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We study the electron acceleration (deceleration) due their non-linear resonance interaction with a 
monochromatic Langmuir wave in an inhomogeneous plasma. We find the change I::.. v in the velocity of a 
particle when it passes through a region where it suffers resonance interaction with the wave. A 
fundamental role is then played by a dimensionless parameter f3 (Eq.(2.4)) which is proportional to the 
wave amplitude and inversely proportional to the acceleration of the phase velocity (i.e., the density 
gradient). We show that for untrapped particles 1::..#0 only when V31> 1, while the sign of I::.. v is the 
opposite of the sign of the acceleration of the trapped particles which is the same as the phase acceleration 
(when V31 ~ 1 the wave cannot trap the particles). We obtain an expression for the average non-linear 
change in the distribution function, caused by the effects of the drag on the particles by the wave. We 
show that no additional particle flux arises then (in the stationary case) but that, in general, there is a 
density change produced by the wave. We also evaluate the integral energy flux of the particles caused by 
drag effects. 

PACS numbers: 52.35.Gq 

1. INTRODUCTION. STATEMENT OF THE 
PROBLEM 

Recently there have been both experimental and 
theoretical intensive studies (in laboratory as well as 
cosmic plasmas) of non-linear effects of the interaction 
between monochromatic waves and resonant particles. 
Of particular interest have then been the resonance 
processes in an inhomogeneous plasma where the phase 
velocity of the wave varies. In addition to the very pe
culiar behavior of the growth rate(l-5j and the evolution 
of waves,l3-81 resonant acceleration of particles, which 
has mainly been studied numerically,c9-11 j can happen in 
this case. 

In the present paper we give an analytical theory of 
effects of the dragging of resonant particles by a mono
chromatic Langmuir wave in an inhomogeneous plasma. 
After some modifications, the results obtained can be 
extended also to the case of whistlers (important in 
connection with experiments about the research in non
linear monochromatic waves of that band in the magneto
sphere). 

If we assume that a Langmuir wave is excited by an 
external stationary source at the point x = 0 and propa
gates into the region x > 0, we can write down the equa
tion for the electric field in the form 

E(x,t)=E(X)COS[j k(x')dx'-oot+Ql(x) ]. (1.1) 
• 

where wand E{x = 0) are assumed to be given while 
k(x) is determined from the dispersion equation 
E(W, k, x) = o. If, for the sake of argument, we assume 
the unperturbed distribution function to be Maxwellian, 
fM(V. x) = n(x) exp (-v2/2v~)/ (271 )1/2ve, then the disper
sion equation takes the form 

oo'=oo.'+3k'(x) v;, oo.'=4ne'n(x)Jm (1.2) 

(we shall assume the thermal velocity ve to be con
stant). For not too large amplitudes the non-linear 
evolution of the wave E(x) and the non-linear advance 
of the phase <p(x) are determined by the interaction of 
the wave with resonant particles, i.e., particles with a 
velocity v which is sufficiently close to the local value 
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of the phase velocity v<p(x) = w/k(x), The width of the 
resonance region is determined by the condition 

i v-v.(.'!:) I ";;[k(x)-r(x) ]-1. 

where T is the non-linear time: 

'!:=(m/eEk),\ 

(1.3) 

(1.4) 

which, as to order of magnitude, is equal to the period 
of the oscillations of the trapped particles. 

Assuming the ions to be immobile we write down the 
kinetic equation for the electrons in the field of the 
wave (1.1) in the form 

ijt at (eE, a'l') at -+"-- -.,-- -=0. 
rll a.l: Iii J'.r de 

(1.5) 

where we have introduced the potential +(xl of the ex
ternal forces that sustain the inhomogeneity of the 
plasma (without loss of generality we can put +(0) = 0). 
When there is no wave field the stationary solution of 
Eq. (1,5), i.e., the unperturbed distribution function, 
takes the form 

j,(,., x) =F{v'+2'l' (x». (1.6) 

In the case when fo is the Maxwell distribution function 
we can write 

nix) 
'I' (x) =-L',' In n(O) , 

dk =_ 00; ~~ln nix) 
dx tiv,' k dx n (0) 

(the last relation follows from (1.2») . 

(1.7) 

The basic problem solved in the present paper con
sists in evaluating the change in the distribution func
tion in an arbitrary point x due to the resonant interac
tion of the wave with particles in the whole interval 
from the source x = 0 up to the given point x. We must 
then bear in mind that a particle trapped in the poten
tial well of the wave moves with an average velocity 
equal to the phase velocity v<p(x). An untrapped parti
cle, however, with a velocity v at the point x, interacts 
resonantly with the wave only in the vicinity of some 
point xr where the phase velocity v <p (xr) = w/k(xr) be
comes equal to the particle velocity (Fig. 1). As the 
width of the resonance region is small, and outside it 
we may assume that v2 + 2+(x) = constant, the equation 
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FIG. I. Change in the average velocity 
of an untrapped particle under the action 
of the potential 'It(x) and the field of the 
wave; xr is the point where there is reso
nant interaction (vtp(xr) = v(Xr», Xl-XI = 
/).xr is the width of the resonant inter
action region. 

determining the point xr can be written in the form 

v'+2'I' (x) =v.'(x,) +2'I' (x,). (1.8) 

As to the width ~xr of the region around xr where the 
resonant interaction between particle and wave takes 
place one can estimate it from the follOwing considera
tions. The value of the phase velOCity changes in the 
interval ~xr by an amount ~vcp = -(~xrw/k2)dk/dx. 
On the other hand, the change in the particle velOCity v 
as a result of the resonance interaction and under the 
influence of the field >I< is of the order of 

~V'" (k,-r ,) -1+ (k,/oo) (8'I' 18z) ,~x" 

where r indicates that the corresponding quantities are 
taken in the point xr. We then get from (1.3) that 

dz,"'v.(x) I (2-ra) 1,_"" 
where the quantity a is defined as 

00' dk k 8'I' 
a=-"2k' dx +"2Tx"' 

(1.9) 

(1.10) 

a has a simple physical meaning, namely: -2a/k is 
the acceleration of the particle in the reference frame 
moving with the phase velocity of the wave. Indeed, as 
this frame of reference is a non-inertial one, the ac
celeration of the particle in it consists of two parts: the 
phase acceleration with reversed sign, equal to 
-vcpdvcp/dx, which comes from the first term in (1.10), 
and the acceleration -a w/ ax caused by the potential of 
the external forces (second term in (1.10». In the case 
of a Maxwellian plasma we can use (1.7) to write a in 
the form 

00' dk ( v.'k' ) a(z)=---. 1-6--. . 
2k' dx (0' 

(1.11 ) 

As we assume that ve « w/k, the second term in the 
brackets is small. Generally speaking, the terms in 
(1.8) which contain 'It(x) are also small (provided the 
ra.tio ofthe denSities in (1.7) is not too large). This 
justifies the neglect of the terms with w(x) in the 
studies(l,3-5,7,8) of effects at distances ~x which corre
sponds to ~k/k « 1. Since, however, in the present 
paper we conSider effects that arise when ~k = k(x) 
- k(O) ~ k(O), we prefer to retain the terms with 'It(x) 
(for whistlers these terms are, in general, always im
portant). It follows from«1.9) that ~vcp(x) = (dvcp/dx)~xr 
« ve when 

(1.12 ) 

We assume that these conditions are satisfied everywhere 
in what follows. Moreover, we shall assume that the 
width of the resonance interaction region is much 
smaller than the spatial width of the packet, i.e., 

Llx, d-r <1 
-r dx (1.13) 

Substituting (1.9) into (1.13) and using (1.10) we get the 
last condition in the form 

d In -rId In k<oo-r (1.14) 
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2. SOLUTION OF THE EQUATIONS OF MOTION FOR 
RESONANCE PARTICLES 

We consider in more detail the motion of particles 
in the resonance region of phase space, Le., when 

fx-x,I';;;~x" Iv-v,I";dv" v,=v.(x,)=oolk(x,), (2.1) 

where ~xr is defined in (1.9) and ~vr - l/krTr. We 
assume here that conditions (1.12) to (1.14) are satis
fied. It is convenient to change to a reference frame in 
which the phase of the wave is independent of the time. 
To do this we change in the kinetic equation (1.5) and in 
the equations of motion corresponding to it from the 
variables t, x, v to the new (dimensionless) variables 
z, u, 9 defined as follows: 

, 
Z= Sk(x')dx'-oot+<p(z)+tr, u=(kv-00)/2l'~ 

• 

e(x)= S l":' k dx'. (2.2) 
• 

Retaining only the main terms with respect to the small 
parameters (WT r l and (WT r l d In d dink, we get the 
equations of motion in the form 1) 

dz du 
-=2u -='~I(C08Z-~-I), de ' de 

(2.3 ) 

where the dimenSionless parameter {3 which plays an 
important role in what follows has the form 

~=(2a-r')-'. (2.4) 

Apart from unimportant coefficients, z plays in the 
set (2.3) the role of the coordinate, 9 that of the time, 
and u that of the velocity, While the force consists of 
two parts: a periodic part \ fl\ cos z (from the wave 
field) and a constant part -\ {3 \ fl-l which in fact is the 
inertial force in the frame of reference mOving with the 
phase velocity of the wave (in the chosen units).2l In ob
taining the set (2.3) we dropped terms with derivatives 
of f3 (which are small by virtue of (1.14». We can thus 
assume that in (2.3) (3 = constant and write down the 
corresponding energy integral E = constants: 

e=u'+y(z); y(z)=I~I(z~-'-sinz), (2.5) 

where E and y(z) are the dimenSionless total and poten
tial energies of the particle in the frame of reference 
moving with the phase velocity of the wave. The quantity 
y(z) is, apart from an arbitrary constant, determined 
by Eqs. (2.5) and (2.2). It is convenient to choose the 
constant such that at the resonance point x = Xr (where 
u = 0) the quantities z and € are of the order of unity. 
OutSide the resonance region we have then zf3- I - - "" 
(Fig. 2). It also follows from the form of the effective 
potential y(z) that potential wells and, hence, trapped 
particles, exist only when \ fl\ > 1. Indeed, dy / dz 
= \f3\ (fl- l - cos z) cannot vanish when \f3\ < 1, i.e., it is 
in that case a monotonic functions. This fact will playa 
principal role in what follows. 

We now write down the solution of Eqs. (2.3) for a 
particle which, moving from the point {XI(91), Zl, UI} to 

FIG. 2. The effective potential energy (2.5) for p > O. 
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the point {xz(e z}, Z2~ Ul!}~ underwent a reflection from 
the potential y(Z} in the point {Xr(l:l r }, zr}.3l Using the 
fact that in the point of reflection Ur = 0, we get from 
(2.5) and (2.3) 

~I~I { s" dzcosz } pu,-t-ip!(O,-e,)=-- !j)(e)-- , 
. 2 Jie-y(z) 

-,"'1\ 

To evaluate D,.V we note, first of aU, that it follows 
from the definitions of e and a that 

e(x.)-8(x,) = ~ SX'lalk(X')dX' 
wl'lal 

x, 

ltl {k,-k, 1 } ""--=- --+-0 ['¥(x,)-'¥(x,)] signa, 
2l'lal k, V,-

(3.1 ) 

~I~I { s" dzcosz } ~u,+lpl (6,-6,)= -- <D(e)- , 
2 l'e-y(z) 

(2.6) where i " 1, 2 and where we assume that I kr - ki I 

where 
'r(-) 

-""11 « kr • By virtue of (1.12) we can then always assume 
that lei - erl »1, Le., IUil »1{3\1/2, 1£ - Zl sign {31 
» I (31· Hence we can write the last terms in the right-( S dzcosz 

<D B)= -=-, 
JIe-y (z) (2.7) hand sides of (2.6) approximately in the form 

-~~ 

and zr(£} is the point of reflection of a particle with 
energy £ which is determined by the equation 

sign ~[z, (e) -~ sin z,( e) ] =e, (2.8) 

which is obtained from (2.5) if we put there u = 0, 
Z = zr. 

It follows from (2.7) and (2.8) that <1>(£ + 21T) = <I>(€) 
so that <1>(£) can be expanded in a Fourier series 

. 
lD(e)=-b+~ (b n cos nB+c.sinnB). (2.9) 

The coefficients of this expansion were found in(5J. In 
view of their importance for what follows we give them 
in full: 

1 S"'--,
b=- l'a-y(z) dz; 

n~ '. 
(2.10 ) 

1/2nl.(~n) 1/21 s'·, -. -
b.= V --A--V-- dz {cosny(z)C(l'nu.)-slfiny(z)S(l'nu.)}, 

n t' nn ~ 
'. (2.11) 

11 2n I. (~n) 1/2 1 S'·' - -
cn = V --R-- V-- dz {cos ny(z)S(l'nu.)+sin ny(z)C(l'n u.)}. 

n t' nn ~ '. 

Here In(w) is a Bessel function, S(w) and C(w) are 
Fresnel integrals, and Ua = / a - y(z). The meaning of 
the quantities a, za, and za is clear from Fig. 2. When 
\{315 1, za = za and, hence, 

b=O. h =( ~ ,1 2n 'n(~n) . (2.12) 
n " V il l3 

When I {31 » 1, clearly za - -1T/2, za - 31T/2, a - (3. 
In that case the main term in the expansion (2.9) is the 
first one which is (asymptotically) equal to 

b""-"-- Ji21~1 , (2.13) 
:t ~ 

while the coefficients bn ~ cn are proportional to I f3 r3/ 2 . 

3. RESONANCE ACCELERATION OF PARTICLES 

In accordance with the definitions of the preceding 
section we denote by VI the velocity of an untrapped 
particle in the point xl(el) (Le., before it enters the 
region D,.Xr of resonance interaction with the wave) and 
by v 2 its velocity in the point X2( e 2), after it has 
passed through the resonance region. We can then, on 
the one hand, always assume that I V2 - vll » (kr T2r1 

and I X2 - xd » D,.Xr, and, on the other hand, neglect the 
change in the wave parameters in the region D,.Xr. The 
quantity D,.V = Vz - VI characterizes the acceleration of 
the particle when it passes through the resonance 
region. Outside this region the particle velocity oscil
lates weakly and changes somewhat under the influence 
of the external potential 1J!(x) which maintains the in
homogeneity. 
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j' dz cos z sin z, 

l'e-y(z) "" l'e-z,sign~ "" -Iu-,-I 
-~~ 

(3.2) 

Using the second of Eqs. (2.2) we see that these 
terms correspond to the usual linear approximation for 
the equations of motion (2.3) and, accordingly, for the 
kinetic equation. However, the terms (3<1>(£)/2 in (2.6) 
describe essentially non-linear effects when the particle 
passes through the resonance region. Using Eqs. (2.2) 
to change from ui to v and bearing in mind that ur 
" 0 and vr " w/k(xr) we get after simple calculations 

1 { . [ sin z, ] }. v,=v,+- ['¥(x,)-'¥(x,)]+(-1)'A(x,) t!J(e)- . 
v, l' e-z, slgn ~ 

with the notation 
(3.3) 

A(X)=V.2(X)1'21~(x) 1/2w't'(x). (3.4) 

The first term in the braces in (3.3) describes the 
acceleration of a particle caused by the external poten
tial and the terms with <1>(£) the acceleration due to non
linear resonance effects. Finally, the last term, corre
sponding to the interaction far from the resonance point, 
vanishes as (3zi - - "". Expression (3.3) contains as a 
parameter the quantity £ which, while staying constant 
in the region Xz - Xl (in the approximation used) depends 
on the details of the initial conditions in the point xi. 
Averaging (3.3) over £ and using (2.9) we get: 

- 1 
v,=v,+-;:-;- ['l'(x,) -'If(x')-(-l)' A(x,)b(x,)]. (3.5) 

Since b has the sign of {3 (see (2.10 ), we conclude that 
untrapped particles (at I (31 ;, 1) when passing through 
the resonance region are on average accelerated by the 
wave when {3 < 0 (Le., when a < 0 or, which amounts to 
the same, dn/ dx < 0) and are slowed down by the wave 
when {3 ;, 0 (a > 0). The sign of the acceleration of the 
trapped particles is thus the opposite of the sign of the 
change in the phase velocity and, accordingly, the sign 
of the acceleration of the trapped particles. It also fol
lows from (3.5) and (2.12) that when I (3 I :s 1 the aver
age change in the particle velocity due to the resonance 
interaction vanishes. 

4. RELATIONS BETWEEN PHASE VOLUMES 

We consider the relations between the phase volumes 
of the particles 00 I" dv1dx l and 002 = dvzdx2, Le., at 
different sides of the resonance interaction region. 
Using (2.2) we can write 

DQ=dvdz/k=vdvdz/Ul. (4.1) 

For a comparison of 00 1 and 002 it is convenient to 
express them in terms of the variables vr and £. Us
ing (3.3) to change from the quantities Vi and zi to vr 
and £ and using as the second pair of equations the re
lations uf + sign (3(Zi - f3 sin Zi) = £ (where ui is ex-
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pressed in terms of Vi) we get approximately 

DQ,= v,dv, de {H-.!..[ a '1' (x,) +(-1)' a(A (x,) <ll(e, x,)) ]}. (4.2) 
co Vr av" aUr 

We shall in what follows be interested in the average 
integral phase volumes which we define as follows: 

(4.3) 

SubstitUting (4.2) into (4.3) and using (2.9) we get 

2nv,dv, { 1 [a'l'(x,) . aA (x,) b(x,) ]} 
dQ,=--- H- ----(-1)' . 

w Vr a~ a~ 

(4.4) 

It is now important that, in general, dUl ~ dil2. This 
fact does, however, not violate Liouville's theorem. 
Indeed, into the phase volume dn 2 enter not only those 
untrapped particles which were in d~ll before the inter
action with the wave, but also particles which were 
trapped in the vicinity of the point xr and af.terwards 
left the phase volume of trapped particles and became 
untrapped (or vice versa) because of a change in the 
depth of the potential wells due to the change in the 
parameters f3 and T. For the balance of the phase 
VOlumes, required by Liouville's theorem, it is thus 
necessary also to take into account the change in the 
phase volume of the trapped particles (cf. the analogous 
situation considered in (3,4] for I [3 I » 1). This can be 
done as follows. 

It follows from (2.2) that the total phase volume of 
trapped particles at a given point is equal to 

QT"" HdVd.x=_21'Ial JS ,dedz , 
T k,' T ,e-y(z) 

(4.5) 

where T is the region in which the variables € and z 
vary, corresponding to trapped particles. From Fig. 2 
it is clear that 

H de dz ~., S· de. 
,e-y(~= J dz -l'e-y(z) =2,,~b. 

T fa v(z) 

As a result the phase volume of trapped particles in a 
single potential well equals 

RT=(4rr/w)A(x,) Ib(x,) I· (4.6) 

Accordingly when vr is changed by an amount dVr the 
increase in the trapped particle phase volume is equal 
to 

4n a 
dQr=-- [A (x,) Ib(x,) Ildv,. 

w (JV t 

(4.7) 

We can easily check that the law of conservation of 
average phase volume 

(4.8) 

follows in accordance with Liouville's theorem from 
Eqs. (4.4) and (4.7). 

5. CHANGE IN THE DISTRIBUTION FUNCTION DUE 
TO THE RESONANCE INTERACTION 

USing the general relations of the last two sections 
we can get first a relation between the values of the 
average distribution function in the pOints Xl, v land 
X2, V2. To do this we start from the law of conservation 
of the particle number 

!(2)dR,=!(1)dQl-dNT, (5.1) 

where dNT is the change in the number of trapped par
ticles in a single potential well when the resonance 
velocity changes by dVr (and, hence, the coordinate of 
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the resonance point changes by dxr ), and the average 
distribution functions in the points 1 and 2 are defined 
as follows: 

_ 1·n DR, 
!(i)=-S de!(v"z"x,)-. 

dQ, 0 d£ (5.2) 

We assume here that Vi and zi are expressed in terms 
of vr and €; when integrating we imply that vr = con
stant. We now consider two cases. 

(1) When x increases the phase volume of the 
trapped particles decreases: dnT(X)/dx < O. The cap
ture of particles by the wave occurs then only in the 
immediate vicinity of the source, i.e., when x = 0; 
farther away however, the particle escapes capture. In 
that case, the average trapped-particle distribution 
function clearly remains unchanged and is equal to the 
unperturbed distribution function at x = 0 and vep = vep(O) 
= w/k(O). The number of trapped particles in a single 
potential well equals NT(X) = fo(vep(O), O)nT(x). 

(2) dnT/dx> 0; in that case the wave captures new 
particles when x increases. It is clear that in that case 
the average trapped particle distribution function 
changes. 

In any of these cases we can define the average 
trapped particle distribution function as IT (x, v) 
= nT(x)o(V - vep(x», where nT(x) = k(x)NT(X)/21T is the 
trapped-particle density. We introduce further the 
average number of trapped particles per unit volume 

!T(x)=Nr(x)/QT(X). (5.3) 

In case (1) we have then 

!T(x)=t'(k70) ,0), dNr(x)=t.( k70)'0)dQT(X). (5.4) 

Expressing nT(x) in terms of fT(X) and using Eq. (4.6) 
for nT(x) we get 

IT(x, v)= ~Ib(x) IA(x)!T(X)Il(v-v.(x». 
v (5.5) 

For the average change in the distribution function in 
the trapped particle phase space, caused by the field of 
the wave, we have 

- 2 
Il/r(x, v) = --;:-1 b(x) IA (x) [1, (x) -fo(v.(x) , x) l6 (v-v.(x». (5.6) 

In the square brackets in this expression we have the 
average deviation of the number of trapped particles 
per unit phase volume, from the equilibrium value. The 
quantity (5.6) satisfies the normalization condition 

(2rrlk) f dv 6fT (v, xl =QT (x) [IT (x) -f,(v.(x), x) l· 

We turn now to the calculation of the untrapped parti
cle distribution function. To do this we start from Eqs. 
(5.0 and (5.2). Since particles with a velocity Vl at the 
point Xl no longer interact resonantly with the wave, 
their distribution function can be expressed simply in 
terms of the unperturbed distribution function 

1(1) =!.(Vl, Xl) =F[Vl'+2'l' (Xl) l. (5.7) 

Substituting (5.7) into (5.2), using (3.3) and (4.4), and 
neglecting terms (WTt2 we get: 

1(1)=f.(v"x,)+ 8!.(v"x,) A (x,) b(x,) . (5.8) 
iJv" Dr 

When substituting (5.8) into (5.1) we must consider 
separately the two cases discussed above. When dnT/ dx 
< 0 we can substitute (5.4) instead of dNT. USing (4.4) 
and (3.5) we get as a result 
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_ a'!' _I a 
!uT(2)-/0(V"X,)=2[v, +-] -[A(x,)b(x,)j 

av, av, 

[/ ( )_/ (~O)] 2A(x,)b(x,) a/o(v" x,) 
x 0 v" x, 0 k(O) , + v, av, (5.9) 

where the index UT indicate that the quantity fUT re
fers to untrapped particles. 

In the second case when the particles can not leave 
the capture region when x increases we have 

1UT(2)=1uT(1)=/0(v" x,) (5.10) 

(cf. the analogous situation in(3,41). Using this relation 
and Eq. (3.5) we get in the approximation used 

1(2)=/0(v" x,)+ a/o(v" x,) 2A(x,)b(x,) . (5.11) 
(Jv r L'r 

Substituting then (5.10) into (5.1) we get after simple 
calculations for the number of particles in a single 
potential well 

NT(X)=NT(O)+~ S" dU'fo(v', x') d[A(x')~(x')] 
(I) dl" 

\(0\ 

This expression together with (5.3) determines the 
trapped particle distribution function. 

(5.12) 

We now turn from Xz to an arbitrary point x;> xz. 
Let the particle velocity then change from Vz to v. In 
that case VZ + 2>J1(x) = v~ + 2>J1(xz), as the particle is out
side resonance with the wave when moving from Xz to 
x (see Fig. 1). Hence the deviation of the untrapped 
particle distribution function from the equilibrium one 
equals 

(5.13) 

Substituting (5.9) or (5.11) into (5.13) we get on the 
right-hand side of (5.13) a function of xr of the order 
of (WT rl. As we neglect terms (WT rZ we can then as
sume that xr is expressed in terms of x, v through Eq. 
(1.8). Differentiating (1.8) at constant x we get 

dv Ii'!' (x,) 
u-=v,+---. 

dv, ou, 
(5.14) 

Using this relation we get after simple transformations 
from (5.9), (5.11), and (5.8) for both cases 

- a~) 0 _ 
l)/.T(V,X)=----- {A (x,) b(x,) [fo(V,X)-!T(X,) l}, 

v ov 
(5.15) 

where the function xr(x, v) is defined in (1.8): 

O(x,)=1 (O<x,<x) , 8(x,)=0 (x,>x). (5.16) 

Combining (5.15) and (5.6) we get for the average per
turbation of the distribution function 

- 28 (x,) 0 _ 
l)/(v, x)= -,,--;;: {.1 Cx,) b(x,)[/o(v, x) -1 ,(x,)]} 

. 21b(x)IA(x) _ . ( CiI) ) 
-t- v [jT(X)--},(u,x)]1l u- k(x) , (5.17 

where fT(x) is given either by (5.4) or by (5.3) and 
(5.12). 

The first term in this expression, which is connected 
with the untrapped particles, consists of two parts that 
are proportional to Ab and a (Ab)/ a v, respectively. The 
first part determines the change in the untrapped parti
cle distribution function caused by their acceleration 
(slowing down); the second part is connected with the 
escape of particles from trapping (or vice versa). In the 
case when the wave propagates in the direction of in
creasing denSity (i.e., dn/dx;> 0 and hence (3 ;> 0) the 
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trapped particles accelerate and those from them which 
after some acceleration escape trapping (if em/ dx < 0) 
can form a beam.4) In other words, in that case a region 
can be formed on the "tail" of the distribution function 
where af(v, x)/av/= a(fo + 5I)/av > O. A more detailed 
study of such beams and of possible instabilities will be 
gi ven in a separate paper. 

6. INTEGRAL EFFECTS 

We consider some simple consequences of Eq. (5.17). 
We saw above that in an inhomogeneous plasma a wave 
accelerates (decelerates) trapped particles while at the 
same time slOwing down (accelerating) the resonance 
untrapped particles. It is thus natural to pose the ques
tion of the corresponding current density. After ele
mentary calculations we find from (5.17) that 

{jj= S v/)j(v,x)dv=O, (6.1) 

i.e., the drag effects discussed above do not lead to the 
appearance of an average current. We could, of course, 
have expected that result if we started from the exact 
kinetic equation (1.5) in the stationary case (al/at = 0). 

The average change in the density differs, however, 
from zero: 

- ". V,+o '1'Iou, 
Iin(x)=2 S du, v" A (x,) b(x,)[/o(v"X')-/T(X,)j. (6.2) 

To estimate this quantity we express it in terms of the 
trapped-particle denSity nT = kNT/21T. Using the fact 
that NT(X) ~ fo(w/k(O), 0) S'lT(X) we easily get on 
~ nT{v<p - v<p(O)}/v<p. In order that the theory devel
oped above be valid it is necessary that doni dx « dn/ dx, 
i.e., nT/n« (ve/v<p)z. The change in the average 
density gradient due to drag effects must lead to the ap
pearance of a constant electric field the potential of 
which must be small when compared with the potential 
.v(x) which maintains the initial inhomogeneity in the 
framework of applicability of our theory. The magnitude 
of the electric field must depend on the boundary condi
tions of the problem which determine the possibility for 
charge compensation, and will be considered in a sepa
rate paper. 

We consider, finally, the energy flux of the particles 
which is caused by drag effects. Using (5.17) and (5.14) 
we get 

~ - • dv, ( 
S(x)= S dv(mu'/2)v/)j(u,x)=-2mf dX'd;; v, 

o 

8'!'(x,) ) +--- A (x,) b(x,) [fo(v" X')-'T(X,)], 
av, 

(6.3) 

This expression determines, in particular, the average 
growth rate of the wave caused by particle drag effects 

- 8ne' ",(x)b(x)v.(x) [/ ( () ) - ( )] y(x)= oV.X,X-!TX. 
m 1'21~(x)1 

(6.4) 

A more general expression taking into account also co
herent effects of the resonant interaction in the vicinity 
of the print XS) was obtained earlier in[Sl. It can be 
written in the form 

1 (x) ='jj (x) + (1c!n) [ 2b' + .t (bn'+c n') ], (6.5) 
n=i 

where the coefficients bn and cn as functions of the 
parameter {3 (x) are given by Eqs. (2.10) and (2.11), 
while YL is the growth rate in the linear approximation. 
It follows from (6.4) and (6.5) that the sign of the growth 
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rate is independent of (3, i.e. of dn/ dx and is only de
termined by the sign of YL' It is also clear from (6.5) 
that Eq. (6.4) determines the main part of the growth 
rate when fo(v, x) - fT(X) is sufficiently large and 
I {31 > 1 (when I (3 I s 1 the growth rate y(x) = 0 and 
(6.5) and (2.12) give the result of(1]). 

In conclusion we note that Eq. (2.3) which is the 
basis of the theory proposed here is valid when d2cp/ dx2 
« dk/dx, where cp(x) is the non-linear addition to the 
phase in (1.1). For an analysis of this condition we con
sider the rather simple case of a weakly inhomogeneous 
plasma, Le., I (31 » 1. In that case 

v dcp(x) = 3.62 l£(~)'_f_+ 'I'(:e)~ , (6.6) 
dx ::t h',. UlT 3 

where Vg is the group velOCity of the wave. The first 
term on the right-hand side is the non-linear frequency 
shift in a homogeneous plasma, found in ref.(l2]. The 
second term is caused by non-linear effects in an in
homogeneous plasma.l 5,8] For sufficiently large x this 
last term is the main one. USing (6.4) we get in that 
case the condition for the validity of the set (2.3) in the 
form 

d'cp / dk f6 V,' 
--:;::z -d ""-3 ,1£T--<f 

"'"" x 1[ v,v, 
(6.7) 

or, in the case (1.2), YLT < 1. 

I)ln obtaining the set (2.3) we neglected also the terms (d2.,o/dx2)/(dk/ 
dx). The analysis given at the end of the paper shows that this is per
missible when condition (6.7) holds. 

2)We shall assume that the sign of 01 (and thus of (3) does not change in 
the entire range of x. We note in passing that, in general, sign ()( = sign 
dn/dx, where n(x) is the plasma density. 

3)ln the laboratory frame of reference this reflection corresponds to the 
particle being overtaken by the wave (when 01 > 0) or the other way 
round (ex < 0). 
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4)We note in passing that trapped particles must completely disappear as 
soon as the critical point is reached (wp(xcr) = w), nothwithstanding 
the fact that E -> 00 as x -> xcr' Indeed, the evolution of the wave pro
ceeds in such a way that Eyk < 00. [7.8) Therefore in the critical 
point (where k = 0) T = 00 and {3 = b = 0, and there can be no trapped 
particles. 

5)These effects are determined by the difference between the particle 
velocities and the average values (3.5). 
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