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The decays p*—e* +v+¥, m—u(e)+v, 7*—m’+ e* +v, and also the process e*—e* + v+ are considered
in the intense electromagnetic field of a plane electromagnetic wave of arbitrary polarization and also in the
field of two linearly-polarized waves propagating in the same direction with mutually perpendicular
polarizations. Expressions are obtained for the decay probabilities of these processes for both models of the
electromagnetic field, and numerical computations are carried out for specific values of the invariant

parameters which govern the effect of an external field on elementary particle decays. The characteristic
features of the dependence of the total probabilities of particle decays on the frequency and also on the

polarization of the external electromagnetic wave are discussed.

PACS numbers: 12.20.Ds, 13.10.4-q, 13.20.Cz

1. INTRODUCTION

The utilization of lasers as sources of high-power
electromagnetic radiation enables one to pose the prob-
lem concerning the investigation of a new class of phe-
nomena, namely, the quantum effects occurring in the
intense field of an electromagnetic wave. Such effects
include, for example, the processes of photon emission
by an electron, pair production, etc., which have been
investigated in many articles.['””] An investigation of
the effect of an external electromagnetic field on the
decays of elementary particles is also of obvious inter-
est.

A number of articles have recently appeared in which
one or another aspect of this problem has been con-
sidered.[*»®® '] In this connection it was found that the
field of an electromagnetic wave may either increase
the probability of decay, for example, 7— u + v, Or
else decrease the probability, as happens, for example,
in the case of the decay 7 — e +v.l*®] Furthermore,
the effect of the wave polarization on the total probabili-
ties of decay was investigated(®! using those same de-
cay processes 7 — u(e) + v as an example. As a con-
sequence of the nonconservation of parity in the weak
interactions, these probabilities turn out to be different
for right or left circularly polarized waves. Therefore,
an investigation of this effect for other elementary-
particle decays is also of interest, for example, decays
into three particles:

pE>er+vty, at--n’te*+v.

The probabilities for these decay processes in the field
of a linearly polarized wave were derived by Ritus.[®]
The limiting case of a crossed field was analyzed by
him in detail. However, the cases of circular (and in
principle any arbitrary elliptical polarization of the
wave) were not considered inl®!,

We note that some of the weak decay processes in-
volving three particles in the final state have been in-
vestigated by a number of authors. For example, Baier
and Katkov(*! studied the process e — e +y + 7 ina
constant magnetic field. This same process was also
investigated by Loskutov and Zakhartsov,!'?] allowing
for polarization of the electrons. Choban and Ivanov!'®]
carried out a computation of the production of electron-
positron pairs by neutrinos, v — v + e’ + e, in the field
of a laser beam. The decay of the neutron in external
fields was investigated by Zharkov!®! and Baranov.!'!]
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It should be noted that in order to observe the effect
of an external field on particle decays, the intensities of
the actual fields and the energies of the particles must
be sufficiently large. However, as is shown by Ritus,(®]
if there is a small difference between the masses of the
particles as happens, for example, in the decay 7+
-’ +ef 4 v, the corresponding intensities of the ex-
ternal fields can be substantially reduced. Decays with
a small energy release can occur for ordinary B decays
of nuclei, as a consequence of which the investigation of
elementary-particle decays may represent a certain
model problem for investigation of the effect of an ex-
ternal field on the decay process. We also note that in-
vestigation of the decays of particles in external fields
may also be of interest in astrophysics.

As is well known,[*®] the total probability for the
decay of a particle in thé field of a monochromatic wave
depends on the field by means of the two invariants:

x=Y (eFyp,)*/m’,

r=ea/m,

where a denotes the amplitude of the potential, F,, is
the field-strength tensor, and p, and m denote the
momentum and mass of the decaying particle. For

X « 1 we have perturbation theory, whereas the case

x » 1, which is analyzed in detail in!*®}, reduces to an
investigation of decays in a crossed field. In the present
article we shall assume that the values of the parame-
ters, entering into the problem, are of the order of
unity. In this connection there is, just as in the case of a
crossed field, an essentially nonlinear dependence of
the decay characteristics on the field. This range of
values of the parameters requires the application of
numerical integration and was not previously investi-
gated in detail (with the exception of the decays 7 — u
+y and 7 — e +p for a circularly polarized wavel®]).

In addition to the case of a single monochromatic
wave, it is also of interest to investigate the behavior
of quantum effects in the field of a nonmonochromatic
wave consisting of a set of waves of different frequen-
cies, for example, two waves with different frequencies
w1 and wz. We note that the generation of coherent
oscillations with different frequencies w, and w. was
achieved, for example, in!'*!%] A survey of this prob-
lem is contained in the books!'®"], As is well known, "]
the effect of the wave’s field on the behavior of the ‘
quantum effects is described in terms of absorption or
emission of a definite number of field quanta by the
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wave from or into the quantum object. In the case of

the interaction with the field of two waves, the possibil-
ity arises of an exchange of photons with each of the
waves separately; in this connection the numbers of
these quanta can have different signs, which corresponds
to the absorption of a definite number of quanta from one
wave and emission into the other wave. The effects of
photon emission by an electron in the field of two waves
propagating in the same direction were investigated in
articles{™'®?], Here we shall consider particle decays
in such a field. In this connection we shall assume that
both waves are linearly polarized, and moreover their
polarizations are mutually orthogonal. This greatly
simplifies concrete calculations of the effects. We have
previously considered such a model for the effects of
photon emission by an electron and pair production..™
The metric and the y matrices utilized in this article
are the same as in the book?*1 by Okun’.

2. THE DECAY u—e +v + 7 AND THE PROCESS
e~>e+p+7y

As is well known,[*!] the matrix element for the de-
cays u — e +y +p is of the form

G, _
M = = [ &2[Frtu (1) 9l (Bt (141) 4]

G _
= 5 J @alBn 1) ) [T (1) 00l 1)

The well known Fierz rule was utilized in writing down
Eq. (1);'®"1 p and p’ denote the momenta of the charged
4 meson and electron, !, and [, denote the momenta of
the neutrinos. The wave functions of the charged parti-
cles are given in!") in the metric we have adopted. We
shall consider the case of a monochromatic wave of
arbitrary elliptical polarization with ellipticity parame-
ter € (-1 = € = 1), whose potential is given in the form

Au(@) =ay, ucos gtea, ,sin @, 2)

where

a,a‘=a2a2=—a’, a‘az=0, (p=k23, kz=0,

and also the two-wave model, considered inl"), with the
potential given by

A=A+A4,, ,
@)
A,=a, cos Py, A,=a, cos ((Pz""(Po)'
where
oi=kix, a,a,=0, kk;=0, aa,=—a’, a.8,=—a,,

and ¢, is the phase shift. Below we shall follow the
notation of!”], and for the kinematic variables we adopt
the notation of Ritus.[®] For the model (2) we have
Gn_ o ®)
W 96n‘qogl~‘. K@ 7’
where ’

K(s) = o %6 (1) —c'ae?| Ao ho (k)
+e'a®[|A,{*+e?| A)'|*—Re 4.4, (1—e?) 1 ho (k)
+eal2 Im 4.4, (k)+2 Im A4, ej. (k) 1k, (k)
+2 Imd,A,"e%ae [k, (k) jos’ (k) +2hs () o (K) . @)

In the case of the two-wave model (2’) we have

,.=%ZIN($.S:)%, (5)

3,83

where

"N (5:5:) =AB26 (1) +e*[a,* (A —Aods) Bi+-a,* (B —BoBy) Al ho (k). (6)
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The following notation has been introduced in
formulas (3)—(6):
8(1) =—20+ 2 (m*+m") + (m*—m'?)?,
(m*+m"+20%) (k)
ho (k;) = 41> + ————————
(k) @k @k)
(kd) 1 1
+ 212 + s
(q'k:) (gk:) [ (g'k:) (qk‘)]
(kd)?
(g'k0)*(gky)
1 (g'ko)
< bl =0 ——e— 12,
k)= |-~ g
(k) =<@'qknd, i (k) =Cg'mkinsd, ju(k)={gnikpmy. (1)

hy(ki)=(m*—m’?)

ko (ky) = (m*—m"?)

In expressions (7) | denotes the total momentum of the
neutral particles (which are neutrinos in the present
case): | =sk +q - q for the model (2), and | = sk,
+sz2kz +q - q’ for the model (2'); q and q’ denote the
quasimomenta of the charged particles—the muon and
the electron; n is the average density of the decaying
particles;t%*]

{@4@5030,) = Epvpn @ B2v@33Giny

where €5y is the completely antisymmetric tensor of
fourth rank.'*’In expressions (7) the subscript i may
take either of the two values i =1 or 2, but consistent
with the analogous values in (6); the n; denote spatial
unit vectors in the direction of aj. The functions Aj,
Bi, and A} are given inl"] for each of the cases (2) and
(2") under consideration.

Using the invariant variables u = (k!)/(kq’) and

A =1%m? introduced in'®®], Eq. (3) can be represented
in the form

sz.n 3 u du M
- — | d\E 8
A 96n‘qo'2>‘l-!-d%;‘. (u+1),!dnx(s), ®)
where .
R (s) =] Ao [-A+/A(1+p) +/2 (1—p)?]
uz

—z%?|,|* [2x+(1+p+2x)———2(u+1) ]+x’[ |4,|*+er| 4/ )2

— Redod; (1—¢%) ] [2x +(1+u+zx)_2-(:;—1)]
+z(Im 4,4, sinp,—e Im 4.4, cos qo) [ (1—p)u+2A (u+2) 1P
+ate Tm 4,4, ——[ (1—p)u+21 (u+2) 1. 9)
ut1

Here we have introduced the notation

P=[ (h—A)/ (w+1) 1", (10)

The limits of the integrations with respect to du and
dr are given by the following expressions, which were
derived in Ritus’s article:(®]

p=m"/m?.

_ El—ml—m. £[ (B —m,—m. %) —4m, m. "

2m."? !
m,” E} u m.'* :
W BT e e (11)

In expression (11) my = m, + m, denotes the mass of
the neutral particles; in the present case it is equal to
zero. Furthermore,

2

i :
e v L ate)+ 2E
2 z
m.! =t (1+e?). (12)
The summation over s in Eq. (3) runs over the number
of photons s > sy, where s, denotes the minimum possi-
ble value of s, given by
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p—1
2
For the two-wave model (2’) the expression for the
decay probability has a form similar to (3), with the
only difference being that K(s) is replaced by

8= Z.

N (s:52) = 40Bs? [—}f +L(1+p)+iz(1—u)2]

+ [2x+(1+p+2x) [2By (4, ~404.) + 2,42 (B*—B.B;)] (13)

2(u +1)]
and, moreover, a double summation over s, and s;ap-
pears instead of the single summation over s, where
the summation over sj is carried out in the following
way. For a given value s, =§,, we determine y from
the condition
2y 2y p—1

Zy z: ' (14)
Let us assume sf™ is equal to the nearest integer
greater than y. Then the summation over s; runs over
the values s, = smm but the summation over S, runs
over all integers. Furthermore instead of expressions
(12) we have the following relations for the two-wave
model:

n

PR SO S sy 20 2ot
m* 2 2 Iy 23

m.t?

o1 .
T Tty

(15)

The functions Aj and Bj depend on the invariants,
for which expressions are given by formula (30) of("],
In the case of the decay . — e + v + v, one should take
the expression

Z= ’7 V@t ().

for the quantities Z; appearing in formula (30) of("].
i =1 and 2 for the two-wave model (2'); the subscript
i should be omitted for the single-wave model (2).

The expressions for K(s) in (9) can be greatly sim-
plified for a single monochromatic wave of circular
polarization with € =1 or € = -1, In this case the func-
tions Aj can be calculated analytically, reducing to
Bessel functions.[®] Carrying out the simple calcula-
tions, we obtain

K(s)= [—}f +%(1+p)+i(i—u):]l.z

+ [2} +(1+ ;.rn/) ] (Jotl =21

+l)

——2[(l—p)u+2h(u+2)][P—7u—_ti—]1,(1.+‘—l._.). (16)
The quantity Z is the argument of the Bessel function
Is. In the case of circular polarization of the wave,

K(s) does not depend on the angle ¢,, and in this case
the number of integrations in expression (8) for the de-
cay probability reduces to two.

By using expressions (8)—(16) we have carried out
numerical calculations of the probabilities of the decays
L —e +p +p for a single wave and for the two-wave
model. The results of the calculations are shown in
Fig. 1. The values of the parameters x and y, which
were used in the calculations, are also indicated there.
Owing to parity nonconservation, the probabilities turn
out to depend on the sign of the wave’s polarization. As
is clear from the results of the calculations, for a vari-
ation of € turns out to be nonmonotonic. We also note
that for the values of the parameters under considera-
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tion, switching on the external field increases the prob-
ability of the decays u — e +y + 7 for both models (2)
and (2'). The results of the calculations for the process
e — e +y +y are shown in Fig. 2 for the case of a
single monochromatic wave.

3. -MESON DECAYS

P10n decays of the type 7 — u(e) + v, and also 7+
— 7% + e* 4+ for the case of a crossed field, i.e., for
x > 1, have been analyzed in detail by N1lqshov and
Ritus(* and by Ritus.[®] In the latter article an expres-
sion is derived for the probability of the decays 7=
— 7° + e* + y for a linearly polarized wave. Here we
shall consider these decays for cases when the values
of the invariant parameters, characterizing the effect
of the wave’s field, are of the order of unity.

Decays of the type 7 — u(e) + v were considered in
the article by Narozhnyi, Nikishov, and Ritus!®! for the
case of a circularly polarized wave, when y =1 and the
value of x ~ 1, Using the decays 7 — u +v and 7 — e
+y as an example, it was shown in(®! that the external
field of the monochromatic wave may, depending on the
specific ratio of the masses, either accelerate or de-
celerate particle decays. Consequently, it is of interest
to investigate other external-field configurations from
this point of view, for example, the two-wave model. In
the present article we consider these decays both for
the case of a single monochromatic wave of arbitrary
polarization—in order to study the dependence of the
decay probability on the variation of the wave’s ellip-
ticity parameter—and for the two-wave model (2') con-
sidered by us.

In terms of their kinematics, decays into two parti-
cles of the type m — n(e) + v are the simplest type, and
this greatly simplifies concrete numerical calculations.
By using standard methods one can obtain the following
expressions for the squares of the matrix elements for
the decays 7 — u(e) +v.

L
W /W

7 A 2 ~
z,=1
1 + t =0 7
L i i i ] i H i —
a 0.5 1.0 1.8 2.0 0 0.50 1,00 1.50 2.00
a z b zy

FIG. 1. Probabilities for the decay u + e + v +¥; Fig. 1a refers to
the model (2) with x = 0.5; Fig. 1b refers to the model (2") with x, =
=0.5; the value of W, is equal to G’m®n/1927°q,.

W, /W,
9.50 —T T
i ] i
0.40 '\ A
FIG. 2. Probabilities of the process g 39 ’. '
e = e+ v+ 7 for the model (2) with ZJVZU \\\ P
x=0.5. - \\ NG
0.10 ST
€=0" % !
o 0.50 1.00 150 2.00
z
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In the case of the wave (2) of arbitrary polarization
we have
' (ki)
(kgq')
e D
Re 4,4, (1—¢%) ] *0)
— =2 _[21m Ao, (k) + 2Im Aud, eja (k) ]
(kq')
—2ImA4,4, ¢*a*e —— (kD)
(kg')*
The notation in Eq. (17) is obvious and does not re-
quire special explanations. For the two-wave model
(2") we find

[ M| =|Ao|* (m*—m*) — e'a’e*| | ——

+ea[|A,|* +et|A) P -

—j (k). aam)

(kd)

|1|[“IZ = AozBoz(m}_mlz)—f— e*a,® " ,) B (A—A.4,)
2q,2 (kd) 2 _
S R C R AY (18)

Using Eqgs. (17) and(18) we obtain the following ex-
pressions for the total probabilities of the decays
m— p(e) +v. For the model (2) we have

G’f’m m'? =
A Rl — O Kuls), 19
‘ 167°g, ijj (+1)z w(0) (19)
where
Kaa(s) = | Ao|*(1-p) —uze?| Ay| *+uz®[ | 4, |*+e?| 4, |*
—Re 4,4,'(1—¢*) | -2z[ (u+1) Im 4.4 °Psin ¢, (19,)
—(ut1) Im 4,4, eP cos @o+uze Im 4,4,”].
In formula (19)
(e BN ™ nE
= (1= wt R T s (ut) 5
The quantity f is the same as in the book!?'],
For the two-wave model (2') we have
G’f’m m'* o 20)
Wer = ovan Zj ” j (u +1)2 Ty Ve (
where
N{5:8:) =A,*Bo* (1—p) +uz,*Bo* (A,*— Ao A) 20')

+uz,’ (312—3032) 4.

Here umax = E5/m,® - 1, EZ, and m/? are given by
formulas (12). The summation over s, and s; is car-
ried out in the same manner as in the investigation of
the decay u — e +y + v. Finally, we note that the quan-
tities P and Z;, entering into formula (19) and into the
expressions for the functions Aj and Bj, can also be
obtained from the analogous quant1t1es for u decay, if
we set A = 0 there.

Numerical calculations of the total probabilities of
the decays 7 — u(e) + v were carried out for both
models (2) and (2') by using expressmns (17)—(20). The
results are shown in Fig. 3 (where W2 = (G**m®n/87q,)
x m')1 - p)°). For the case of circular polarization of
the wave in the model (2), the total probabilities of the
deeays n— u+p and 7 —e +p were calculated in the
article by Narozhnyi, Nikishov, and Ritus!®! for this
same range of variation of the parameter x and the
same value of y. The curves calculated by us agree
with the results ofl®!,

Furthermore, we carried out calculations of the same
probabilities for the case of a linearly polarized wave.
The results of the calculation, shown in Fig. 3a, indicate
that, just as in the case of circular polarization of the
wave, switching on the external field accelerates the
decay 7 — u + v and slows down the decay 7 —e€ + v,
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Wy /Wy W/ Won
' =1 [
e et |
2.0 = PR 7,273
A ; H—pr+v —
1.5F 71— I Z,=0.5
yp= 5 T 1™
e 1.5 T
1.0 —t=- I z,=05
10 =
051 F=>=e+v =0 g=1 Nﬂ‘f—”"f"v Tp=1.
L | il
0 050 1.0 0 1.50 z 0 050 1,0 150z 2.0
b .
a

FIG. 3. Probabilities of the decays 7 = u(e) + »; Fig. 3a is for the
model (2) with x = 1; Fig. 3b is for the model (2") with x; = x, = 1.

although the nature of the dependence on ¢ of the total
probabilities of these decay processes turns out to be
different for variation of ¢ within the limits -1 =< ¢
=1,

The results of the calculations for the case of the
two-wave model (2') are shown in Fig. 3b. The specific
values of the parameters x and y, which were used in
the computations, are indicated there. Just as in the
case of a single monochromatic wave, for the two-wave
model the switching on of the external field increases
the probability of the decays 7w — pu + v and decreases
for n — e +v.

Finally, let us consider the decays 7 — 7°+ et + .

These decays are characterized by a small energy re-
lease; therefore, to a large extent they are exposed to
the influence of the external field and, as shown by
Ritus,!® the quantity y5 % becomes the effective parame-
ter instead of y, where

6= (1—p—A)/2A,,
and for the present decay process 5 ~ 0.034.

The matrix element for the decay 7t — 7° + et +
is given by
M=2"6G (1,7 1,% d'z, 1)
where J7 and J€ are the hadron and lepton currents,
respectively, in the field of the wave:

I =28 0," (1V+ed) ot (iV+ed) .,

ta,* (iV—ed) m_+(iV—ed), no'n_], (22)
J,.'='V”fu(1+’{s)e.
The square of the matrix element, summed over the
appropriate spin variables, is given by
i 3
|| =2Rd,+ ,k)(L L)+ ,k)[L, \ ,k)Ld.. ] (23)

The quantities appearing in formula (23) have the follow-
ing form. For the case of a single wave
R=|4,|?
Ly=2 Re A,4,'at,+2 Re 4,4, ast,,
L.=(|A.|*te*| 4. |} e,
Ly=2 Im A,(Aaf,+A, aef:)",
L=2Im A4,4,¢
In the case of the potential (2'), Ls = L4 = 0 and, further-
more,

(24)

R=C,,
Lx=zcooco1a1t|+zcaocmazt2y

25
L,=Cy’a*+C\’ar’. ( )

Here, just as inl"], we introduced the functions Cijj
= AjBj. Finally, the following notation is used in wr1t1ng
down Egs. (23)—(25):
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di=8(p'Ly) (i) +dm™ (i) +(m"—4my*) (p'La),
=8 (ll;) (k) + (m"*—4m.?) (laky),

t=[(p'ny) (Lk)) — (p'ks) (n ) 1[8(lle) +4m,*—m"*]
+1(np) (p'k) — (Pk:) (np) ] (4m*—m™),

Fr=8(l:) <p'Lkind— (m"*+4m,?) (p’ Lk —4m' L Lkny). (26)

Further, we obtain ds from d by the replacement m’?
— -m’?, Here [, and ]2 denote the momenta of the
neutral particles, the 7° meson and the neutrino, and

1 = 1 +1l2. Just as in the preceding cases, i may take
either of the two values i =1 or i =2 for the potential
(2"). This subscript can be omitted for the model (2),
that is, one can assume kj = k.

Carrying out the appropriate integrations, in the case
of the model (2) we obtain the following result for the
probability of the decays 7t — 7° + e* + y:

G'm*n T du 2o
Wes =i Z;_f dgs j Wf dA Kin(s).

@7)

Here

(A—=n,)?
I e ) + ) ) A el A,
+uz®(4r+p) [|As|*+e?| A, |*—Re 404,  (1—¢?) ]
—2z(4r—p) [ (u+1)P Im 4,4," sin ¢,
—(u+1)eP Im 4,4," cos go+uze Im 4,4,]},

K. (S) =

(28)

In the case of circular polarization of the wave, | ¢ |
= 1, the functions Aj are calculated analytically and
instead of expression (28) we have

(r=24)*

K!n(s)=

{I[—U.’+).(4+3u)+p.(1-—p) 1.2 29)

5 k) Ut 220 ) e () [ ()P T

Just as in the case of the decay y — e + v + 7, the
quantity Z is the argument of the Bessel functions. The
notation in Eqgs. (27)—(29) is also obvious and does not
require special explanations.

Using the formulas cited above, we have carried out
computations of the decay probabilities for the process
7t — 1° +ef +p for values y =10"%, 0.5=<y =<1, and
x =107%%, X < t. The qualitative effect of the frequency
dependence of the decay probability is the same as for
u decay. However, accurate estimates of the probabil-
ities are hindered by the fact that in the present case
the range of integration over du in Eq. (27) is rather
large, and in order to carry out similar computations,
more powerful calculational methods are required. In
the case of the two-wave model it is not difficult, by
using Eq. (25), te obtain an expression for the decay
probability 7£ — 7° + e* + p analogous to expression
27).
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