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1. INTRODUCTION 

As is well-known, as the temperature is lowered 
cholesteric liquid crystals (C LC) undergo a transition 
from the uniform isotropic phase to a spiral phase (SP) 
characterized by a spatiall¥ nonuniform distribution of 
the orientations of the molecules. This is the only ex­
ample of a phase transition in liquid crystals in which 
the symmetry-breaking is the same as in the crystalli­
zation of ordinary liquids. However, the difference from 
ordinary crystallization are very important. The most 
important of these is the smallness of the heat of transi­
tion and of the discontinuity in the order parameter, and 
also the extremely large magnitude of the period L of 
the structure compared with the intermolecular dis­
tances a. The small magnitude of the ratio a/ L leads 
to the result that the SP of a CLC far from the transi­
tion point has, at distances r « L and with accuracy 
(a/ L)<l, the structure of the uniform ordered phase of a 
nematic liquid crystal (NLC). In particular, the SP of a 
CLC is described, as in a NLC, by one director n, 
which undergoes a slow rotation, with period L, about 
the axiS of the spiral. 

It is clear that this picture is also preserved near 
the transition point, if the discontinuity of the order 
parameter is large. We shall call such a transition an 
orientational transition. In addition, as will be shown in 
Sec. 2, there exists a broad region of values of the C LC 
parameters in which the discontinuity of the order 
parameter is small. In this case, in the vicinity of the 
transition pOint the structure of the SP of the C LC will 
differ substantially, even at short distances, from that 
of a N LC. In particular, the structure of the SP can no 
longer be described by one director. 

We shall call this type of transition a structural 
transition. If in the uniform phase of the CLC we intro­
duce the correlation length E of the orientations of the 
molecules, which characterizes the NLC-related short­
range order, it turns out that ~ « L in a transition of 
the orientational type whereas ~ » L in the immediate 
vicinity of the transition point of a structural transition. 
In the secolld case the order-parameter correlation 
function displays a sharply pronounced maximum with 
wave-vector qo = 4rr/ L, analogous to the maximum in 
the structure factor of ordinary liquids. 

In the present paper the different types of phase 
transitions in a CLC are inveStigated. The role of the 
critical fluctuations in the vicinity of a structural­
tranSition point is conSidered. A simple method of cal­
culating the critical light scattering and the rotation of 
the plane of polarization is presented. Experimental 
data indicating the existence of phase tranSitions of both 
types are discussed. 
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Some of the results presented below in the frame­
work of a general approach have been obtained 
earlier[l-31. 

2. QUANTITATiVe DESCRIPTION OF THE PHASE 
TRANSITIONS IN A CLC 

1. We shall assume, as is usually done, that the 
phase tranSitions in a C LC can be described with the 
aid of a symmetric traceless tensor Qexj3 = Qexj3(r), 
separated out from the local dielectric -permitti vity 
tensor: 

The expansion of the free-el}ergy functional F{Q} in 
powers of the perturbation Q(r) has the form 

F@=F.+T[dIC,{Q}+dIC,@+Jif.@I. 

dIC,{(J} = ;! J dr[aQ.,'+b(o.Q,.)'+co.Q.,o,Q.,+2de." Q •• 01Q .. J. 

dIC,{Q} = ~! J drQ.,Q,yQ". 

. ). J ' 
Jif.{Q} =41 dr(Q.,')'. 

(1) 

where aex == a/a rex' The presence in fz of the last term, 
linear in the gradients, is aSSOCiated with the absence 
of inverSion symmetry of the CLC molecules. 

We shall study the structure of the Hamiltonian f z• 
In the momentum representation, 

• 1 ~ 
dIC,(Q} = '2 ,,-,.r. T (q) 6~.Q.~,q QT" -q, (2) 

where 

Q.~ V-'I. S Q(r)e-'" dr. 

t.'(q) -(a+bq') 1i.,+cq.q,+2dqL.,(q) , (3) 
L.,(q)=ie ..... q.lq. q=lql. 

It is clear that in the expression (2) we can symmetrize 
and subtract the trace over each pai~ of indices (I, f3 
and y, 15, i.e., replace t~ 01315 by RJj3' where 

4R •• "=t.'Ii.,+t,'Ii.,+t .. '6.,+t.'6., 

-'I. (t.'+t.") 6,,-'1, (t,'+t.') 6.,.+'1 ,t •• 6 •• 6, •. 

It is not difficult to see that the tensor R y~ (q) and the 
correlation function ex 

G.,"(q) =(Q." .Q". _.>. 
calculated in the Gaussian apprOximation, are mutually 
inverse tensors: 

R.,·· (q) G •• " (q) =1.,". 

where the unit tensor I ~ ~ has the f();rm 

1 •• " = 1/26 •• 6,. + '/21i •• 6~- 1/36.,6". 
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The tensor R~~(q) is a Hermitian operator acting in 
the five-dimensional space of the symmetric traceless 
tenso~s ~~. We ~hall find its "eigenvectors" a~~(q) 
and elgenvalues T (q) (s = 0, ... ,4): 

Ra~"'(q)aa~' (q) ='t·(q)a.,.·(q) 

or 

(4) 

The matrix t ~ (q) is the sum of the unit matrix and the 
matrices of projection on to the direction of q and of 
rotation in the plane perpendicular to q. Consequently, 
the solutions of Eq. (4) should have the following form: 

oapt=lal,., oal=la"lp·, 

transitions of the structural type the influence of spe­
cific fluctuations of the short-range order will be dis­
cussed in subsection 5. 

The ordered phase of a CLC is characterized by the 
existence of the mean value Qa/3(r). The symmetry of 
this tensor depends on which of the modes (6) has the 
lowest energy. It can be seen from the formulas (6) 
that the conditions for stability against the appearance 
of large gradients should always be fulfilled: b> 0, 
b + c > 0, b + 4c/3 > O. These inequalities permit an 
arbitrary sign of the coefficient c. For c > 0 the purely 
transverse mode with s = 1 will possess the lowest 
energy: 

't'(q) =a+bq'-2dq='t,+tl.,(q/q,-1)', 

aa~'=i· 2-'1. (lan~+l~na), aa~ '=i· 2-'I'(la'n~+I~'na), 

aa~'=6-'I' (3nan~-/).~), 

(5) where 

where n = q/q, 1 = l(q) = (m + im')/ f'I and the real unit 
vectors m, m' and n form a right-handed set. The vec­
tors 1 and 1* are the basis vectors of the circular 
polarization and satisfy the conditions 

L.;l~=l., L.~l~·=-l., 1'=1"=0, 11'=1. 

The eigenvalues TS(q) are determined by substituting 
the expressions (5) into Eq. (4). We obtain 

't"'(q)=a+bq'+2dq, 't"'(q) =a+(b+c)q'+2dq, 
't'(q) =a+ (b+'/,c) q'. (6) 

The tensors a~i3(q) for any q are a complete orthonor­
mal basis in the space of the symmetric traceless ten­
sors, Le., they satisfy the conditions 

." ~ '() "() [T' a.~·(q)a.~ (q)=/) .. ', ," .. /.~ qaT' q = a~· 

We shall assume in the following that the vectors m(q) 
and m' (q) are chosen such that m( -q) = m(q) and 
m'(-q) = -m'(q). Then 1(-q) = l*(q) and a~i3(-q) 
= a~~(q). 

The expansions of the fields and correlation func­
tions of interest to us have the following form: 

. (7a) 

R:: (q)= .E't'(q)aa,(q)aT"(-q), 

G::(q)=.E ['t·(q)l-ta.~'(q)aT,,(-q). 

(7b) 

(7c) 

It is obvious that CP~q = cpr, Le., the fields cps (r) are 

real. The tensors a~B(q) depend only through a com­
mon phase factor on the way of choosing the vectors 
m(q) and m'(q), i.e., the products a~j3(q)a~Ii(-q), in 
terms of which all observable quantihes are expressed, 
(10 not depend on this choice. These products can be 
represented in invariant form by means of the relation 

(7d) 

However, in calculating scalar quantities it is more 
convenient to make use of the method described below. 

2. We now turn to the investigation of the phase dia­
gram of a C LC. In the vicinity of transitions of the 
orientational type we shall confine ourselves to the 
framework of the Landau theory. The applicability of 
this theory up to the first-order transition point is con­
firmed by the experimental data of the paper[2J, and 
also by the fact that, as a rule, anomalous critical be­
havior of a NLC is not observed. In the neighborhood of 
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t1,=d'/b, 't,=a-.1... q,=d/b. 

For c < 0 the lowest will be the longitudinal-trans­
verse mode with s = 3: 

't'(q) =a+( b+c)q'-2dq='t,+tl.,(q/q,-i)', 
t1,=d'/(b+c) , 't,=a-.1." q,=d/(b+c). 

(We assume that d> O. For d < 0 we must replace 
s = 1 by s = 2 and s = 3 by s = 4.) In the first case the 
ground state of the one-dimensionally ordered phase 
should be a simple spiral (the dielectric-permittivity 
ellipsoid €a(3 = €olia(3 + Qa (3 rotates about the mean 
axis) and in the second case should be conical (the 
mean axis of the ellipsoid is perpendicular to the axis 
of the spiral and the other two axes have an angle of 
precession of 45 0

). 

Assuming that the expansion (1) also describes well 
the properties of a C LC substantially below the transi­
tion point, where the CLC is described by the Frank 
energy, we obtain the well-known expressions for the 
Frank constants: Kll = K22 = b + c, K22 = b. Inasmuch 
as the condition K22 < Kll "" K33 is always fulfilled in 
the known liqUid crystals, we may expect that c > 0 al­
ways. As will be shown below, the experimental data of 
Yang[4J also indicate a positive Sign of c. Bearing 
these facts in mind, we shall carry out certain calcula­
tions for the case c > 0 only. 

3. First we shall consider the one-dimensional 
spiral structures_ We shall determine the equilibrium 
value Qa(3 (r) by substituting the expansions (7a) and 
(7b) into the functional (1) and varying with respect to 
the amplitudes cp~. It is clear, in the first place, that 
terms with q = ±qs'n should exist, where n is the 
direction of the spiral axis, and s = 1 or s = 3, depend­
ing on the sign of c. In addition, generally speaking, the 
zeroth harmonic cpga~B (n) should exist. Generation of 
higher harmonics with q/ qs = 2, ·3, ... does not occur, 
because of the relation a~(3 (n)a~'1i (n) = 0 for s + s' ~ O. 

Denoting cpg:; cpo, CP~sn :; CPs, we obtain 

i-F, i '+ ,+C ,+ Co '+ A. ( '+2 ')' (8) . -T- = 2 't,<p, 't,cp, ·J.tCP, <p, (; J.tCP, 24 <p, <p, , 

where 

't,='t' (0) =a, Co=Sp (a.~')', C,=a.v'a,,'a'a', 

i.e., from (5), Co = 1/16, C 1 = -1/16 and C3 = -5/2.rrr. 
Studying the expression (8) at the minimum, we find 

that the line of phase transitions with cpo, CPs ;e. 0 is de­
termined for s = 1 by the equation 

9~'+2 (9a-1) ~-3a (i-a') =0, 

a=2A.tl..lJ.t', ~=4A.'t.lJ.t'. 
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In this case, 

9 a-a'+~ [t 

cpo= 21'6 1+3a }:' 
3 ( 2 - ~, ) <jJ,'=-<jJo' 1+-Y6-- . 
2 3 l1<jJo 

(10) 

The quantity a characterizes the part of the energy 
associated with the nonuniformity. The quantity {3 de­
termines the relative transition temperature, reckoned 
from the point of absolute instability of the uniform 
phase, T! = O. The relation (10) is fulfilled everywhere 
below the transition point. For D.. 1 = 0 we obtain from 
(10) CP, = ±(%)'/llcpO, which, as is easily verified, corre­
sponds to exact local uniaxiality of the tensor Qa/3(r): 

Q.,- (%.)(,_1/36.,), 

where the director K rotates with period L = 4rr/q" 
Consequently, the quantity D..1/ IlCP 0 is a measure of the 
non-uniaxiality of the CLC. This quantity increases 
along the transition line with increase of il, but de­
creases in the ordered phase with increase of cpo, i.e., 
with decrease of the temperature. 

The line of transitions of the orientational type, de­
termined by Eq. (9), is shown in the figure by the solid 
line. For a = 0 we obtain obvious agreement with the 
transition point in a NLC: {3o = %. For a « 1 we have 
{3'" % - a/2. At a = 1 we reach the line (3 = 0 of abso­
lute instability. For a > 1 the boundary between the 
isotropic and the one-dimensional spiral phase lies 
along the second-order transition line f3 = O. Near this 
line, 

<jJ."" (1.,1/1.) 'I., <jJo""'I'.'I1/~" 

i.e., the zeroth harmonic appears only as a perturba­
tion. As a result, in the expansion (1) the cubic part 
Jt'3, which, according to (8), generates terms that are 
odd in cpo, is found to be even in CP,. Consequently, the 
cause of the discontinuous nature of the phase transition 
for a < 1 disappears. The line ({3 = 0, a ~ 1) of transi­
tions of the structural type is shown in the Figure by a 
thick dashed line. 

For c < 0 the phase diagram has an analogous form. 

4. By the Landau theory[5] the line TS = 0 is not 
reached, because of the competition of non-one-dimen­
sional structures with hexagonal symmetry. The energy 
of such structures is easily calculated in the region TS 

« D..s, i.e., {3 « a, since in this case it is sufficient to 
take into account harmonics with wave vectors equal in 
modulus to qs. It is not difficult to convinc e oneself 
that the most favorable structure near the transition 
point is the planar structure with reciprocal-lattice 
vectors ±k" ±kll, ±ks, where \ ki \ = qs and k, + k2 + ks 
= O. The temperature at which this phase becomes 
more favorable is determined from the condition T 1 

= a,llll/18X, where a, F:$ 0.8. The line {3 = 0.8 (3o, shown 
by the dashed-dotted line in the Figure, corresponds to 
this transition. 

The coefficient a, is expressed in terms of the am­
plitudes of the interaction of three and four spiral 

. waves. The products l(k,) 'l(kll) arising in the calcula­
tion of these are determined in the following way: let 
l(kj) = 2-'/ll (mj + imj). We sweep the vectors mll and 
m~ about the direction of k2 until m~ and m~ coincide: 
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I I"'J" h f mll - mll = mb mll - m2. T en, as an eige~vector. 0 

the operator L of a rotation about ka, lz - 12 = lzelCP 2. 

It is obvious that m,' m2 = cos (), where () is the angle 
bet~een the vectors k, and k2 • Consequently, 1, '12 

= e -lCP 2( -1 + cos fJ)/ f2. The fourth -order terms do not 
depend on the angle CP2, and in the third-order terms 
the angles CP2,S are determined from the energy-mini­
mum condition. The phases of the three waves forming 
the structure turn out to be correlated. 

5. It is interesting to investigate the limits, con­
sidered above, of the existence of the SP of a CLC by 
another method, enabling us to establish a connection 
with the low-temperature description of the CLC in 
terms of the Frank energy. 

We write Qa{3(r) in the form 

where the unit vectors m, nand m x n are directed 
along the principal axes of the dielectric ellipsoid, and 
p = YsU~ - 6). We also introduce the parameters Sand 
fJ, related to the independent invariants: 

Sp Q'='/,8' and Sp Q'='/,8' cos 36. 

In this notation the expression (1) for the energy ac­
quires the form 

(F-Fo)/T= f dr(E,+E,) , 

where 
E,=t/,b{[ v (p-p) ]'+ [v (Hp) 1'+[ vpl'} 

+b{~'(n[ '\'X n]-t/zq,) '+tS'(rn[ V'x rn]-t/zq,)'+2ptS 
X(n,iI.m,-thq,[n x rn l.)'+p'( vn) '+tS'( vrn)' 

+~2[nX[ \ x nll'+tS'[mX[ vx m]l'}+c{pn(Vn) +n(n V) p­
-PlnX[ Vxn]]-tSrn(vrn)-m(rn V')tS+tS[mx[v;·:rn]]-Vp}', 

[ 3 ( 2 11 )' E,=8' -A 8+--cosS6 
32 3 A 

+ 2. (a-~, cos' (6 -~) - ..!...I1' cos' 36) 
4 6 18 A . 

Here, as before, it has been assumed that c > O. 

(11) 

(12) 

The energy E, is non-negative and vanishes only in 
the case of a simple spiral: (3, 6 and p are constants, 
and m and n rotate uniformly, with period L = 47T/qlJ 
in the plane perpendicular to the axis of the spiral. In 
the expression (12) we should put 

2 11 
8=---cos36 3 A . 

The transition point ac and the value of fJ c are deter­
mined from the condition 

(13) 

where fJ c is the position of the minimum of the left­
hand side of Eq. (13). This expression has two minima, 
symmetric about the point fJ = 7T/6, if a = 2x D.. 1/112 < 1. 
The choice of one of the minima is determined, depend­
ing on the sign of 11, from the condition S(fJc) > O. For 
a> 1 the minimum moves to the point e = 7T/6. In this 
case Sc = 0, i.e., the phase transition becomes a second­
order transition. As a result we obtain the phase bound­
aries shown in the Figure by thick lines (solid and 
dashed). 

6. We now study the role of the fluctuations in the 
neighborhood of a phase-transition point of the struc­
tural type. In this case, depending on the sign of c in 
the expansions (7a)-(7c), it is sufficient to retain the 
term with s = 1 or s = 3. Neglecting the cubic term, we 
find that the field cps is described by the Hamiltonian 
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JfC'{<p'}= ~ 1: ,;'(q)<p"<p~. 
• (14) 

where 
X 

A'(q., q" q" q,) =~[(J •• '(q.)(J •• '(q,)(J"'(q,)(JT .. (q,)+ ... + ... J. 

As was shown in[6] using the example of a field with 
the Hamiltonian (14) with A = const, the system should 
experience a first-order transition to an ordered state 
with a nonzero average (cp(r) forming a one-dimen­
sional periodic distribution. 

In[6] the reason for the discontinuous character of 
the transition was given a formal basis, starting from 
the change in sign of the renormalized coefficient A. 
Here we present a more transparent explanation of this 
phenomenon. In zeroth order in A the correlation func­
tion gs(q) = (cp~ CP~q) is equal to [TS + .o.s(q/qs - Ilr1 • 

Then, 
dq q,' 

<<p.' (r» = S g, (q) (2n) , = 2n (~.,;,) 'I.' 

With decrease of TS there occurs an increase of 
(cp ~ (r) and, correspondingly, an increase of the inter­
action energy of the fluctuations, which, in first order 
in A, is equal to 

A Aq.' 
<JfC, {<p.} > = 8' <<p,' (r»' = 22n'~ .. r, . 

It is clear that, for sufficiently small TS, it is favor­
able to introduce a mean field (cp~) with I q I = qs, 
limiting the growth of (cp2(r). This occurs at a value 
I TS I = TSC such that (~2{CP});'; (~4{CP}), i.e., TSC 
,:;:: A(cp~(r), whence 

(15) 

In this region certain corrections to TS are important; 
however, the order of magnitude of the estimates is not 
changed. 

The phenomena considered in this subsection occur 
when the following two inequalities are fulfilled. The 
first requires a strongly pronounced dip in the soft 
mode at q = qs, i.e., TSC « .o.s with TSC from formula 
(15) and .o.s':;:: To. The second inequality demands that 
the calculated quantity (cp 2(r» does not exceed its limit­
ing value cp~, where cp 0 is of the order of the magnitude 
S of the order parameter far from the transition point, 
Le., cpo'::; 0.1-1. For the theory to be quantitatively 
correct, these inequalities must be regarded as strong. 
They can be written in the form 

q.'/~.<]..<~.'/q.' 

or, eliminating A, in terms of the relation (15): 

The condition for compatibility of these inequalities 
(q~ « .o.s) is fulfilled with a margin of 10-11, Le., it is 
sufficient in practice to fulfil the right-hand inequality, 
and this was achieved in the experiments of Yang[4]. 

In the disordered phase in the immediate viCinity of 
the structural-transition point the correlation function 

G~~ is determined as before by the expansion (7c), in 
WhICh, however, we must change the gap in the spectrum 
of the lowest mode, i.e., replace TS by rs, which, ac­
cording to the results ofl 6], satisfies the equation 
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r =,; + q,' S]..'( ") dn' , , 4 (. ) 'I. n, -n, n ,-n --. 
1t a,r, 4", (16) 

The functions A s(n, -n, n', -n') = A S(8 ), where cos 8 
= n . n', are calculated by the method described in sub­
section 3. We obtain that, for s = 1, 

]..' (6) =.l:- (1 + sin' ~ + cos'~) 
3 2 2' 

and for s = 3, 
A (e . e 

A'(e)=3 1 +sin'2(1+2cos e)' +cos'2(1-2cos e)'). 

Substituting these values into Eq. (16) we obtain in both 
cases: 

r.=T. +p,/r,"'; p.=3Aq,'/40n~;I •. (17) 

The variation of the quantity TS with temperature is 
determined by extrapolating the experimental data from 
the region TS » p~3. At TS = 0, i.e., at the transition 
point obtained by the extrapolation, rs = p~3 and 
drs/dTs = %. This number can be checked experi­
mentally. The true transition point TS = -TSC, accord­
ing to the results of the previous paper[6] and in agree­
ment with the experimental data of Yang[4], lies lower 
(TSC!':$ p~3). As was shown in[6], all corrections to the 
correlation function that are not taken into account by 
Eq. (16) are small. Consequently, in the neighborhood 
of the transition point changes of the critical indices do 
not occur. In the case when, numerically, TSC » p;!'/3, 
or when the experiments are performed in the super­
cooled phase, according to Eq. (17) a crossover from 
the dependence rs;,; TS to the dependence rs':;:: (p S h S )2 

can be observed. 

The exact determination of the transition tempera­
ture requires the numerical solution of a system of 
transcendental equations. Moreover, the observed transi­
tion point may be too low because of the slow nucleation 
process. Therefore, we shall confine ourselves to the 
estimate obtained above (cf. (15)) TSC "" p';(a. rsc "" p~3, 
which can be written as 

The corresponding line is shown in the Figure by the 
thin dashed line. Here it is assumed that the quantity 
rs, related to TS by Eq. (17), is plotted along the ordi­
nate axis. The form of the other lines is not changed by 
this relabeling. We see that the line of transitions to a 
triangular structure is bounded on two sides by the 
conditions 

Alternatively, these inequalities can be written as 
bounds on the magnitude of 1-'-: 

3. LIGHT SCATTERING AND ROTATION OF THE 
PLANE OF POLARIZATION OF LIGHT 

1. In this Section we shall calculate the scattering 
amplitude and rotation of the plane of polarization in 
the isotropic phase of a CLC near the phase-transition 
point. The problem of the critical light-scattering has 
been conSidered in the paper(l] by de Gennesj the result, 
however, was presented in a cumbersome form which 
excluded the possibility of treating the experimental 
data near a transition point of the structural type[4 1• 

The fluctuational rotation of the plane of polarization 
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was investigated in[2,3]. In the paper[3] of Kats the 
vicinity of a transition of the structural type with s = 1 
was considered and an answer was obtained to within a 
constant coefficient. In the work of Cheng and Meyer[il] 
the neighborhood of a transition of the orientational type 
was investigated theoretically and experimentally. How­
ever, the calculational method used contained micro­
scopic model assumptions, so that the formulas ob­
tained also have an indeterminate coefficient. 

We shall start from the normal-mode expansions 
(7a) and (7c) and make use of the method proposed by 
Kats[3] for calculating corrections to the dielectric 
permittivity. 

2. We shall consider the critical light-scattering. 
Let the incident and scattered light have wave vectors 
k and k'. and q = k - k'. The integral scattering 
cross -section is determined by the formula 

do 1 ,T'() rl 
dQ = 32n' k.,. G.~ q e.eTe, e. , (18) 

where e and e' are the polarization vectors of the inci­
dent and scattered light and G~~(q) is determined by 
the expansion (7c). The differential scattering cross­
section dcrw/dOdw for isotropic relaxation is deter­
mined by an expression analogous to (18), but with 
TS(q) replaced by Y .. TTJ[ T~(q)/T2 + w2/ 11"], where 11 is 
the Landau-Khalatnikov relaxation constant. 

Suppose, e.g., that e = e' 11 k x k, as in the experi­
ments of[4]. Then from (7c), putting m(q) iI e, we easily 
obtain 

With this geometry, the longitudinal-transverse modes 
(s = 3, 4) make no contribution to the scattering. 

In the vicinity of a transition point of the structural 
type and for q ... qs, it is sufficient to keep the term 
with s = 1 or with s = 3 in the expansion (7c). Let the 
inCident light be polarized, as before, perpendicularly 
to the scattering plane. Then from formula (18) we 
obtain 

do i 
dQ = 128,,' k,'(-r.(q))-I f.(8,cp), 

where e is the light-scattering angle and cp is the 
angle between the scattering plane and the plane of 
polarization of the light. By making use of formula (7d) 
in the calculation of the scalar products that arise, we 
find that, for s = 1, 

/,(8, cp) =sin' (812) cos' cp+sin' cpo 

For s = 3 the scattered light is found to be polarized in 
the scattering plane and 

f.(e, 0) =2 cos' (6/2). 

In Yang's experiments{4) the critical scattering, 
called "Bragg scattering," was observed through a 
polarizer set up perpendicularly to the scattering plane. 
Consequently, we can conclude that the case s = 1 oc­
curred, Le., c > O. 

3. We consider now the phenomenon of the rotation 
of the plane of polarization of light. This effect is as­
sociated with the appearance of a term that is nonin­
variant under the replacement k - -k in the dielectric­
permittivity tensor Ea/3(k). By the method of Kats[l) 
we obtain 
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e.T(k)-eaT(-k) = 1:~~.s (::)3 D,.(q+k)[G~: (q)-G~: (-q) I, (19) 

where 

DO' (k) = k.::k' ( 6" - ~.~'). 
ko = €5/ ilw/c and I kl = ko. We shall assume that ko 
"" qs, but ko # 2qs. 

First we shall consider the vicinity of a transition of 
the orientational type. In the integral in formula (19) 
momenta q ... qS(TS/~S)1/2» qskoare important. In 
this case the principal contribution to the integral is 
gi ven by the longitudinal part (not interacting with the 
transverse modes (s = I, 2)) of the photon Green func­
tion D/3 6' Consequently, in the expression (7c) we 
should retain only the terms with s = 3, 4. (From the 
symmetry condition, the contribution of the term with 
s = 0 vanishes.) Expanding the integrand to first order 
in qa and k, we obtain 

EaT(k)-ea,(-k)= k.q, [(b+c)aj-'I'L.T• (20) 
l8ne, 

In a transition of a structural type associated with a dip 
in a mode with s = 1, the region of momenta I q I "" ql 
is important in the integral in formula (19). Assuming 
that ko;c 2ql, we obtain 

k,' ( ) ,. 
ea,(k) -e.T(-k)= 12E. ~,T, -" f(:e)LaT• (21) 

where x = ql/2ko and 

f(x)=ln' x-l '+xln ,i-X' ,. 
x+1 l+x' 

The coefficients of Lay(k) in formulas (20) and (21) 
are the difference €. - €_ of the squares of the refrac­
tive indices for right- and left-polarized waves. 

4. CONCLUSION 

As shown in Sec. 2, the line of transitions between 
the uniform and nonuniform phases in a C LC consists 
of three parts, shown in the Figure by a solid line, a 
dashed-dotted line and a thin dashed line, and labeled by 
the numbers I, II, and III. The line I corresponds to a 
CLC with a structure with large period L. Below this 
line the C LC is characterized by a tensor Qa /3 (r) that is 
almost uniaxial, i.e., it can be described, as at low 
temperatures, by one director. For a CLC with a 
smaller period L the phase tranSition should occur on 
the line II and lead to a phase with hexagonal symmetry. 
In this case, on further lowering of the temperature a 
further transition to a one-dimensional spiral phase 
should occur. For still smaller values of L the phase 
transition occurs on the line III and again leads to a 
one-dimensional structure, describable, however, by a 
substantially nonuniaxial tensor Qa/3(r). The differences 
between the phases I and III, on the ane hand, and the 
low-temperature phase of the CLC, on the ather, can be 
manifested only in a narrow regian near the correspond­
ing lines. In this region, unfortunately, because of the 
nucleation the medium is strangly heterogeneous and 
inaccessible for aptical abservations[",4). 

Study of the aptical effects in the isotropic phase 
makes it possible to. distinguish the transitian line I 
from II ar III with confidence. In the vicinity af the line 
I the light scattering should be the same as in the 
vicinity af the transitian point in a C:t.C (sic; NLC?). 
In the vicinity af the transition lines I and II, in light 
scattering with wave vector q "" qs we should abserve 
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"Bragg wings,,[4), reflecting the existence of the dip in 
the mode TS(q) at q"" qs. The phenomenon of the rota­
tion of the plane of polarization of light in the vicinity 
of the line I and in the outer neighborhood (TS i!. ~s) of 
the lines II and ill is described by formula (20), and in 
the immediate vicinity (T S « ~ s) of the lines II and ill 
is described by formula (21)1). (The temperature de­
pendences defined by these formulas are qualitatively 
equi valent.) 

The data of Yang[4) on light scattering in CLC's of 
the type CEEEC, with typical value L"" 200 jJ.m, defi­
nitely indicate a phase transition of the structural type 
with s = 1 on line II or III. At the transition point, 
T 1/ ~ 1 "'" -0.1 (unfortunately, the possible errors were 
not indicated). The negative value of Tl would indicate 
a transition on line ill. It would be possible to dis­
tinguish the lines II and ill by the anomalies described 
in subsection 5 of Sec. 2. However, in Yang's work[4) a 
special study of the light scattering near the extremum 
q = ql was not carried out. The formulas given in Sec. 
3 can make the treatment of experimental data easier, 
as compared with the formulas, derived by de Gennes 
inP ), which Yang[4) used. 

In the work of Cheng and Meyer["') the rotation of 
the plane of polarization of light was investigated in the 
vicinity of the phase transition in a C LC with an ano-
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malously large L"'" 700 /.Lm. In this case it is possible 
to obtain the stimate ~s/rs "" 0.2, i.e., in accordance 
with the conclusions reached above, the transition oc­
curs on the line I. 

In conclusion the authors express their deep grati­
tude to I. E. Dzyaloshinskil for a number of fruitful 
critical comments. 

l)We must distinguish the correction, calculated here, to the dielectric 
permittivity from the order parameter introduced earlier, which has 
a S-function dependence on the wave-vector. 
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