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The correlation functions are found for a one-dimensional Fermi gas with an infinitely strong attraction. It 
is shown that acoustic excitations make the major contribution to the fonning of the singularities of the 
correlation functions. The hypothesis is expressed that acoustic excitations are also essential in the case of 
an arbitrary attraction. On the basis of this hypothesis. the form of the correlation functions is derived for 
arbitrary attraction. The obtained results are applied to a one-dimensional Bose gas with repulsion. The 
effects of the quasi-one-<iimensional nature of the problem, which lead to dielectric or superconducting 
transitions, are considered. 

PACS numbers: OS.30.Fk 

INTRODUCTION 

There are no phase transitions in one-dimensional 
systems, and at finite temperatures there is no long
range order. However, at low temperatures the correla
tion functions decrease slowly with distance. The law 
governing this decrease determines the superconducting 
transition temperature in quasi-one-dimensional sys
tems [1 J and is of independent interest. 

In the one-dimensional case, the correlation functions 
have been found in several models: in a model having a 
large number of bandS[l] and in models having a linear 
spectrum,c2-4J In all of these models the correlation 
functions at zero temperature fall off with distance ac
cording to a power law, as R- o!. In more realisti c 
models with a short-range potential characterizing the 
interaction between the particles, the exact solution has 
been found for the wave function and for the energy of 
the ground state, [5J but the form of the correlation func
tions is unknown. Approximate methods exist for the 
case of a weak interaction between the electrons, these 
methods being based on a summation of "parquet" dia
grams or on the utilization of the renormalization group. 
These methods are not applicable at low temperatures, 
when the interaction ceases to be weak. 

We conSider below the opposite limiting case, when a 
strong attraction exists between the electrons and the 
binding energy of two electrons is much larger than the 
Fermi energy. Such a model is equivalent to the model 
of a Bose gas with infinitely strong repulsion. The 
thermodynamics of this Bose gas coincides with the 
thermodynamics of spinless fermions. The single
particle correlation functions of the bosons are ex
pressed in terms of Toeplitz determinants. At low tem
peratures the correlation functions falloff at large dis
tances according to an exponential law, with the correla
tion radius being inversely proportional to the tempera
ture. At zero temperature the single-boson correlation 
function falls off with distance according to a power-
law with the exponent equal to 1/2. For an arbitrary at
traction between the electrons, the form of the correla
tion functions at large distances is determined by 
acoustic vibrations. These oscillations destroy the 
long-range order at zero temperature. In this case 
the pair correlation function G(R) and the density corre
lation function II(R) fall off according to the laws 

G(R)-R-e, II(R)-cos (2pFR)R-' /". 

The value of the exponent O! depends on the interaction 
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between the electrons. O! = 1/2 for the case of strong 
attraction, and O! '" 1 for weak attraction. It is likely 
that spin waves play the role of acoustic excitations in 
the case of repulSion for a half-filled band. 

The form of the pair correlation function in the one
dimensional case enables one to estimate the super
conducting transition temperature in a quasi-one-dimen
sional metal, which has a power-law dependence on the 
probability of electron hopping from filament to fila
ment. The interaction between the electrons on different 
filaments may lead to a transition into a dielectric 
state. 

1. REDUCTION OF THE PROBLEM TO AN 
IDEAL FERMI GAS 

The interelectron attraction via the a phonon or non
phonon mechanism is usually assumed to be weak. In 
real quasi-one-dimensional systems such an attraction 
may turn out to be large. Therefore, the case of strong 
interaction is of interest. Below we shall assume that 
the binding energy of two electrons, which are located 
on a single molecule, is larger than the width of the 
band. The Hamiltonian of such a system has the form 

where at (ai) are the electron creation (annihilation) 
operators, and I denotes the width of the band. The sub
scripts i and O! denote the site labels and the spin-states 
of the electrons. 

All of the electrons are bound in pairs in the limiting 
case V »I. At each lattice site there are either two 
electrons with opposing spins or else no electrons at all. 
The states with one electron per site are separated by a 
large gap, equal to V. If these states are not taken into 
consideration, the operators describing the creation (or 
annihilation) of a pair of electrons 

(2) 

satisfy the following commutation relations: 

b;+bj-bjb'+~O, i*i. bi+bi+b;b,+~l, b,bi~b,+b,+~O. (3) 

The density operator Pi of the electrons is given by 

(3a) 

In second order with respect to the overlap integral 
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I, the Hamiltonian (1) can be expressed in terms of the 
operators bi: 

H = 2~L, b.+(b,+,+b,_,)+ L,P'P; [8~ 6(li-;I-l)-ViJ] -2V ~)i+b" 
I i-'Fj 

where 112m = I2y. The case 
1 

Vij= 8m 6(li-i1-1) 

(4) 

(4a) 

will be investigated below. For such a choice of the in
teraction Yij, the problem has an exact solution, and in 
the following sections this exact solution is utilized in 
order to verify the hypothesis that enables us to find 
the correlation functions for an arbitrary interaction. 

The Hamiltonian (4) and the conditions (3) and (4a) 
describe a boson gas with an infinite repulsion between 
bosons located at a single point. The wave functions of 
such a system were first determined by Girardeau. [6) 

The thermodynamics of such a gas coincides with the 
thermodynamics of an ideal gas of spinless fermions. 
We shall be interested in the correlation function G(R) 
= (br~>. Just as in the case of the XY-model of a one
dimensional ferromagnetic substance, [7) let us change 
to spinless fermion operators 

bi= II (l-zc/c;)c" b/=c,+ II (1-2c/c;). 
}<i 1<. ( 5) 

One can easily verify that, for the usual commutation re
lations between the Fermi operators Ci, the relations 
(3) are fulfilled for the operators bi' The Hamiltonian (4) 
is expressed in terms of the operators Ci in the follow
ing way: 

1 L ~ 
H-.},N=-L, [c/(ci+,+C,-,)-flC/C,J=-S Bpcp+cpdp, 

2m , Zn 0 . (6) 

where Ep = _m-1 cosp - jJ., L is the length of the sample, 
and jJ. is the chemical potential. The last term in 
formula (4) is included in the chemical potential. 

2. THE PAIR CORRELATION FUNCTION 

With the aid of formula (2) the pair correlation func
tion G describing the superconducting fluctuations can 
be expressed in terms of the single-boson correlation 
function: 

Expressing the boson operators in terms of the spinless 
fermion operators c and c+, we obtain 

G(R)= < co+ II (2Cm+cm-l)CR). 
i<m<A 

(7) 

According to Wick's theorem, the average of the product 
can be expressed in terms of the product of the aver
ages: 

G(R) =Det (gn, m+l), (8) 

where 

'sn dp &, g =?«. +c )-' - -g e'p(n-m, g th 
11m - " m U"m.- 2n p ,p= 2T'+ (9) 

o 

In formula (8) nand m take values from 0 to R - 1. The 
matrix elements Gnm only depend on the difference 
n - m. Therefore, the determinant in expression (8) is 
a Toeplitz determinant. In the asymptotic region R-oo 
the behavior of this determinant is determined by the 
Szego formula:[8) 

G (R) =exp [KoR+ t nKnK_n ], (10) 
n_l 
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where 
za'd 

Kn= S"-£'einp ln(r,pth2) .. 
2n 2T (11) 

o 

At low temperatures T « jJ. the integral (11) is given 
by 

---- for n*O 
K fI= n 1 +e-nnTm/Bln Po 

{
(-I) n e'p,n 

-nTmI2sinp. for n=O (12) 

where pa is the Fermi momentum (-cos pa = mjJ.). Sub
stituting expression (12) in formula (10), we obtain 

G (R) =A (mT) '''r·TRml'''n p'. (13) 
Here 

- e-' [1 1 ] 3 InA=-ZS- ---.-- dt+ln2n--C, 
t (1 +e-') - 4 2 

o 

and C is Euler's constant. Formula (13) is valid in the 
asymptotic region mTR » sinpa. 

It is shown in the Appendix that the correlation func
tion has the following scaling form at low temperatures 
and over large distances: 

G(R) =R-·f(mTRlsinpo). (14) 

Comparison with expression (13) allows us to reach the 
conclusion that o! = 1/2 and the correlation function at 
T = 0 behaves like 

(15) 

Thus, Bose condensation (long-range order) is absent 
even at T = 0, but the correlation function falls off with 
distance according to a power law, and not exponentially 
as it does at finite temperatures. 

3. CORRELATION OF THE DENSITIES 

Let us now proceed to an evaluation of the density 
correlation function 

II(R. t)=(POOPR,,}-P', (16) 

where p is determined by formula (3a). It follows from 
formula (5) that binbm = cincm. Therefore, the density 
correlation function (16) coincides with the density cor
relation function for an ideal gas of spinless fermions. 
The Fourier component II(q, w) of this correlation func
tion is given by 

S th[£(p)I2T)-th[e(p-q)/ZT) dp 
II(q,Cil)=-Z . 

Cil-£(p) +e (p-q) 2n 

For small values of q and w, the Fourier component 
II(q, w) is of the form 

(17) 

4 q'v 
II(q, Cil)= - (18) 

n Cil'-v'q" 

where v = aE/ap denotes the velocity at the Fermi sur
face. 

It is obvious from formula (18) that acoustic excita
tions exist in the system. The speed of sound is ex
pressed in terms of the compressibility in the usual 
way. For values of q close to 2pa and small values of 
w, the polarization operator II(q, w) has a logarithmic 
singularity: 

II (q, Cil) = _Z_ln __ --,-'-J.L_.,.-~ 
, nv max{Cil, Iq-ZPol, T} (19) 

The probabilities for the scattering of neutrons and 
x rays are determined by the imaginary part of the 
correlation function II(q, w). For values of the momen
tum transfer close to 2pa, the scattering probability is 
proportional to 
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1 . IIX[ h ro+v(q-2p,) ro-v(q-2p,) ]-' 
-;;eo c 4T ch 4T . (19a) 

At coincident times and at low temperatures we obtain 

ll(R,O)= T'sin'p,R . 
v'sh'(nTRlv) (20) 

This formula indicates that there is no long-range order 
even at zero temperature, and there is no transition into 
a dielectric state (Peierls transition). At finite tem
peratures the correlation function falls off exponentially. 
An exponential decrease of the correlation function was 
predicted in (9]; however, as is clear from formula (20), 
the correlation length varies in inverse proportion to 
the temperature. Evidently this means that a model 
with the true order parameter/9 ] which leads to an ex
ponential dependence of the correlation length on the 
temperature at low temperatures, describes the density 
correlation function poorly when the momentum is close 
to 21>0. Furthermore, the small pre-exponential factor 
T2 appears in formula (20), and at distances smaller 
than the correlation length the correlation function de
creases in inverse proportion to the square of the dis
tance, just as at zero temperature. As is shown below, 
the power-law behavior of the correlation functions is 
related to the quantum nature of the fluctuations and 
cannot be obtained by the classical methods applied in 
(10,11]. 

4. THE ROLE OF THE ACOUSTIC EXCITATIONS IN 
FORMING THE SINGULARITIES OF THE 
CORRELATION FUNCTIONS 

The exact results obtained above enable us to verify 
the hypothesis that, in one-dimensional systems the be
havior of the correlation functions at large distances 
and low temperatures is determined by the acoustic ex
citations. In the model under consideration this hypothe
sis allows us to obtain the general form of the correla
tion functions, which agrees with the exact solution in 
all cases where this solution is known. In the model 
with a large number of conducting bands,(l] such an hy
pothesis has been rigorously justified. The behavior of 
the correlation functions was determined by the long
wavelength gapless excitations. The contribution of the 
other excitations was small. In the case of a Single con
ducting band, this contribution was not small, but ap
parently only leads to the appearance in the correlation 
functions of factors which are independent of the tem
perature and of the coordinates. 

The long-wavelength gapless excitations are described 
by the Hamiltonian 

H=4- ~ [(p(x);P)' +KV.'(~~X) )}x~ (21) 

where K = Bp/ up. is the compressibility and Vs is the 
speed of sound. The density and phase operators, p(x) 
and $(x), satisfy the following commutation relation: 

[;;(x)~(x') ]=6(x-x'). (22) 

As is clear from expression (18), in the model con
sidered in the preceding sections we have 

K=4/nv, v.=v=·sinp,lm. (23) 

The single-boson correlation function is given by 

G(R. ,;) -p<T .exp (2i(~(R. ,;) -~(O. O»)} >. (24) 

where T T is the time-ordering operator, and T is the 
"imaginary" time. The averaging in expression (24) is 
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carried out over the Gibbs distribution with the Hamil
tonian (21). By using the Feynman method, (12] the cal
culation of the average in expression (24) can be re
duced to an evaluation of the following path integral: 

G(R. 't) -p ( J e-P[.IDcp ) -. J ei'(R·')-~('·')e-'(·IDcp, (25) 

where the functional F[<p] is given by 

F[cpl= ~ J [( ~:) '+v.'( ~:) '] dxd't. (26) 

Evaluating the Gaussian integrals in (25), we obtain 

G(R,'t)=A(mT)eexp{-n:~a}11-exp{-2nT(~ +i't)}I-" (27) 

where 
(27a) 

A is a number of the order of unity, determined by the 
short wavelength fluctuations. At coincident moments 
of time we have 

G(R,O)=A( mT / sh n:T) e . (28) 

At large distances RT/vs »1 expression (28) coincides 
with expression (13), obtained with the aid of the Szego 
formula, if it is assumed that the coefficient A is the 
same as in (13) but K and Vs are taken from formula 
(23). The next three terms of the expansion with respect 
to exp(-RT/vs) are found in the Appendix and agree 
with the corresponding expansion in expression (28). 

Now let us calculate the effect of the acoustic exci
tations on the form of the density correlation function 
when the momentum is close to 2po. Short-range order 
exists over small distances, and the density contains a 
term p proportional to cos 2Pox. In connection with a 
slow variation of the average density, the Fermi mo
mentum po is determined by the local value of the aver
age density, so that 

a6 
P-(x) =p cos[2p,x+6(x, 't)]. -= n(p-p). ax (29) 

Slow, acoustic fluctuations of the denSity p(x) lead to the 
disappearance of the long-range order. The denSity 
correlation function is given by 

IT (R, 't) <p (0,0) 15 (R, T»-P' cos 2PoR <exp {it 6 (R, T) -6(0, 0) ]}). (30) 

If the operator i = v$/1f is introduced instead of the 
operator $, such that the commutation relation [I(x), 
8(X/)] = o(x - x') is satisfied, then in terms of the new 
notation the Hamilt<;mian (21) has thE! form 

~ 1 [ ~ (VO)' ] 
H='"2J n'Kv.'r+~ dx. (31) 

The calculation of the average in formula (30) agrees 
with the calculation in formula (24) after the replace
ment K"1 - 1f2K~. Having made such a substitution in 
formula (27), we obtain 

_ "?T i/a. 

ll(R,'t)=-(-) cos2p,R 
2 " 

x exp( - n::YI1-exp{ -2nT( ~. + i1:) }I,-"e (32) 

where a is determined by formula (27a). The numerical 
coefficient in formula (32), arising from the short wave
length fluctuations, is chosen such that this formula (32) 
would coincide with the oscillating part of expressions 
(17), (19), and (20) if K and Vs are taken from formulas 
(23). 

The hypothesis concerning the role of the acoustic 
excitations allows us to believe that formulas (27) and 
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(32) are valid for arbitrary attraction between the elec
trons. However, the exponents generally depend on the 
interaction. For example, for a small number of car
riers in the band, when the spectrum is quadratic, the 
coefficient associated with (Vrp)2 in the Hamiltonian (21) 
does not depend on the interaction and is equal to the 
average density. The compressibility and, therefore, the 
coefficient K = ap/ all depend on the interaction and 
vary by four times from the value (23) associated with 
strong attraction up to the value K = 1/1rV for an almost 
perfect Fermi gas. In this connection the exponents in 
formulas (27) and (32) change by a factor of two, so that 
G ~ II ~ R-I • 

From an analysis of the exact solutions, one can con
clude[13,14 J that gapless, acoustic excitations exist at any 
interaction. The Coulomb interaction merits special 
investigation due to its long-range nature. In the case of 
a single filament, this interaction leads to a logarithmic 
divergence of the coefficient K. However, in real quasi
one-dimensional systems of parallel filaments, the Cou
lomb interaction is screened and, as is shown in [IJ, this 
effectively amounts to increasing the coefficient K-I by 
the amount e2 In pod, where d is the distance between the 
filaments. Thus, just as in the case of arbitrary repul
sion, the Coulomb interaction leads to a more rapid de
crease of the super conducting correlation functions G 
with distance and a slower decrease of the dielectric 
correlation functions II. 

Formulas (13), (15), and (20) correctly describe the 
behavior of the correlation functions for a Bose gas 
with infinite repulsion. It is clear from the exact solu
tion (15) that acoustic excitations exist for any arbitrary 
repulsion. The hypothesis concerning the role of the 
acoustic excitations permits us to believe that formulas 
(27) and (32) are valid for arbitrary repulSion between 
the bosons. Only the exponent O! appearing in these 
formulas depends on the strength of the interaction. In 
the limiting case of strong repulSion, the single-boson 
function G(R) 0:. R-1/2 , and the oscillating part of the 
denSity corrillation function n(R) 0:. R-2. 

As is shown in [15], in the case of weak repulsion the 
speed of sound can be expressed in terms of the coupling 
constant c according to Bogolyubov's formula 

(33) 

where PB and mB denote the denSity and mass of the 
bosons. Expressing the compressibility K in terms of 
the speed of sound vs, we find the following result for 
the exponent O! in formulas (27) and (32): 

a = ~ ( 2cm. ) 'I •. 
2n p. (34) 

Thus, the Single-boson correlation function falls off 
slowly in the presence of weak repulsion. The function 
n(R), corresponding to crystallization, decreases 
rapidly. 

5. COMPARISON WITH OTHER MODELS 

In addition to the models with strong interaction 
considered above, the correlation ·functions have also 
been found in a model having a large number of bands[l] 
and in models having a linear spectrumy,4] In the 
model with a large number of bands, the utilization of 
the Hamiltonian (21) was justified with the aid of an ap
proximate evaluation of the path integral. For weak 
attraction, the exponent O! in formulas (27) and (32) is 

393 SOy. Phys.-JETP, Vol. 42, No.2 

given by O! = l/n, where n denotes the number of bands. 
(In [I] the value of the exponent O! differs from the cor
rect value by a factor of two, due to an arithmetic error.) 

Luther and Emery[4] conSidered a model with a 
linear spectrum for the electrons and showed that the 
Hamiltonian of this model divides in two. One part de
scribes the spin excitations, which are unimportant at 
low temperatures, since in the case of attraction they 
have a gap associated with at least one value of the ex
change interaction coupling constant. The second part 
of the Hamiltonian describes the density oscillations 
and is given by 

Ho=2nvFL-1 1: [PI (k)pl (-k) +p,(-k)p.(k) I 
• 

+L- I 1: (2V -UII) [PI (k) +p,(k) ][p, (-k) +p,( -k) 1. 
(35) 

where PI and P2 denote the densities of particles with 
velOCity +vF or -vF' We note that, just as in the 
Tomonaga model, the last term in expreSSion (35) takes 
into account besides the term ~PIP2 also the interaction 
of electrons having equal velocities P~ + ~. The Hamil
tonian (35) differs from the Luttinger Hamiltonian, 
used in [4], by this fact. The Hamiltonian (35) appears 
more natural to us, since it gives the correct expres
sion for the compressibility K-I = 1rV + 2V - UII and 
gives the correct relationShip between the speed of 
sound and the compressibility. After making the change 
of variables PI + P2 = P and 1I"(PI - P2) = p(vrp), expres
sion (35) goes over into the Hamiltonian (21) of the 
acoustic excitations. The interaction 2V - U II can 
evidently be regarded as the Fermi-liquid amplitude, 
which is related in a complicated manner to the inter
action constants of the real Hamiltonian. As is seen 
from formula (27a), the limiting case of infinitely strong 
attraction corresponds to the amplitude 2V - UII = 
- 311"VF/4. In the low-temperature regime the exponents 
of the correlation functions, calculated in [4 J, coincide 
with those which follow from the hypotheSiS concerning 
the role of the acoustic phonons, However, if the gap in 
the spectrum of the spin excitations is small. a range 
of temperatures exists, larger than the gap, where the 
model of Luther and Emery coincides with the Tomon
aga model for fermions with spin. In this model the hy
potheSiS concerning the role of acoustic phonons is not 
valid, since the spin excitations are just as important 
as the acoustic excitations. Obviously spin excitations 
are important in all cases when repulsion predominates 
between the electrons and the spin susceptibility does 
not tend to zero at low temperatures. 

We note that the Single-particle Green's functions in 
the Tomonaga model were calculated in [2], where.it was 
taeitly assumed that the electrons have spin 1/2. There
fore, these functions do not coincide with those which 
are found in the Tomonaga model for fermions without 
spin. (3,16] 

6. ESTIMATES OF THE SUPERCONDUCTING AND 
DIELECTRIC TRANSITION TEMPERATURES IN 
QUASI·ONE·DlMENSIONAL SYSTEMS 

In a one-dimensional system there is no long-range 
order even at zero temperature. However, real sys
tems are quasi-one-dimensional. In such systems an in
teraction exists between the electrons on different fila
ments, and there is a tunneling of the electrons from 
filament to filament. If these effects are relatively 
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strong, they may lead to a phase transition at high 
temperatures, where the interaction between the elec
trons is still small. Below we shall consider the op
posite limiting case of a low-temperature transition, 
when the correlation functions are described by formu
las (27) and (32). Here the interaction of the electrons 
on a single filament is taken into consideration exactly, 
and the interaction between filaments is taken into ac
count in the self-consistent-field approximation. 

The transition into the super conducting state is de
termined by the tunneling of electrons from one fila
ment to another. Let us denote the amplitude for the 
hopping of an electron pair from filament i to fila
ment j by Wij. It is proportional to the square of the 
amplitude for the hopping of an individual electron. Al
lOwing for the hopping events, the Hamiltonian is of the 
form 

'.1 (36) 

where Hi denotes the exact Hamiltonian of a single 
filament. . 

In the self-consistent-field apprOXimation, the opera
tors hi are replaced by the average value 0 of the order 
parameter for all of the filaments except one. The con
dition for self-consistency has the form 

- Sp IJe-HfT \' 
b = Spe-Tl/T ' 'jj = Hi + Wb ~ W + b)dx, 

(37) 

The transition temperature is determined from the con
dition for the appearance of a nonvanishing solution of 
Eq. (37). Expanding the right hand side in a series in 
powers of E, we obtain the following equation for the 
transition temperature 

1=W SG(R.T)dRdT, (38) 

where G(R, T) is determined by formulas (27) and (27a). 

Equation (38) can also be obtained from the condition 
for instability of the normal state. In the ladder ap
proximation, the equation for the exact, single-boson 
Green's function G is of the form 

G(q, ro)=G(qll' ro)[HW(q.L)G(q, roll. (39) 

The limit of instability is found from the condition that 
the pole of G passes through the point w = O. This con
dition coincides with Eq. (38). Substituting expression 
(27) into Eq. (38), we obtain the following relationship 
between the superconducting transition temperature T c 
and the amplitude of hopping events: 

(40) 

For strong attraction O! = 1/2, and for weak attraction 
O! = 1; in the last case £F should be replaced by the 
transition temperature in the BCS approximation. 

In order to estimate the dielectric tranSition tem
perature, it is necessary to take into conSideration the 
interaction Vij between electrons on different filaments, 
which includes both the Coulomb interaction and the 
interaction via the exchange of phonons. Just as above, 
in the ladder approximation we obtain the following 
equation for the density correlation function P: 

P(q, ro)=II(qllo ro)[HV(q, ro)P(q, roll, (41) 

where I1(qll, w) is detei'mined by formulas (20) and (32). 
The imaginary part of P is proportional to the cross 
section for the scattering of neutrons and x rays. The 
poles of P determine the phonon spectrum, 1 = V(q)II 
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X (qll' w). The experiment described in [17J indicates that 
for qll ~ 2PF the phonon spectrum weakly depends on ~ , 
which confirms the conjecture made above concerning 
the relative smallness of V(q). At high temperatures the 
imaginary part of P coincides with the imaginary part of 
II and doesn't depend on <u. Upon a reduction of the 
temperature the frequency of the excitations decreases, 
and for w « T and qll = 2PF we obtain 1 = V(<u) 
x [I1(0) + w2 all/ aw2 ]. In this case the frequency strongly 
depends on <U, which also agrees with experiment[17 J. 

In the limit of strong attraction between the elec
trons on a single filament, I1(qll' w) has a strong loga
rithmic singularity (20). In the intermediate case the 
singularity is stronger and is determined by formula 
(32), so that the phonon spectrum has the form w2 ~ T2 
x (1 - CT2 -l/a! /V(<u». The temperature at which the 
phonon spectrum becomes unstable is also the tempera
ture of the dielectric transition. With the aid of the 
phonon spectrum, let us express the dielectric transi
tion temperature in terms of the interaction potential 
of the electrons: 

.1. 
(42) 

If attraction predominates between the electrons on 
neighborIng filaments, then ql = 0 for the critical pho
nons, but if repulSion dominates, a doubling of the lat
tice ~eriod also takes place in the transverse direc
tion. 17J (In analogy with antiferromagnetic and anti
ferroelectric transitions, such a tranSition should be 
called an anti - Peier Is transition.) 

CONCLUSION 

Quasi-one-dimensional systems with a rather strong 
attraction between the electrons were investigated 
above. Perhaps potassium-platinum complexes (KCP) 
constitute such systems. Platinum has a valence of 
two or four. This may indicate that in compounds of 
"mixed valence," it is more probable to observe an 
even number of electrons on each platinum atom. One 
can assume that such an attraction between the elec
trons is induced by the exchange of intramolecular vi
brations or excitons. The pairs of electrons can be 
regarded as both super conducting and dielectric fluctu
ations. It is essential that these fluctuations are quan
tized. If three-dimensional effects are small, a broad 
range of temperatures should exist in which the pairs 
form a liquid. (In KCP this range is found from 100 to 
4000

.) There is no long-range order in this liquid, but 
short-range order does exist. At low temperatures the 
correlation length increases in inverse proportion to 
the temperature, but the paramagnetiC susceptibility 
should decrease exponentially. In the limit of strong at
traction, the conductivity of the electron pairs should be 
the same as for an ideal gas of spinless fermions, and 
may have a complicated temperature dependence due to 
localization of the excitations in one-dimensional sys
terns. If the energy of attraction is of the order of or 
smaller than the Fermi energy, an additional tempera
ture dependence appears in the cross section for the 
scattering of an excitation by an individual impurity. The 
scattering time is proportional to T2- 1/a!. In TTF-TCNQ 
the interaction between the electrons on a single fila
ment is evidently of the same order as the interaction 
of the electrons on different filaments. Therefore, 
the phase transition occurs at those same temperatures, 
which also correspond to the pairing of the electrons 
on a single filament. It is difficult to explain the large 
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maximum in the conductivity by simple ideas about 
fluctuations, since fluctuation pairs carry currents of 
approximately the same order as the individual elec
trons. (Without making artificial assumptions about the 
long-range nature of the attractive forces or the large 
number of bands, it is difficult to believe that the value 
of the index 'I! would be small in comparison with unity.) 
It is clear that, in order to explain the temperature be
havior of the conductivity, it is necessary to have a 
theory of the localization of strongly interacting elec
trons. 

The experimental data published in [18] indicates that 
in KCP the specific heat is a linear function of the tem
perature for T > 0.150

• Evidently this means that, due 
to disorder in the distribution of the Br ions the dielec
tric transition does not occur and the one-dimensional 
Bose pairs give a linear contribution to the specific 
heat. One can explain the small contribution of these 
pairs to the conductivity by the effects of localization. 

Thus, one can surmise that the attraction between 
the electrons is rather large in KCP and TTF-TCNQ 
and, for the initiation of superconductivity it is neces
sary to reduce the dielectric transition temperature 
and increase the probability for electron hopping from 
filament to filament. Perhaps one or the other can be 
achieved by the addition of impurities. 

APPENDIX 

We shall use the method described in Wu's article l19 ] 
in order to prove formula (14). Let us write the deter
minant in expression (8) in the form 

B-, 
[G(R) J-'= liZ.(N), 

N_, (A.1) 

where ~N) is the solution of the system of equations 

O"';;;'n",;;;,N. 
(A.2) 

Let us apply the Wiener-Hopf method in order to solve 
Eq. (17). Repeating the calculations carri~d out in 09], 
we obtain the following expression for ~N): 

1 P U(z)Q(Z-')ZN xt' =P(O)Q(O)+-. dz. 
2m z (A.3) 

Here U(z) is determined by the equation 

U( )= ___ 1_rf, P(z-')zNdz [l __ l_rf,Q(Z'-')Z,NU(Z,)dZ,] 
s 2niP(s) 'j' [Z-6-' (H6) )Q(z) 2ni'j' z,-z '(H6) . 

(A.4) 
In Eqs. (A.3) and (A.4) the integration is carried out 
around the unit Circle, and Ii is a positive infinitesimal 
quantity. The functions P(z) and Q(z} are analytic in
side the unit circle, such that 

z+,-'-2mu 
P-'(z)Q-'(z-')=zth 4mT"'. (A.5) 

For large values of N, Eq. (A.4) can be solved by itera
tions. However, we shall apply this method only for 
NmT » sinPo. At low temperatures the singularities 
of the functions P and Q approach the circumference of 
the unit circle, and the method of iterations does not 
work. In formula (A.3) the singularities of the function 
Q which are close to the circumference of the unit cir
cle are also important; these singularities are found 
close to the pOints Zo and zii1, determined from the 
equation Zo + Z(j1 = 2mj.t. For large values of N and any 
arbitrary relationship between Nand T-1, values of z 
close to Zo or Z(j1 are essential in formula (A.3). These 
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regions can be investigated seR.~rately in Eq. (A.4). 
Thus, in order to determine xb.N) for N » 1 it is suffi
cient to know the function U(z) near the pOints Zo and 
Z(j1. The functions P(z) and Q(Z-l) have the folloWing 
form in the neighborhood of these pOints 

( 1 Z-z.) (-1)' 
P(z)=B -,--- --, 

2 z,~ nz, 
( 1 i-z,) z-z, 

Q(z-')=B -,- -. (A 6) 
2 z,~ z,~ • 

where i = 1, 2, Z1 = Zo, Z2 = Z(jl, and B(x, y) is the Euler 
beta function. The parameter (3 in formulas (A.6) is 
given by (3 = 27rTm/sin Po. Substituting the functions 
P(z) and Q(z) from Eqs. (A.6) in Eqs. (A.3) al}d (A.4), 
we obtain a more convenient expression for XbNJ: 

xt) =e"'( 1 + !~ .t U.(N~) ). 
> n_1 

(A.7) 

In this expression the new, unknown function of integers, 
Dn(N(3), is determined by the following system of alge
braic equations: 

- r'(n+'/,) ~ e-NJ.\r' (k+'/,) [ ~ U •• (NM 1 
U.(N~)=e-N~' Pen) f::t r'(H1) (n+k) 1-f:l n'(k,+k) . (A.8) 

and is connected by a definite relation with the values of 
the function U(z) from (A.4) near the pOints Zo and zal. 
We shall not need this relationship in what follows, and 
therefore we do not present it here. 

Comparison of formulas (A.7) and (A.8) enables us 
to conclude that, for small (3 and large N but arbitrary 
(3N, the dependence of Xc on (3 and N has the form 

Z~N) =1+~F(~N). (A.9) 

As is clear from formulas (A.1) and (A.2), ~N) does not 
depend on the temperature at low temperatures, (3N « 1. 
Consequently, for small values of (3N we find: 

F(~N) =a(~N)-' • . ~N-+-O. (A.10) 

Substituting expressions (A.9) and (A.lO) into formula 
(A.l), we obtain expression (14) for G(R). For large 
values of (3N, one can solve the system of equations 
(A.8) by iterations. The first four terms of the expan
sion for the function F«(3N) are given by 

(A.11) 

We were not able to solve the system (A.8) exactly, but 
comparison with the hypotheSiS concerning the role of 
the acoustic excitations enables us to verify that the 
coefficients associated with all of the subsequent terms 
in the expansion (A.11) are equal to unity. Therefore, 
F«(3N) = (1/4) coth«(3N/2), and we obtain expression (28) 
for G(R). In any case comparison with Szego's formula 
shows that the coefficient a in formula (A.10) is equal to 
1/2. For bands which are half filled, the correlation 
function (A.lO) coincides with the correlation function of 
the XY -model. 

It is asserted in [20] that at zero temperature the 
correlation function of this model falls off exponentially 
with distance. Such a result is a consequence of a cal
culational error. The correct calculation of expression 
(24) in this article leads to a power-law decrease. 
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