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Diagram rules for the calculation of diagonal and off-diagonal elements of arbitrary operators with 
nondegenerate spectra are constructed on the basis of a modification of the diagram technique for the 
ground-state energy of the interacting system. A method for partially summing the diagrams for the 
susceptibility of the system on going to the polarizabilities of individual particles is indicated. The 
hyperpolarizabilities of isolated atoms of inert gases and of atoms interacting via dispersion forces are 
calculated. It is shown that an integral relation sets in between the molecule polarizabilities of different 
orders (with respect to the external field) when the interaction between the particles is turned on. 

PACS numbers: 34.20.-b 

1. INTRODUCTION 

The calculation of the dielectric constant E (k, w) of 
a medium by the polarization-operator method, carried 
out by Dzyaloshinskii and Pitaevskii,P) does not call for 
introducing the polarizabilities of the individual mole­
cules into the theory. In various problems of the phys­
ics of the condensed state, however, knowledge of the 
polarizabilities of the particles, and also of the connec­
tion between the microscopic and macroscopic charac­
teristic of the medium is necessary in principle. It is 
therefore of interest to use quantum field theoretical 
methods of statistical physics(2) to calculate the linear 
and nonlinear polarizabilities of interacting atoms and 
molecules, since the difficulties of the analytic approach 
increase rapidly with increasing order of the linearity 
in terms of the external field and with increasing com­
plexity of the intermolecular interaction. 

It will be shown in this paper that by generalizing the 
known(3) diagram technique for the ground-state energy 
of an interacting system it is possible to develop a 
technique for calculating the diagonal and off-diagonal 
matrix elements of arbitrary operators for an arbitrary 
character of the interaction in the system. With the aid 
of the corresponding diagrams for the dipole-moment 
operator p it is possible, in prinCiple, to calculate the 
polarizability of any order with respect to the field of 
the interacting molecules, if the Single-particle matrix 
elements of the operator pare known_ The necessary 
partial summation of the diagram series is realized 
here with the aid of a certain integral equation of the 
Dyson type, which is derived by the seif-consistent­
field method. 

By way of illustration of the developed procedure we 
shall calculate the hyperpolarizability yo (third order 
in the external field Eo) of free inert-gas atoms, and 
the correction /ly necessitated by the dipole-dipole 
(DO) interaction of the corresponding atoms in liquids. 
The last calculation, hitherto not reported in the litera­
ture (probably because it is unusually laborious), shows 
that the change in the hyperpolarizability of atoms of 
heavy inert gases reaches several dozen per cent on 
account of the dispersion forces acting in the condensed 
phases of the medium. 

2. MATRIX ELEMENTS OF ARBITRARY OPERATORS 

It is known(3) that the connection between the 
ground-state energy of a system placed in a constant 
field E, on the one hand, and the vacuum amplitude 
R( t), on the other, 
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d 
W,(E)-W,(O)= i lim -d [lnR(/) I (1) 

/-;'00 (t-if\) t 

makes it possible to use the diagram series of the non­
stationary theory for the calculation of the energy in the 
stationary Rayleigh-Schr'odinger perturbation theory. 
Let us see how to obtain, on the basis of the diagram 
rules for the system energy, the rules for calculating 
the matrix elements of an arbitrary operator F with a 
nondegenerate spectrum. 

Let the wave functions 

of the ground state of the total Hamiltonian 

ii=H.+v, 

(2) 

(3) 

be specified in n-th order of perturbation theory in Yo. 
The diagonal matrix elements of the operator F 

(4) 

calculated with tile aid of the wave functions (2), will be 
of n-th order in Vo. However, the same wave functions 
(2) determine the correction to the ground-state energy 
of the total Hamiltonian (3) in the n-th order in Vo and 
in first order in a certain additional interaction V 1; 

W. (I) = (0 I VII 0) = J 'I'!,). VI 'I' :') dT. (5) 

From a comparison of (4) and (5) we see that the rules 
for s.alculating the diagonal matrix element of the opera­
tor F in the n-th order in the perturbation V 0 should 
coincide with the diagram rules for the ground-state 
energy in the (n + 1)-st order of perturbation theory 
(n-th in Vo alld first in V 1), if we replace ill the latter 
the operator V 1 by the measured operator F. 

The foregoing is illustrated in Fig. 1 ('Yhere the 
cross represents the measured operator F), to which 
corresponds the expression 

(-1)' ~ ~ V,.F .. V" V" (6) 
~ ~ (Wo-w.) (W,-W,) (Wo-W.+Wo-W,) , 
1I.-#01*1.l 

that enters in the matrix element < 0 IF \6) and is ob­
tained directly with the aid of the rules(3) for the energy 
of the ground state of the system. 

To calculate the off-diagonal matrix element 
(m I Fin) we can use the same diagrams, but in the 
numerator of the expression of the type (6) it is neces­
sary to replace all the subscripts 0 to the left of the 
operator t by the subscript m, and those to the right 
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u 
FIG. I. Diagram that enters in the matrix ele­

ment of the measured operator F in third order 
in the interaction V. 

v 

by the subscript n. In addition, in the energy denomina­
tor of the lines located in the diagram ahead of it' are 
replaced in accordance with the rule Wk - Wk + W 0 

- W m, while the energies of the lines located past F 
are replaced in accord with the rule Wl - Wl + W 0 

- Wn. Thus, the diagram in Fig. 1 describes simul­
taneously the expression 

(-i)' ~ ~ Vm.FlnVn,V,n ( ) 
.I..J ~ (Wm-W.) (Wn-W,) (Wm-W,+Wn-W.)' 7 
".,m l*n 

which enters in the matrix element (ml Fin). 

3. DIAGRAM RULES FOR THE SUSCEPTIBILITY OF 
THE SYSTEM 

A perturbation-theory analytic calculation of the 
linear polarizability a2 of atoms and molecules that 
interact with electric multipole forces was carried out 
by Jansen and Mazur[4] and by JansenYj Considering 
for simplicity the case of DD interaction between parti­
cles, we shall use the results of the preceding section 
to construct a diagram technique directly for the 
dipole-moment operator p of the interacting particles, 
and the diagonal matrix elements of the operator yield 
expressions for the polarizabilities of all orders in the 

• external field Eo. The diagram rules deri ved below re­
main valid also in the case of an arbitrary type of mole­
cule interaction. 

The total Hamiltonian of an interacting system con­
sisting of N particles and situated in an external elec­
tric field is 

(8) 

where the interaction Hamiltonian consists of two parts: 

Here T~i~) is the DD-interaction tensor 

T;:) =r~·(3r~ij)r.(ij)-cS •• ), (10) 

r(ij) is the radius vector joining the particle centers. 
The problem is to calculate the mean value (p(i» (n) of 
the operator p(i) over the ground state 10) = >J.t~n) of 
the total Hamiltonian (8) in a speCified order n of per­
turbation theory in the interaction Hamiltonian (9). 

It is necessary to distinguish in what follows between 
the proper polarizability a of the molecules and the 
system susceptibility fi per molecule, i.e., the effective 
polarizability of the molecule. By definition, the sus­
ceptibility tensor ~(i) enters in the relation 

s 

(11) 

being the response of the molecule directly to the ex-
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ternal field Eo. The perturbation theory is constructed 
for this tensor.[4,5] The molecule polarizability proper 
can be introduced in the interacting system only as.)he 
response to a certain local self-consistent field Ef~c 
produced by the external field Eo and by the fields in­
duced by the neighboring particles. Within the frame­
work of the DD apprOximation, the local field is equal 
to[6] 

According to the foregoing, the polarizability tensor 
a~i) enters in the relation 

(12 ) 

(13) 

The difference between the definitions (11) and (13) 
of the tensors ~(i) and 2r(i) plays the principal role in 
the calculation of the polarizability of the molecules, 
and will be used in the next section. Here we reformu­
late the rules for the ground-state energy of the system 
directly into rules for calculating the susceptibility of 
the particles in any order of nonlinearity in the external 
field and in the particle interaction. We shall list these 
rules, for the sake of Simplicity, for the case of a con­
stant external field Eo. The transition to the nonstation­
ary case can be effected in accordance with the general 
rules,f2] 

In n-th order of perturbation theory, which is com­
posed of the orders in the external field and in the in­
terparticle interaction, the diagonal matrix element 
(Olp(i)IO)(n) of the dipole-moment operator of the in­
teracting particle is calculated in the following manner: 

1. The ensemble of particles participating in the 
binary, ternary, etc. interactions is represented by a 
chain of loops that correspond to the individual parti­
cles. The interaction between the particles is repre­
sented by wavy lines, which are set in correspondence 
with the matrix elements of the corresponding interac­
tion Hamiltonian, of the form 

(x,x;IH:~:'"",1..) = _(p;o ).,>.T;;j) (p:J) )';';' (14) 

where Kis"" Xj are sin.gle-particle states described 
by the wave functions u (1) of the free particles, so that 
the Single-particle matrix elements in (14) are equal to 

( (0) _ J (I).ACi) (f) d (f) 
P " ,- u. P u, 't • (15) 

2. The interaction of a gi ven particle with the ex­
ternal field Eo is represented by a point on the loop of 
the particle. This point is set in correspondence with 

the matrix element of the operator Hi~L in (9), taken 
between the corresponding Single-particle states. The 
operator p(i) whose mean value is calculated is repre­
sented by a cross on the loop of the given particle. 

3. The product of the matrix elements of all the 
operators (including the ends of the interparticle­
interaction lines), which are represented on the particle 
loops, is written out in the numerator of the analytic 
expression for the given diagram. The denominator of 
the expression is the product of the algebraic sums of 
the energies of the single particle states, with energies 
-W Ki (Ki"" 0) assigned to the "particle" lines and 
ground-state energies +W Oi assigned to the "hole" 
lines. The sign of the expression is (_I)k+l, where k 
is the number of loops and l is the number of hole lines 
on the entire diagram. The obtained expression is 
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summed over all the intermediate indices of the "parti­
cles" and over the numbers i, j, ... , of all the loops. 

4. The expression for the matrix element 
(O\p(i) \O)(n) is obtained by summing all the diagrams 
that preserve the given order of perturbation theory and 
obtained by all possible permutations of the operators 
on the particle loops. 

In accord with the definition (11), the susceptibility 
tensor rlarl rl is obtained from the expression for 

. ) H f'l'" f' S 

(p(1 ) (n) by differentiation with respect to the external 
field Eo and by symmetrization of the obtained expres­
sion over all the uncontracted tensor indices. The use 
of the indicated rules makes it possible to dispense 
with the laborious procedure of calculating the wave 
functions of the interacting system and automatizes the 
method of calculating the molecule susceptibility in any 
order of nonlinearity. 

4. DIAGRAMS FOR THE POLARIZABILITY. PARTIAL 
SUMMATION 

Unlike the susceptibility tensor ~(i), the expression 
for the polarizability tensor a(i) cannot be obtained by 
Simple differE!ntiation of the matrix element (p(i» with 

respect to E~~c' inasm~h as according to (12) the local 
field itself depends on (p ). However, the self -consist­
ency of Eqs. (12) and (13) allows us to construct another 
procedure for calculating ~(i). We consider first the 
connection between the linear tensors ~~i) and a~i). 

Relations (11)- (13) for classical systems allow us 
to deri vel 6} the following relations between the tensors 
of the linear susceptibility and the polarizability of the 
particles: 

(16) 

We shall show that (16) is the classical analog of 
Dyson's equation in quantum electrodynamics. Indeed, 
the diagrams discussed in the preceding section for the 
linear susceptibility of the molecules ~(i) are analogs 
of Feynman diagrams of linear vacuum ~lectrodynamics. 
namics. The molecule loops correspond to the ferm­
ion loops of charged particles, the lines of the inter­
molecular-interaction T(ij)can be set in correspond­
ence with the internal photon propagators Dc' and the 
lines of the stationary external field in both tech-
niques simply coincides (they can be represented on 
the diagrams for the susceptibility by dashed lines). 

In view of the indicated analogy between the diagram 
techniques, the expression for the susceptibility of the 
molecules ~~i), which generally speaking should contain 
the entire series in the intermOlecular interaction T (ij) 
(Le., both compact and noncompact wavy-lines dia­
grams), is the analog of the photon self-energy function 
}(I0,2) (in the notation of Akhiezer and Berestetskil[7]). 
Dyson's equation for this function is of the form[7] 

K(D." (k) =II(k) [i-Do (k) II (k) ]-" (17) 

where 11 (k) is the polarization operator of quantum 
electrodynamiCS, i.e., the sum of all the compact pho­
ton self-energy diagrams. Rewriting (17) in the form 

(18) 

and comparing with (16) we conclude (with allowance 
for the statements made above concerning the equiva­
lence of the corresponding elements of the two tech-
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niques) that the linear polarizability of the molecules 
;;(i) should be represented by the sum of all the dia-

2 
grams that are compact in the lines of the interparticle 
interaction T(ij) and enter in the diagram series for 
the susceptibility ~~i). 

Thus, the linear polarizability of the molecu!es a~i) 
in quantum theory is the polarization operator 11 (k), 
which is the direct analog of the operator 11 (k) of quan­
tum electrodynamiCs. It is interesting to note that the 
polarization operator 1T(k) of quantum statistics, intro­
duced by Dzyaloshinskil and Pitaevskil[l] and describ­
ing the behavior of all of matter in an external field, is 
directly connected with the linear susceptibility of the 
particles ~~i) (k). The polarization operator 1T(k) is by 
definition an irredUCible self-energy part relative to the 
lines of the long-wave photons of the external field. 
This operator, however, becomes naturally reducible 
with respect to the lines of the "short-wave" interac­
tion T(ij) if matter is conSidered as an aggregate of 
interacting molecules. 

In the nonlinear case, in a non stationary external 
field, the algebraic equations of the type (16) go over 
into integral equations obtained earlier[8] and connect­
inn the tensors of the nonlinear polarizability 
Ot~1 (kl, ... , ks ) and susceptibility ~~i) (kl' ... ,kg) of the 
molecules. These integral equations (which are too 
cumbersome to present here) were obtained on the 
basiS of the extraneous-current method proposed in[l] 
and developed in[U] for the case of arbitrary order in 
the external field. These nonlinear equations were 
solved by an iteration method[8] apd a recurrence rela­
tion between the tensors as and (3s of different order 
was obtained. From an analysis of the solution given 
in[8] it is seen that, just as the linear. case, the separa­
tion of the molecule polarizability a~1) reduces to a 
product of partial summation in the diagram series for 
the susceptibility ~~i), i.e., separation from the entire 
series of only the diagrams that are compact with re­
spect to the intermolecular interaction lines. The con­
vergence of the series for the polarizability then be­
comes, generally speaking, better than the convergence 
of the series for the susceptibility. 

5. HYPERPOLARIZABILITY OF FREE AND INTER· 
ACTING ATOMS OF INERT GASES 

The diagram series for the susceptibility and polar­
izability of molecules in the DD interaction Hint in (9) 

2 

have good convergence in the case of liquids and molec­
ular crystals, in which the parameters of the expansion 
;\ = ao/ (F)3 (ao is the average polarizability of isolated 
particles and F is the average distance between the 
nearest neighbors) does not exceed 1/20. Such media 
are, in particular, liquefied inert gases. Taking the 
foregoing into account, we can confine ourselves in the 
calculation of the change of the polarizability of the 
particles due to dispersion forces having a DD charac­
ter to compact diagrams of second order in T(ij). 

To verify the method, we first calculate the static 
hyperpolarizability y(O)B /; of isolated inert-gas atoms, 
which is described bfsfugle-Ioop diagrams of third 
order in the interaction Hintl with the external field. 
Recognizing that 0 - 0 dipole transitions are forbidden 
for nonpolar systems, we can easily obtain with the aid 
of the diagram rules formulated in Sec. 3 the following 
expression for the tensor y(O): 
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(19) 

Here S(OI, (3, 1', 0) is the operation of symmetrization 
over .the corresponding indices, and nwojJ. = Wo - WjJ. is 
the difference between the energies of the ground and 
excited state of the atom. 

Using the customarily employed[4,5J approximation 
of "equal energy denominators" 

(20) 

(Uo is the average excitation energy of the atom, and is 
usually set equal to the first ionization potential) and 
recognizing that in the case of atoms only the following 
components of the tensor Y~~yO differ from zero: 

(21) 

(22) 

In the considered equal-denominator approximation, the 
linear polarizability of the free atom is equal here, by 
definition, to 

r:t.=2 (p,') .. IU. 

and we have introduced the notation 

x=(p.') .. 1 (p;) Do'. 

(23) 

(24) 

The parameter K in (24) was calculated with the aid 
of the wave functions of the ground state of the atoms, 
taken by the Hartree method in the form of products 
(without antisymmetrization) of single-electron wave 
functions: 

(25) 

where Z is the number of electrons in the atom. As the 
single-electron functions we chose the Slater 
orbitals [ 10] 

z· 
opn'.I.m(r, e, op) = r"'-' exp (-n' r) Yl,m(e, CjJ), (26) 

where r is specified in atomic units, n* and Z*e are 
the effective values of the principal quantum number for 
the given orbital and of the charge of the atomic nucleus. 
These latter quantities were calculated by Slater's em­
pirical rules[lOJ (see also[llJ). We recall that the opera­
tor pz is the dipole- moment operator of the entire 
atom, so that it is equal to the sum of the single-elec­
tron dipole-moment operators p(i) (i = 1,.,. ,Z). 

s 
The results of the calculation of the parameter K 

and of the theoretical values of the hyperpolarizabilities 
y~heor of the free atoms are listed in the table, The 
experimental values y~xP were measured by Bucking­
ham and Dunmur[13J at an incident-light wavelength 
6328 A. and by Langhoff and co-workers[ 14J in a static 
electric field. As noted in[l3J the variance of yo cannot 
be large in the case of inert-gas atoms if the frequency 
of the incident light is much less than the frequencies 
of the electronic absorption of the atoms, which are in 
the ultraviolet. Therefore a comparison of the static 
value of yo with measurements at optical frequencies 
in[13J is fully justified. As seen from the table, in spite 
of all the approximations made, the simple theoretical 
formula (22) describes well the experimental data for 
argon, krypton, and xenon. With respect to helium it 
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He 

Ne 
Ar 
Kr 
Xe 

Hyperpolarizability of free and interacting atoms of inert gases 

0.214 39.2 3.750 0.0123 

0.3966 34.4 2.956 0.0262 
1.641 25.2 2.908 0.583 
2.4825 22.4 2.889 1.467 
4.0 19.44 2.878 4.336 

Y~XP .IOU, 
cgs eSll 

[Ul 

0.0270±0.002 ["] 
0.0157 [" 
0.051 ±0.004 
O.59±0.04 
1.4±0.1 
3.9±0.3 

5.897 

11.87 
3.905 
2.43 
1.27 

must be noted that the value y~xP given inl14J seems 
more realistic than the value given in[13 J, since a 

0.03 

3 
36 
59 
81 

rather accurate calculation of yo for He, made by 
Buckingham and co-workers themselves[ 15J by a varia­
tional method, yields a value yo = 0.0157 X 10-36 cgs esu, 
which agrees with the experiment in[14J and is close to 
the apprOximate value 0.0123 x 10-36 obtained by us. In 
addition, as seen from (22), yo ~ OI~, as confirmed by 
relative measurements of yo for He and Ne in[14J but 
not confirmed by the measurements of[13J. 

The correction 6.Ya{3Yo to the tensor y~~yo of the 
hyperpolarizability of isolated atoms, necessitated by 
the dispersion forces in condensed phases of matter, is 
described by compact tWO-lOOp diagrams of second 
order, which are of third order in the interaction Hint1 
with the external field Eo and of second order in the 
interatomic interaction Hint2 in (9). The number of 
similar diagrams of fifth order turns out to be several 
hundred. It is clear that the use of a purely analytiC 
method in which it is necessary to calculate before hand 
the wave functions >It~5) of fifth order in perturbation 
theory with an interaction Hamiltonian consisting of two 
parts would be practically impossible. On the other 
hand, the graphic method makes it possible to write 
down immediately, on the basis of the diagram rules 
formulated above, expressions for the diagonal matrix 
elements of the dipole moment, which describe each 
given diagram. 

Summing all the diagrams described above, and 
carrying out in the obtained expression the previously 
describedP6J statistical averaging of the interatomic 
interaction factors that are quadratic in T(ij), we obtain 
ultimately the following expression for the average 
change of the hyperpolarizability of the atoms: 

L\v = ~o'L <r,~>[64.3(p;),,(p;p.'),,+73.33(p;p;),~ 
j;'!"i 

+16.3 (p.')" (p;p;) ,,+32.2.5 (p,')" (P.') ,,+32.6 (P.') !, + 108.05 (p;):, (27) 

-139.75 (p,'):, (p, ') 00-99 (P.') 0', (p;p,') 001. 

The calculation of the matrix elements in (27) by the 
method given above, but under the simplifying assump­
tion that all the atom electrons are on a single orbital 
with n* = 1, yields 

ct.' L L\ Y = -'- <r,~'> (3322.2-3704.85Z-1-4334.94Z-'). 
16U, 

(28) 
j,..i 

The values of the relative change 6.Y/Yo of the hyper­
polarizability of inert gases on going to the liquid phase, 
calculated from (28), are given in the last column of the 
table. The factor .~ (r;J> was calculated from the data 

J'" 1 

of[17J for a radial distribution function in the corre­
sponding liquids. The calculated values of 6.-::;/1'0 tenta­
tively describe also atomic crystals of inert gases, 
since the latter retain also the density and the isotropic 
packing of the atoms when the liquids solidify. 
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The change of the atom hyperpolarizability reaches 
several dozen percent, whereas the linear polarizability 
is changed in liquids by the same dispersion forces by 
only one or two per cent. This occurs primarily be­
cause the nonlinear effects receive contributions from 
hundreds of diagrams, the number of which is larger 
by an order of magnitude than in the linear (in the ex­
ternal field) case. In this connection, the relative role 
of the intermolecular interactions, as already noted 
in[16], increases in the region of the nonlinear electro­
optical phenomena. Consequently, measurements of the 
nonlinear susceptibilities of the liquids and crystals can 
yield information on the nonlinear properties of the cor­
responding molecules only after substantial corrections 
for the intermolecular interactions are introduced, and 
this is frequently a nontrivial problem.[9,8] 

We note in conclusion the following useful circum­
stance: the corrections to the polarizabilities of parti­
cles interacting in dense media can be expressed in 
terms of the polarizabilities of free particles of the 
same order and of higher orders in the field. This is 
seen when the two-loop diagrams for the change ~a2 of 
the tensor of the linear polarizability of the molecules, 
due to the DD forces, are compared with the single-loop 
diagrams f,?r the tensors y (0) == a~O) of the hyperpolariza­
bility and CY.~O) of the linear polarizability of free mole­
cules. It is easy to show that in a nonstationary external 
field there is an integral relation between the three in­
dicated tensors: 

_ (I) ( )_ 1 S ('l(f) , , \10 Iii) (O)<i) "\ ' 
.:\a •• CJl -(j 1,." (-CJl, CJl ,-CJl, CJl )T,. T,. a •• (-CJl, CJl dCJl. 

(29) 

Analogously, the correction ~:y == ~a4 to the hyper­
polarizability tensor is expressed in terms of the free­
molecule tensors a~Ol, eN), and a":). It is interesting to 
note that in a system of harmonic oscillators for which 
all the nonlinear polarizabilities a~O), Ci~O), • •• are equal 
to zero the change ~a2 of the linear polarizability also 
vanishes in accord with (29), as is confirmed by direct 
analysis[4] of the perturbation-theory formulas for 
~CY.2. Thus, the diagram technique developed here leads 
automatically to relations that connect the higher and 
lower correlation functions of the electron denSity in 
the interacting molecules, and the molecule polarizabili­
ties of corresponding order are expressed in terms of 
these functions. 
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