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We find the stationary turbulence spectra for the case when the plasma contains a given external source 
(relativistic electron beam) that excites Langmuir oscillations. The stationary state is maintained because 
non-linear interactions of the Langmuir oscillations with one another and with electromagnetic waves take 
them out of resonance with the beam and cause them later to be absorbed because of Coulomb collisions. 
The non-linear interaction mechanism is the induced scattering of the oscillations by the ions. We show 
that when we take into account the interaction between the Langmuir and the electromagnetic waves it is 
possible to secure collisional dissipation of the oscillations even well above threshold ('Y> v, where 'Y is the 
growth rate of the instability and v the collision frequency). This enables us to moderate considerably the 
conditions for the applicability of the weak-turbulence theory to the problem of plasma heating by a beam. 
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1. INTRODUCTION 

When studying the heating of a plasma by a relativis
tic electron beam or a powerful electromagnetic wave, 
the problem arises of the non-linear limitation of the 
level of the Langmuir oscillations which are excited by 
the external source in the plasma. If we do not go be
yond the framework of the weak turbulence theory( 1-3J 

the basic non-linear effect is usually the induced scat
tering of Langmuir waves by ions. Two scattering chan
nels are known: the scattering of Langmuir into Lang
muir waves Uz) and the scattering of Langmuir into 
electromagnetic waves ([t). The probabilities for these 
processes have the same order of magnitude, but due 
to a small optical depth of the plasma or inhomogeneity 
of its denSity the It-scattering may be suppressed. The 
ll-scattering is then the main one. It leads to a transfer 
of the oscillations which are excited by the source to the 
long-wavelength part of the spectrum where there is no 
generation. If the change in the dispersive addition to 
the wave frequency in each elementary scattering pro
cess is small (differential transfer) the corresponding 
kinetic equation for the waves turns out to be relatively 
simple. The stationary Langmuir turbulence spectra 
were obtained for that case in[4j where it was shown 
that when the excitation is anisotropic the oscillation 
spectrum is concentrated on a few surfaces (jets) in 
wavevector space. ll When the long-wavelength oscilla
tions are suffiCiently strongly damped the jets are cut 
off in the long-wavelength region, while for small damp
ing the solution here corresponds to a constant flux of 
Langmuir quanta along the spectrum. We note that the 
total energy of the Langmuir oscillations in this solu
tion depends linearly on the instability growth rate 
while the power released in the plasma is proportional 
to the square of the growth rate. 

We obtain in the present paper stationary turbulence 
spectra for the case when both ll- and It-scattering are 
allowed. The different characteristics of these spectra 
consist in the fact that when the ratio of the growth rate 
'Y of the instability of the Langmuir waves to the fre
quency v of the electron collisions is large the stabiliza
tion of the instability is secured mainly because of the 
electromagnetic oscillations (their energy is much 
larger than that of the Langmuir oscillations). The 
power diSSipated in the plasma is then directly propor
tional to y. It is important that the spectra obtained do 
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not require the inclusion of additional dissipation mech
anisms of the long-wavelength oscillations as is the 
case when y » v when there is no It-scattering when 
there is a constant flux of Langmuir quanta along the 
spectrum in the long-wavelength region. 

We have chosen the following sequence of exposition 
in the present paper. We give in Sec. 2 the kinetic equa
tions for the Langmuir and electromagnetic oscillations 
assuming that the spectral transfer is differential in 
character. We conSider in Sec. 3 the problem of sta
tionary turbulence spectra when the excitation of the 
Langmuir oscillations is isotropic. Already this simple 
model shows that the It-scattering (when it is allowed) 
qualitatively changes the form of the stationary spectra. 
We obtain in Sec. 4 the spectrum corresponding to the 
excitation of Langmuir oscillations by two relati vistic 
electron beams injected in opposite directions into the 
plasma. The last (fifth) section of the paper contains a 
discussion of the results obtained. 

2. BASIC EQUATIONS 

We write the electric field of the oscillations in the 
plasma as a superposition of the fields of the Langmuir 
(0 and electromagnetic (t) waves with slowly changing 
amplitudes: 

E(r; t)= S E'(k) = exp{ikr-iCw'+w.)t}d'k 

+ fE'(k)exP{ikr-i(w'+W.)t}d'k+C.C., (1) 
3 1 k'c' 

wiCk) ... "2wOk'rD" w'(k) ... 2 00.-;;;;;-. 

As all frequencies of the oscillations which interest us 
are close to the electron plasma frequency Wo we have 
explicitly split off this quantity in Eq. (1) and introduced 
the dispersive additions w rand wt . In what follows it is 
implied that the phases of the waves are random so that 

(E'(k)E"(k') )=2n(w.+w')N'(k)6(k-k'), (2) 
(E: (k) E," (k') )=2n (00.+00') N.,' (k) 6 (k-k'). (3) 

The pOinted brackets indicate averaging over the phases. 
The quantities Nl(k) and N~I3(k) are the spectral func
tions of the l- and t-oscillations which are connected 
with the corresponding energy densities Ul and Ut 
through the following relations: 

U'= f (wo+w')N'(k)d'k, (4) 
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U' = S (oo,+oo')N •• '(k)d'k. (5) 

We note that in Eq. (3) we have not averaged over the 
polarization of the electromagnetic oscillations. The 
fact is that because of the degeneracy of the dispersion 
law the difference in phase of t-waves with different 
polarizations can, in general, not be considered to be 
random. Because of this the spectral function N~{3 turns 
out to be a tensor. The description of the t-waves by 
means of a single scalar quantity (the spectral density 
of the number of quanta) usually assumes that the waves 
are unpolarized. This is, of course, valid in the spher
ically symmetric case but there is no foundation for it 
when there is less symmetry (in particular, when there 
is axial symmetry). 

The set of equations for the spectral functions which 
describes the ll- and It-scattering by ions has the 
form 

iJ (kk')' 
at N' (k) =N' (k) S k'k" N' (k') 1m Gk - k ,; .'_0" d'k' 

+N' (k) J k;:~N.~'(k')Im Gk _ k ,; .'_." d"k, 

iJ i i 
atN.~'(k)= -2 r •• (k)NI4'(k) + 2r~;(k)N."'(k), 

l' (k)"" J [k:k'-k.(kk') ][k~'k'-k~(kk')] , , , ' 
.~ k'k'. N (k ) Gk - k ,; .'-." d k • 

The function Gk'w which occurs in Eqs. (6) and (7) is 
given by the follbwing formula: 

G OO"SkiJjliJp [ SkiJjliJ p ]-. 
k;.=- ---d'p 1-T ---d'p , 

2n kV-lil kv-oo 

(6) 

(7) 

(8) 

where f is the equilibrium ion distribution function, 
normalized to unity, p the ion momentum, n the plasma 
denSity, and T the electron temperature. When evaluat
ing the integral in Eq. (8) we must use Landau's rule to 
go round the pole so that G -k;-w = Gk;w' 

The set of Eqs. (6) and (7) can be obtained by the 
general methods of the weak turbulence theory[l-sJ, but 
the calculation turns out to be more compact if we fol
low Zakharov[5J and right from the start separate the 
equations for the fast (electron) and the slow (ion) mo
tions, and afterwards average in these equations over 
the random phases. Such a derivation of the expression 
for the probability for ll-scattering was given in[4J. It 
can easily be generalized to the It-scattering case .l6J 
One can also easily in the initial equations take into ac
count the scattering of electromagnetic into electro
magnetic waves, but this addition is unimportant as it 
contains an additional small parameter T/ mc2 as com
pared to the contribution from the ll- and it-processes 
(see, e.g.pl, p. 313). 

We shall be interested in what follows in spectra 
that have axial symmetry. This enables us to simplify 
the set of Eqs. (6) and (7). We introduce a unit vector n 
giving the preferred direction and two mutually perpen
dicular unit vectors el(k) and e2(k) corresponding to 
the two directions of the electric field of an electromag
netic wave with wavevector k: 

nk'-k(nk) [nk] 
e.(k) Ink'-k(ok)I • e,(k)= l[ok]1 . (9) 

One checks easily that in the axially symmetric case 
the matrix r a{3(k) can be written in the following form: 

r.~(k) =r.e,.e.~+ r2e •• e,~. 
The tensor N~{3(k) can also be expanded in terms of 
the vectors eland e2: 
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(10) 

We note now that owing to the axial symmetry only the 
first two terms in Eq. (10) give a non-vanishing contri
bution to the right-hand Side of Eq. (9). It is therefore 
more convenient to deal with three equations for the 
quantities Nl(k) and N;dk)(A = 1, 2) instead of the 
initial set of equations: 

iJ (kk') , 
atN' (k) = N' (k) S k'k" N' (k') 1m G.- k ,; .'-." d'k' 

(ke ')' 
+N' (k) Ef -f,-N.(k') 1m G._.·; .'-0" d'k', (11) 

~_l.Z 

We shall conSider a not too narrow kind of spectrum 
of oscillations (such spectra that for them the charac
teristic value of the phase velocity of the beats 
(w - w' )/1 k - k' I is much larger than the sound veloc
ity). We can then change in Eqs. (11) to the differential 
approximation. Formally this reduces to writing the 
imaginary part of the function Gk;w in the following 
form: 

noo,' ,(00) 
1m Gk ;. = 2nM Ii k . (12) 

Here M is the ion mass and the prime on the IS-function 
indicates differentiation with respect to its argument. 

It follows from the fact that the frequencies of the 
interacting l- and t-wave are close to one another (see 
(12» that the wave vector of the electromagnetic wave 
which takes part in the It-scattering is small compared 
to the wavevector of the Langmuir wave (kt/k l 
~ (T/mc 2 )1/2 « 1). We can therefore replace the differ
ence k - k' by the wavevector of the Langmuir wave in 
the argument of the function G which determines the 
interaction between the [- and t-waves. 

To simplify further the way Eq. (11) are written we 
change in them to dimensionless variables w, x, and T, 

where w is the dimensionless dispersive addition to the 
wave frequency (we choose for the unit of frequency the 
quantity %woT/mc 2 ), x is the cosine of the angle be
tween the wavevector and the preferred direction, and 
T the dimensionless time (T := %woTt/ mc 2 ). The 
dimensionless spectral functions Nl(w; x), N1(w; x), 
and N2(w; x) are defined as follows: 

8n' m ( me' )' 00 N'(oo;x)doodx""'--- -- --' N'(k)k'dkdx 
27 M T nT ' 

8n' m ( me')' 00 N.(!iJ;x)doodx""--- -- --' N.(k)k'dkdx 
27 M T nT . 

(13 ) 

Using Eqs. (9) and (12), and averaging the kernels of the 
integrals in (11) over the azimuthal angle we get in the 
new notation the following set of equations: 

iJ iJ I 

a.N'«~; x) = N' (00; x) [OO"'a;oo'" S N'(oo; x')T(x; x')dx' 
-1 

+ LOO a: f N.(oo;x')T.(x;x')dx'+2"(oo;x)-v], (14) 
A_I;2. _1 

iJ iJ • 
a;N,(oo; x) = N.(oo; x) [a; 00 S N'(oo;x')T.(x';x)dx'-v]. -. . 

where 

T(x; x') "'1-x'-x"-3xx'+3x'x"+3xx"+3x'x' -5x"x', 

T t (x; x')I!5X2:+t/2X'2_lJ/zXZX'Z, 

T,(x; x')",'/,(1-x'). 
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(15) 
(16) 

(17) 
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We included in Eqs. (14) the growth rate Y(Wj x) of the 
build-up of the Langmuir oscillations by the external 
sources and the damping rate v/2 of the colliSional 
damping of the oscillations. These quantities are made 
dimensionless in the same way as the dispersive addi
tion to the frequency. 

In concluding this section we give the original equa
tions for the spherically symmetric case with which we 
shall start the consideration of the stationary spectra. 
These equations are obtained from the set (14) by put
ting N1(wj x) = N2(wj x) = Nt (w)/2, Nl(Wj x) = Nl(w) and 
integrating over x': 

a N' ", [4 " a " 2 a ] - =" -00··'-00·'N'+--00-N'+21-V 
ih 3 aoo 3 aoo • 

~N'=N' [~~OON'-V]' aT 3 aoo 

(18) 

(19) 

Apart from the notation this set is the same as the one 
given on p. 313 of the book by Tsytovich[3] (see also[7], 
p. 194). 

3. ISOTROPIC SOLUTIONS 

The aim of this section is to elucidate how the char
acter of the stationary solution of Eqs. (18) and (19) 
changes as the growth rate of the instability increases. 2) 
We shall assume to fix the ideas that the growth rate 
yew) vanishes for small and for large w, is positive in 
between, and has a single maximum. We assume to start 
with that there are only Langmuir oscillations in the 
spectrum and that Nt = 0 (we shall show below that such 
a situation corresponds to being just above the thresh
old for producing the instability). Putting the right-hand 
Side of Eq. (18) equal to zero we get 

1°, 
"+ N'= 3 S 21-\' 

1-4 ,. -,,-doo. 
m/I (i) 'I . 

(20) 

where w. is the larger of the two roots of the equation 
y(w) = v/2. When w > w. there are no OSCillations, 
since the spectral transfer occurs with a diminishing of 
the frequency and the source itself does not excite 
oscillations with frequencies above w •• If we are just 
above the instability threshold, so that the condition 

(21) 

is satisfied, the spectrum is cut off at a point W = w > 0 
where the quantity Nl given by Eq. (20) vanishes. We 
must then add to Eq. (20) the condition 

N'=O, oo<iil, (22) 

which means that the oscillations excited by the source 
manage to get absorbed due to the Coulomb collisions 
before they reach the point w = 0 as a result of the 
spectral transfer. If, however, 

(23) 

there is a constant sink of oscillations at the point 
W = 0 and the problem of the dissipation of these waves 
arises. We note, however, that a solution with a Sink at 
the point w = 0 is unstable with regard to the excitation 
of electromagnetic oscillations. We can check this by 
using (19) to evaluate the growth rate of the excitation 
of t-waves: 
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"+ f.=_1-S 21-v doo-l_~ 
800'1> !i)'" 2 4' 

If inequality (23) is satisfied, clearly rt > 0 for low 
frequencies. The spectrum with a cut-off at w = w is, 
on the other hand, stable. Indeed, in that case the quan
tity w 1/2 (rt + y/2) is negative (it is negative for W = 0 
and decreases with increasing w). The quantity rt is 
therefore also negative. When we are just above thresh
old (when inequality (21) is satisfied) the stationary 
spectrum is thus given by Eqs, (20) and (22) and con
sists of Langmuir waves only, while when the growth 
rate increases there appear electromagnetic oscilla
tions in the spectrum; 

In that range of the spectrum where the quantity Nt 
is different from zero the stationary solution of Eqs. 
(18) and (19) has the form 

, 3 A 
N =-v+-, 

2 !I) 

A "+ d 
N'=--+B+3S~; 

00 !I) 
(24) 

A and B are integration constants, In the point where 
the quantity Nt vaniShes the solution (24) must be joined 
to the solution (20). Moreover, the functions Nl and Nt 
are, because of their meaning, positive for all values of 
w. Determining the constants A and B from these two 
conditions we get finally the follOwing formula for the 
spectrum referring to the case of being well above 
threshold (inequality (23) is satisfied): 

0, 00>00+ 

I' N'= 3 T21-V 
00'<00<00+. N'= j'1 4(ltlfJ",~d(j}, 3 -doo, 

!I) . . 
3/2.V, 00<00' 

Here w* is a root of the equation 

So+ 21-v 
--,,-doo=2\'00·" . 

!i)" 
M 

00>00' 

00<00' 

(25) 

Using Eq. (25) we can easily calculate the total num
ber N of quanta in the system: 

I _ -+ 

N= S dx S doo (N'+N') = 3 S (21-v)doo. (26) 
-I 

Apart from small corrections of order k2 rO this quan
tity is proportional to the total energy density of the 
OSCillations U == U l + Ut . To make things clear we give 
the result in terms of variables with dimensions: 

27 II T .. s U--nT--- [2y(k)-vlkdk 
n mmroo l . 

(27) 

o 

(k. is the largest root of the equations y(k) = v/2). 

We emphasize that for the spectrum given by Eq. (25) 
there is no sink at the point w = 0: the energy lost by 
the source is completely absorbed through the Coulomb 
collisions, The power released in the plasma is thus 
equal to vU (in variables with dimensions). It is clear 
that the power depends linearly on the source strength 
y, We note also that if y is much larger than v the 
energy is mainly concentrated in the electromagnetic 
oscillations while the energy of the Langmuir waves is 
small. We shall show in the next section that the quali
tative statements enumerated here refer equally also to 
the anisotropic spectrum. 
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4. SPECTRUM EXCITED BY AN 
ANISOTROPIC SOURCE 

We now consider a concrete example for which it is 
possible to find the stationary spectrum analytically. 
We shall assume that the Langmuir oscillations are ex
cited by two identical relativistic electron beams which 
are injected in opposite directions into the plasma. The 
solution of the problem for any other source does not 
entail any difficulties in principle but may require a 
numerical integration of the equations. 

We use the result of the calculation of the growth 
rate of the instability of a relativistic electron beam 
with a small angular spread t::..e (see, e.g.,[8]). As to 
beam parameters, we assume that they satisfy the fol
lOwing inequalities: 

~S > r (n. me') 'I. (n.) -"'( me') 'n] mc' 
max, --;-8 ; -;- r ,M >8' 

where nb is the beam density and C the electron en
ergy. The first of these inequalities means that the in
stability is a kinetic one and the second enables us to 
neglect the effect of the spread in energy on the spread 
in velocity in the beam. It is important for what follows 
that in the kll' kl plane (k ll and kl are the longitudinal 
and transverse components of the wavevector with re
spect to the beam axis) the growth rate is different from 
zero in a narrow region around the line kll = wei c. For 
a given value of kl the growth rate (as function of kll) 
has a steep maximum. The following estimate holds the 
maximum: 

nil mel 1 000' 

'Ym "" 00. n 8 !is' oo,'+kJ.'c' . 

For long-wavelength oscillations (k < we/c) the growth 
rate vanishes as their phase velocity is larger than the 
speed of light. 

Hence it follows that in terms of the dimensionless 
variables used by us the growth rate y(w; x) correspond
ing to two beams has for each value of w > 1 two narrow 
maxima in terms of x at the points x = ±w-l/2 , while 

where 
2n.mc'mc1 

'Y. = 3-;-8T tiO' 

Moreover, 
'Y(oo; x)=O when 6)<1. 

It will become clear in what follows that these facts 
about the growth rate are sufficient to determine the 
stationary spectrum of the oscillations. 

(28) 

We turn now to Eqs. (14). In the stationary case they 
are of the form 

N(Ul; X)r'(oo; x) =0, N,(oo; X)f,(oo; x) =0, (29) 

where we have denoted by rl and rA (X = 1, 2) the 
expressions in the square brackets. Apart from these 
relations we must also satisfy the requirement of sta
bility: 

(30) 

Owing to the symmetry of the source the growth rate 
y(w; x) is symmetric under the substitution x - -x. It 
is natural to assume that the solution possesses the 
same symmetry. It is then sufficient to consider in
stead of the interval -1 < x < 1 the range 0 < x < 1. 
Clearly only the part of the kernel T(x, x') which is 
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even in x will then contribute to the equations (see Eq. 
(15», Le., we can put 

T(x; x') =1-x'-x"+3x'x". (31) 

We notefurther that the quantity r 2 is independent of x 
and that r 2(w) = r 1(w; 1). Moreover, the contribution 
from the function NOl to the quantity r is exactly the 
same as from the function 

• 
N,=6(x-1+0) J N,n. 

• 
This means that if the function N l, N I, and N" satisfy 
Eqs. (29) and (30) the functions 

, 
lV'=N', N,=N,+6(x-1+0) J N,dx, N,=O 

• 
also satisfy there relations while the spectra (N l, N I, 

NOl) and ('N l , 'f.i\, N2) correspond to the same total en
ergy of the oscillations. In other words, without loss of 
generality we can put N2 = 0 and thereby reduce the 
problem to solving only the first two equations of the 
set (29). The quantities rl and r 1 in these equations 
have the following form: 

- 8 ' 
f'(oo;:i:)=2'Y(OO;X)-v+2oo"-8 00'1, IN'(OO;X)T(x;x')dx' 

00 • 

t 

+2oo~J N,(OO;X')T,(x;x'}dx', 
800 • 

8 ' 
f,(oo; x}=-V+2-oo IN'(OO;X'}T,(x'; x}dx', 

000 • 

(32) 

where T(x; x') is given by Eq. (31) and T 1(x; x') by Eq. 
(16). We consider the function rl. In the range w > 1 
the terms occurring in it depend in essentially different 
ways on x (y(w; x) is a function with a steep maximum 
at x = W- 1/ 2 while the integrals are of the form a(w)x2 

+ b(w». The equation r l = 0 can thus for each fixed 
value of w be satisfied in separate pOints Xi = Xi (w) 
(i = 1, 2, ... ). It is clear from Eq. (29) that just in 
those pOints the spectral denSity N l of the quanta must 
be concentrated, Le., USing the terminology of[4] the 
spectrum has a jet-like structure. As the zeroes of the 
function rl at the same time are its maxima, there are 
in the case of interest to us altogether three possible 
positions for the jets: x = W- 1/ 2, X = 0, and x = 1, and 
the number of jets for each value of w is at most two. 
Hence it follows that when w > 1 we must conSider the 
following variants: 

when 

1) f'(oo; oo-'I')=f l (oo;O)=O. 

N'=A. (oo}6(x-oo-'I,) +B, (oo}6(x-0); 
2) f' (00; 00-'") =f' (00; 1) =0, 

N'=A,(oo) 6 (X-oo-':') +B,(oo)6(x-1 +0); 
3) f'(oo; 00-'1')=0, f'(oo; 1)<0, f'(oo;()<O, 

N'=A.(oo} 6 (x-m-'I,) ; 
4) f'(oo; 0)=0, f'(oo; m-'I,)<O, f'(oo; 1)<0, (33) 

N'=A.(oo}6(x-0); 
5) f'(oo; 1)=0, f'(oo; 00-'1')<0, f'(oo; 0)<0, 

N'=A.(m}6(x-1+0) ; 
6) f'(oo; x) <0, O';;x';;l, 

N'=O. 

Similar considerations applied to the quantity r 1 yield 
the following list (in the entire range of frequencies): 

1) f,(oo; 0)=0, f,(oo; -1)<0, 

when 
N,=C,(oo)6(x-0); 

2) f, (00; 1) =0, f, (m; 0) <0, 
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N,=C,(oo) 6(x-1+0); 
3) r;, (00; 0) =f, (ffi; 1) =0; (34) 

this means that r l( w; x) = 0 for all values of x; the 
spectrum can in that case not have a jet-like structure 
(see below); 

4) f,(oo; x)<O when O";;x,.;;1. 
N,=O. 

If we replace here the index 1 by the index I we get the 
corresponding catalog for the Langmuir oscillations in 
the region w < 1. It is further necessary to consider in 
turn all combinations occurring when we combine one 
variant from the group (33) with one from the group (34). 
The conditions imposed on the quantities rl and r 1 
gi ve a set of ordinary differential equations the solution 
of which can easily be written down. After that it is 
necessary to take into account that the functions N l 
and Nl are continuous in wand that they are positive. 
This enables us to construct the required spectrum un
ambiguously from the solutions obtained. The whole 
procedure turns out to be uncomplicated but rather 
tedious. We give here only the result. For the sake of 
SimpliCity we restrict ourselves to the case when we 
are well above the instability threshold (-Yo» /I). One 
can also find the spectrum in the other cases, but when 
Yo» /I the role of the It-scattering is the sharpest (see 
Sec. 3). 

In the situation of interest to us the whole of the fre
quency range splits up into five regions with different 
functional behavior of N I (w; x) and N l(W; x). We de
scribe each of the stretches separately, starting with 
large values of w. 

1) w> 21'0//1. The growth rate y(w; x) is here below 
the threshold for the beam instability, and therefore 

N'(ffi; X)=N,(oo; X) =0. (35) 

2) 1'0/2/1 < w < 21'0//1. In this range, as before, there 
are no electromagnetic oscillations, and 

[ ( 21 )"']' N'(ffi;X)= V"'- -;! 6 (%-ffi-"·). (36) 

3) 3 < w < 1'0/2/1. In the point w = 1'0/2/1 an electro
magnetic oscillations jet appears at the position x = 1: 

[ 2v 2v ffi-1] 
N,(oo;X)- -4v+------+(3v-21')ln-- 6(x-1+0). 

00-1 (ffi-1)' ffi 

N'(ffi; x)=V~6(X-OO-"·). 
(:)-1 

(37) 

4) 1 < w < 3. At the upper limit (w = 3) a second jet 
of Langmuir waves appears at the position x = 0: 

N'(oo;X)= v; 6(X-ffi-'I,)+ ~ (3-oo)6(x-0). (38) 

In this range the quantity r l( w; x) vanishes for all 
values of x, i.e., the spectrum of the electromagnetic 
oscillations has here, in general, not a jetlike struc
ture. Conditions (29) and (30) give in such a situation 
only the values of two moments of the angular distribu
tion of the oscillations: 

, 7 3 
S N,:rfdx=- --::;-v+(21o- 3v)lnz , 
o ~ 

, 3 
S N, (1-x')dx=1o In -;;;-. 

(39) 

o 

In other words, in the case conSidered there is a whole 
set of stationary solutions that differ from one another 
in the values of the higher-order angular momenta. We 
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note, however, that for all these solutions the reaction 
of the oscillations on the source turns out to be the 
same, since it is characterized merely by the spectrum 
of the Langmuir oscillations which interact with the 
beams and that spectrum is uniquely determined. In 
particular, all solutions correspond to the same magni
tude of the energy lost by the beams in the plasma. 

5) 0 < w < 1. Here f1(w; x) = rZ(w; x) = 0 for all 
values of x and accordingly only the moments of the 
spectral functions are given (see sub 4): 

, 
f N'x'dx=·~ ? ' 
o 
1 

7 3 
5N,x'dx=-ryv+(21o-3v)ln 2. ' , 

, I N'(1-x')dx=v; 

f N, (1-x') dx='"(o In 3. 

(40) 

We recall that the spectrum is symmetric under the 
substitution of x by -x, while Eqs. (35) to (40) refer to 
the interval 0 < x < 1. These formulae have been 
written down up to and including terms of first order in 
the parameter /1/1'0. However, we have already noted 
that the condition /1/1'0« 1 is not necessary for an ana
lytical solution of the problem. 

Evaluating the total energy density U of the oscilla
tions in the spectrum (35) to (40) gives the following 
results (in variables with dimensions): 

U=~ M ~ nT l'.ln(OO'~~_1 __ 2) (41) 
:It m n ~e' It \" n It ~e' . 

We have used the explicit expression for yo (see (28». 
The energy is basically determined by the electromag
netic oscillations but, because the growth rate y(w; x) 
decreases rather slowly (o::w- 1), the ratio Utju l turns 
out to be proportional to the logarithm of 1'0//1 rather 
than proportional to 1'0//1 itself. As in the isotropic 
case (see section 4) there is no condensation of oscilla
tions at the point w = 0 and a power, equal to /I U (in 
variables with dimensions) is released per unit volume 
of the plasma. 

5. DISCUSSION OF THE RESULTS 

Let us list the conditions for the applicability of the 
solutions obtained in Secs. 3 and 4. 

We neglected in the initial equations the loss of elec
tromagnetic waves from the plasma. This can be done, 
if the time of escape, which is equal to UVg (L size of 
the system, Vg group velocity of the wave) is consider
ably longer than the time for collisional damping. The 
group velocity of the electromagnetic waveS which ap
pear as a result of zt-scattering when the plasma is 
heated by a relativistic beam is of the order of magni
tude of the electron thermal velocity. The restriction 
on L thus takes the form L > A, where A is the mean 
free path of the electrons. This is a rather stringent 
requirement. The more realistic case is when the elec
tromagnetic oscillations turn out to be trapped for 
another reason (because the plasma denSity is somewhat 
lower in the region where the beam passes through than 
outside it). For the suppression of the oscillations 
which interest us we need a drop in denSity on/n on the 
order of T/mc 2 • If such a drop exists the limitation 
L> X is removed. 

The next condition pertains to the tt-scattering 
process, which was also not included in the initial equa
tions. We can neglect the effect of this process pro
vided that 
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(42) 

where Ttt is the characteristic time for tt-scattering. 
As we have already noted, the quantity Ttt is connected 
with the time for It-scattering: Ttt ~ mc2Ttl/T (see[31). 
On the other hand, we showed in Secs. 3 and 4 that if we 
are well above threshold the time for It-scattering is 
equal to the reciprocal of the growth rate of the beam 
instability. Hence it is clear that inequality (42) gives 
the follOwing restriction on the beam and plasma 
parameters: 

l/v<mc'/T. (43) 

In the present paper we have been interested right 
from the start only in stationary spectra and we have 
not conSidered at all the problem of the establishment 
of the stationary state. This process is as yet unex
plained and must be considered separately. It is of 
particular interest in the case when we are well above 
threshold when It-scattering changes the form of the 
stationary spectrum qualitatively. We must here bear 
in mind the following. If It-scattering is forbidden the 
estimate of the energy denSity of the Langmuir oscilla
tions interacting with the beam is not very sensitive to 
whether the spectrum is truly stationary (see[81) while 
in the case where we are well above threshold both 
solutions (stationary as well as non-stationary) corre
spond to an accumulation of oscillations in the long
wavelength part of the spectrum (k < ro (m/M)l/2). 
When tt-scattering is taken into account the difference 
between the solutions can be much more Significant. 
Kaplan and Tsytovich[91 have shown, by solving numer
ically the probes with the initial conditions, that in the 
transient regime allowance for It-scattering leads only 
to the appearance, beSides the Langmuir oscillations, 
of electromagnetic waves with an energy denSity of the 
same order of magnitude as that of the Langmuir oscil
lations. Otherwise the situation remains qualitatively 
the same as in the case when there are only II interac
tions. As to the stationary spectrum, It-scattering af
fects it to a much larger extent, as we already noted. 
Unfortunately, it is impossible to use the results of[ 91 
to reach any conclusions about the establishment of a 
stationary state as in all variants of the calculations 
time intervals were considered which were small com
pared to the reCiprocal of the collision frequency. In 
accordance with what we have said it would be interest
ing to perform calculations analogous to those per
formed in[91, increasing the time range at least to a few 
times the inverse collision frequency. As the result may 
depend significantly on the initial conditions it is de
sirable to consider not only natural conditions (thermal 
noise) but also other possibilities (in particular, the 
case when the initial spectrum does not differ strongly 
from the stationary spectrum). 

462 SOY. Phys.·JETP, Vol. 42, No.3 

In conclusion we show that the spectrum found in 
Sec. 4 corresponds (see, e.g.pl) to the following esti
mate for the stopping length of the beam: 

1 c m(B )'( 00, n.mc')-' l---·- - In---
10 v M T v n [5 • 

(44) 

In the case of a sufficiently dense plasma this estimate 
gives (from an experimental point of view) a completely 
acceptable value of l (for n ~ 1018 cmos, nb ~ 1013 cmoS, 
T ~ 10· eV, t! ~ 106 eV we get for a deuterium plasma 
l ~ 2 m). It is important that in the regime considered 
the energy lost by the beam is dissipated due to Cou
lomb collisions and, hence, transferred to the main body 
of the electrons in the plasma. 

The author expresses his deep gratitude to D. D. 
Ryutov for discussions of the work. 

I)Tsytovich [3] had earlier considered the spherically symmetric prob
lem. 

2)Tsytovich and Kaplan [3,,] have stated that the set (18) and (19) has 
no stationary solutions for which W * O. From the contents of the 
present section it will be clear that in fact such solutions exist. 
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