
the mean free path is finite (o/l « 1, d/l « 1 6/ d « 1). 
a1 and b 1 can be evaluated for any l. To do this we 
note that the function g(kl) in the complex k-plane has 
branch points (ill; -i/l) and the integrals determining 
a1 and b1 are found exactly. We do not give here the 
result as it is complicated, but merely note that 
(Txz(d» becomes proportional to (l!d)exp(-d/l) in the 
case l < d. The same estimate is also valid in the limit 
0< /;0' We mention also the values a1 = b1 = 1 used by 
AbelesYl 

We now conSider pure Pippard superconductors. The 
expressions for a2 and bz have the form 

a, = 2 J- dk He l"_(k) 
b Jt k ' 

2 ~ dk 
b,= - -S -[He L(k)cos kd-sinkd 1m L(k) I. 

6 11k , 

(19) 

(20) 

If we use Eq. (15) for Y_(k) in the first integral a 
very small value of a2 follows from a numerical calcu­
lation. The region k ~ 1;</ is thus important in the inte­
gral; the kernel Y_ (k) there differs from the extreme 
of the Pippard limit (15), i.e., a2 turns out to be a 
quantity of the order of o//; 0« 1. The same estimate 
can be obtained in the same way as was done by 
de Gennes. [10] If d» 6, d > /; 0, the main contribution to 
b<l is given by Eq. (15) for Y_(k): 
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8 S· dx (311 X' ) b.=--::- --,-, cos ---<P(x')+F' , 
13Jt, (1+x')" 4 11 1=q,d. (21) 

An asymptotic estimate (y » 1) using the saddle­
point method leads to the result b2 ~ 2.8 (1)1 d)1/2 • For 
sufficiently thick slabs the surface force connected with 
the second surface also decreases and this leads to a 
weakening of oscillational effects for the transforma­
tion coefficient. 

The integral of the volume force f(z) in Eq. (12a) 
can be expressed in terms of a combination of Fourier 
components of the vector potential A(k l) and of the cor­
relators Q(kl) and <[TXZ, jx])klw (where kl is the 
sound wave wavevector) as follows: 

A (k.) + A (-k.) [ -it))mc ] 
2 e 4rre' Q(k.)+ik.<[Tx"jxj>., •. (22) 

As a result, substituting this formula and also (16) and 
(17) into (12) we get for ex 

rr(jj'N 'e'6' ( c ) 
a= Z';'8:TPS H,'d! IL(k.)I', (23) 

L(') N. 21m L(k,) 
,', =-\' (a.+b.,cosk,d)- r, 

• il ~\ 
(24) 

N. em 
F=-,-(l-g(k,l))+-, -, -, QU,,). 

,\, ~.'i'-.\, 
(25) 

The term with F in (24) is the result of the operation of 
the volume forces. 

We consider a few limiting cases. If the sound wave­
length A > ~o the kernel Q(kl) has th€ London form and 
when Ii > ; 0 the quantity L(kd has the form 

L(k,)= ~. (t+rosk,d)- 2F. 6,.-'= he'N., (26) 
"" 1-(k,~,)- "1<'-

As T - Tc we have, taking the skin effect into account, 

in the limit 'J) « T « Ll. (0) we can neglect the contribu­
tion from the surface forces and only the second term 
in the last formula remains. The volume force is equal 
to -iweNoA/cPl The approximation used by Abeles[ll 
corresponds thus to a pure London superconductor. 

At low temperatures most pure superconductors are 
Pippard superconductors. We have already noted that 
the contribution from the surface forces in them is ap-
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preciably less diminished and the transformation coef­
ficient is determined by the volume forces. If, as be­
fore, the condition A > 1;0 holds we get for L(kl) 

L(k.)=2 ~L [(k,6L )'+t]-', (27) 

In the limit A « I; 0 we must take into account the 
dispersion of the elastic moduli and the problem be­
comes more complicated. For qualitative estimates we 
can use Eq. (24) with the function Y_(k) given by Eq. 
(15). 

We note in conclusion that the generation of sound by 
EMW in superconductors is appreCiably weaker than in 
normal metals and is of interest solely as leading to an 
additional contribution to the surface reSistivity at low 
temperatures. This last fact plays an important role in 
superconducting waveguides and resonators. 

The author thanks Y. F. Garabazhia for help with the 
numerical calculations. 
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