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The parameters are found for the equations of state of molecular hydrogen in the solid and liquid states. 
The calculated isotherms, shock adiabats, melting curve, and isentropy curves are in good agreement with 
the experimental data. A new result for the isentropic compression at p = 0.67 g/cm3 and P -1 Mbar is 
obtained for the molecular phase of hydrogen. 

PACS numbers: 64.30.+t 

INTRODUCTION 

In recent years, a number of papers have been pub­
lished, [1-5) in which the equations of state of the molecu­
lar and metallic phases of hydrogen have been studied 
and the location of the phase transition determined. The 
results of these researches do not allow us to determine 
the location of the phase transition precisely, the pres­
sure varying from 0.84 [3) to 4.6 Mbar, [1) and the value 
of the density from 0.46[5) to 1.4 W'cm3.[l) 

Experimental data were given earlier on the isen­
tropic compressibility of hydrogen up to a pressure of 
~8 Mbar. It follows from these data that in isentropic 
compression up to pressures of P ~ 3 Mbar and density 
P = 1 W' cm 3, the hydrogen remains in the molecular 
phase. In the present work, the parameters of the equa­
tions of state of molecular hydrogen in the solid and 
liquid states are given. A comparison is also made of 
the thermodynamic quantities, calculated from these 
equations of state, .with experiment, including static and 
shock compression, and the melting curve is given. A 
new result is also given of the measurement of the isen­
tropic compression of the molecular phase of hydrogen 
for a pressure P = 1 Mbar. 

EQUATION OF STATE OF SOLID MOLECULAR 
HYDROGEN 

For the solid phase, we take the equation of state 
in the form of Mie-Griineisen: 

p=p.(p) +'/aRP'Y (p) 8 (p) +3RpTy(p)D[9 (p)/T], (1) 
E=E.(p)+'/aR8(p)+3RTD[8(p)ITj. (2) 

The curve of the elastic interaction of molecules is ap­
proximated by a relation of the form [7) 

(3) 

where 6 = p/ Pc, Pc is the density at P = 0 and T = 0, ~ 
are empirical constants, and x is the index of the elastic 
components of the equations. The second terms in (1) 
and (2) describe zero-point oscillations. Here R is the 
gas constant, 6(p) is the Debye temperature, and y(p) 
= dln6/dlnp is the Griineisencoefficient. In correspond­
ence .with the theory of small oscillations we have 

1 1 d (2 2P. ) y(p)=-+---In C. -n- , 
3 2 dlnp 3p 

where C~ = dPxi dp and n is an empirical parameter. 
From (4) we easily obtain 

8()- 8. 'I. (2 2P. )'" 
p - C. (Il= 1) Il c. - nsp- . 
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(4) 

(5) 

The last terms in (1) and (2) are connected .with thermal 
oscillations. Here D(e/T) is the Debye function. 

The applicability of the equation of state in the Mie­
Griineisen form for the description of the solid phase 
was shown exPerimentally in [8). Usually the contribu­
tion of the zero-pOint oscillations to the pressure Pzp 
and the energy Ezp is described in conjunction with the 
elastic interaction curve. However, this turned to be 
necessary to separate this contribution for hydrogen. [1) 
The parameters ~, Pc' and n of the elastic-interaction 
curve were found from the conditions of the description: 
from the value of the density of the solid phase p = 
0.0867 W' cm3 for P = 1 bar; from the isotherm at T 
= 4°K, obtained by Steware9 ), and also from the experi­
mental isentropes found in the present work and in [6]. 

The numerical values of the parameters of the equation 
of state found in this fashion are the following: Pc = 
0.1335 g/cm3, n = 1, a1 = -5.57 kbar, a2 = 28.71 kbar, a3 
= -70.71 kbar, 3..! = 45.57 kbar. Figure 1 shows the cal­
culated isotherm Px + Pzp in comparison with the ex­
perimental one of [9). The agreement is satisfactory. 
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FIG. I. Comparison of the calculated zero-point isotherms and shock 
adiabats of hydrogen (curves) with experimental data (points); 0-[9]; 
L'>_[14]; m = I; 0_[10], m = 1.255; curve I-m = I, calculation according 
to Eqs. (1), (6); curve 2-m = 1.255, calculation according to Eq. (6). 
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EQUATION OF STATE OF LIQUID MOLECULAR 
HYDROGEN 

The analysis of the experimental data on shock[10) 
and isentropic[6) compression of hydrogen has shown that 
the hydrogen is in the liquid phase over the entire range 
of densities studied. Therefore, the determination of the 
equation of state of this phase becomes very urgent. The 
equation of state of the liquid assumed in this paper 

-r+z/3 . ( <') ) , P=Px(p)+ 3RpTih + 3RpT,a T. ' (6) 

HzI2 {a [ ( <') ) , ] } E=Ex (p)+3RT Hz + 3RT, C +-; 6,-1 (7) 

was constructed on the basis of the equation of state of 
the solid phase, i.e., it has the same elastic interaction 
curve of the molecules.l) In (6) and (7), the parameter z 
= lRT/(C~ - n· 2Px!3p) determines the measure of the 
departure of the thermal properties of the liquid from 
those of the solid, [U) a, c, r, and l are empirical con­
stants, To and 50 are the melting temperature and the 
relative density of the liquid hydrogen at atmospheric 
pressure. The last terms in (6) and (7) give the correc­
tion to the elastic interaction curve, necessitated by the 
change in the number of nearest neighbors in the struc­
ture of the liquid compared with the structure of the 
crystal. 

The parameters of the equation of state for the liquid 
phase of molecular hydrogen have the following values: 
To = 14°K, 50 = 0.579, l = 21, a = 9.247, b = 1.8633, c = 
1.2593, r = 1. The melting curve was constructed on 
the basis of the equations of state of the solid and liquid 
phases for molecular hydrogen. The results of the cal­
culation are shown in Figs. 1 and 2 and in Table 1. In 
Fig. 1, the dashed lines show the region of existence of 
the solid and liquid phases. In Table I, ~/R is the 
change in the entropy along the melting curve. 

As is seen from Fig. 2, the calculated melting curve 
. is not in bad agreement with the experimental melting 

curve from [13 J. In this same figure, the melting curve 
calculated from the Simon equation is given by 

P=Po+A{(TITo)C-1} [bar], (8) 

here Po = 0.98 bar, A = 273 bar, To = 14°K, C = 1.744 and 
the melting curve is in accord with the Lindeman equa­
tion. In the latter case, the melting temperature was 
calculated as a function of the density with the foregoing 
parameters of the elastic compression curve, according 
to the equation 

Tmelt=const (C.'-n.2Px/3p), (9) 

and then the pressure corresponding to this temperature 
was determined from Eq. (1). 

COMPARISON WITH THE AVAILABLE 
EXPERIMENTAL DATA 

The shock adiabats were calculated according to the 
equation of state of the liquid phase; these are compared 
with experimental data in Figs. 1 and 3. The results of 
the calculations of the shock adiabat with m = 1.255, 
where m = pel Po, were investigated experimentally[10) 
(P = 1 bar and Po = 0.0709 gI cm3 ) are represented in 
Table II. Figure 2 shows [in the coordinates T(P)] that 
this shock adiabat as a whole lies in the liquid phase re­
gion, never intersecting the melting curve. 

It is seen from Fig. 1 that the agreement of the calcu­
lated adiabat with the experimental data of [10J is excel-
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FIG. 2. Shock adiabats and melting curves of hydrogen: curve 1-
corresponds to curve I in Fig. I; 2-corresponds to curve 2 in Fig. 1; 
3-experimental up to 600K from [13] ; 4-melting curve according to 
Eqs. (I), (6); 5-melting curve according to Lindeman; l'.-calculation 
from [14] ; 6-calculation according to the Simon formula. 

TABLE 1 

T. Kip· kbat I & Iig 
t.s 
11 

n 
dP' 

deg/kbat 

14 0 0.579 0.650 1.01 12 1.33 34 
42 1.5 0.777 0.862 1.92 11 1.15 12.3 
70 4.8 0.989 1.069 2.19 8 0.84 6.5 

140 26.3 1.58 1.65 2.48; 4.6 0.51 2.1 
~80 169 2.91 2.99 2.6 2.5 0.80\ 0.59 
700 2440 1.67 7.74 2.4 1.0 0.14 0.10 
910 4660 9.8 9.9 2.4 0.8 0.12 0.06 

TABLE 2 

6-0;0.1335 1 . 
1 

T.K 1 p. kbat 116-0/0.13351 . 
1 

T.K 1 P. kbat 

0.898 

I 2.16 1 130 

I 
3.8 

II 
1.44 11~:~ I 2340 

I 
41 

1.08 3.64 300 9.6 1.60 4820 i5 
1.28 6.63 1100 22 1.70 25.4 8370 121 

lent. This is not surprising, since the point of that 
paper for P R! 40 kbar was taken into account in estimat­
ing the parameters of the equation of state of the liquid 
phase. The experimental data on the shock compression 
of solid hydrogen at To = 4°K and p = 0.089 g/cm3 [14) are 
shown in the same figure. The corresponding calculated 
shock adiabat of hydrogen with m = 1 first passes into 
the solid phase, intersects the region of coexistence 
and passes into the liquid phase at P = 5 kbar and p 
= 0.133 gI cm3 • It passes somewhat below the experi­
mental pOints, within the limits of the measurement 
error. Possibly a somewhat lower value of the Griinei­
sen coefficient for the solid phase was used in the cal­
culation: Y(Po = 0.089 glcm3) R! 3.4. 

The point a in Fig. 1 is the place of entry of the 
calculated shock adiabat into the region of coexistence 
from the solid phase, and point b is the place of entry 
into the liquid phase. Figure 2 shows the calculated 
shock adiabat 1, in the coordinates T(P), corresponding 
to [14). The points a and b correspond to Fig. 1. The 
calculated temperatures from [14) are shown by trian­
gles in Fig. 2. 

The calculated shock adiabats for single and double 
compressions are compared in Fig. 3 with the experi­
mental values measured in [15 J. The authors of [15), 
studying the compressibility of liquid deuterium, ob­
tained data for its single (P ~ 200 kbar) and double 
(P ~ 960 kbar) shock compression. The density of 
deuterium measured in [15) is reduced by a factor of two 
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FIG. 3. Comparison of the calculated shock adiabats for single and 
double compressions with experiment: Po = 0.0709 corresponds to the 
experiment of [10] ; Po = 0.085 corresponds to the experiment of [15] 
for a single compression; Po = 0.28 corresponds to the experiment of 
[,5] for a double compression. 

in Fig. 3 in order to bring it into correspondence with 
the equation of state of hydrogen-protium. Strictly 
speaking, such an operation is not entirely correct. This 
is connected with the existing difference in the equation 
of state of the hydrogen isotopes at low pressure. The 
experimental isotherms of H2 and O2 are given in [9) for 
T = 4"K up to P = 20 kbar. It follows from these data that 
the compressibility of O2 in the region considered is 
somewhat less than the compressibility of H2, approach­
ing it with increase in the pressure. Thus, whereas at 
P = 0 the molar volume of H2 was 16% larger than for 
02,.at P = 20 kbar this difference amounted to only 6%. 
One of the reasons for the difference is the contribution 
of the zero-point oscillations, the relative role of which 
decreases with increase in the pressure. It is therefore 
reasonable to assume that the difference in the compres­
sibilities of H2 and O2 becomes insignificant at still 
higher pressures. 

As is seen from Fig. 3, the agreement between the 
shock adiabats calculated in the present work and the 
experimental values is excellent. The calculated values 
of the temperatures behind the shock wave are given in 
[15); T = 4500"K for P = 200 kbar and T = 70000 K for P 
= 900 kbar. The calculated temperatures in the present 
work are higher by a factor of two. This is evidently 
connected with the fact that the value of the specific heat 
in US) was taken to be the same as for a solid, i.e., Cv 
= 3R, whereas according to the equation of state of the 
liquid phase used by us Cv = (3/2)R in the range of tem­
peratures much higher than the melting curve. 

To describe more accurately the behavior of the 
molecular phase of hydrogen by the method used in [6), 
an experiment was carried out on isentropic compres­
sion. As can be seen from Fig. 4, the result (p = 0.67 
g/ cm3 and P = 1 Mbar) is in excellent agreement with 
the previously calculated isentrope. The triangles in 
Fig. 4 indicate the density and pressure, obtained from 
the gasdynamic calculation on a high-speed computer 
with use of Eqs. (1)-(7). In this same figure we show 
the experimental result from [16], in which the hydrogen 
was compressed isentropically in a magnetic field. 
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FIG. 4. Comparison of the calcu­

lated and experimental data on the 
isentropic compression of hydrogen: !.O 
1,2,3,4,5, 6-experiments from [6]; 
2-experiment of the present work; 1.0 
o-experiment from [16]. 

TABLE 3 

Pexp, glcm' I ~~.;;; I ~CC!;' I T calc, K I I SIR 

0.45±0.03 0.47 0.37, 3100 2.34 

I 
6.6 

0.67±0.03 0.69 1.00 4200 1.61 6.8 
0.98±0.08 1.01 2.63 5600 1.14 7.0 
1,15±0.1 1.09 3.24 6000 1.08 

I 
7.3, 

1.4±0.14 1.19 4.40 6500 1.01 7.5, 
1.95±0.39 1.40 13 9100 1.0 7.8 

Within the limits of rather large scatter of both the 
pressure and the density, indicated in [16), this experi­
mental point (average value of p = 1 g/ cm3 and P = 2 
Mbar) does not contradict our data. 

The values of the entropy, the calculated and experi­
mental values of the densities and pressures, and the 
parameter z are given in Table III. 

The considerations given show that all the existing 
experimental data for the pressure range up to 3 Mbar 
on both the shock and isentropic compression of hydro­
gen and deuterium are well described by the equations 
of state of the solid and liquid phases of molecular 
hydrogen given above. This allows us to assume that the 
obtained Px(p) dependence of the molecular phase of 
hydrogen is sufficiently reliable. 

In this connection, the contrasting estimates of the 
pressure of the phase transition made in [15) according 
to the data of {S), where the states of the hydrogen were 
investigated experimentally up to densities exceeding 
the region of the phase transition, are not persuasive. 
In the recently published work of Ross[17] (one of the 
co-authors of [15]) he assumes that the lower limit of 
the appearance of the metallic phase at OOK is the pres­
sure of 2.2 Mbar. 

I)The form and the methods of estimating the parameters of the equa­
tion of state of the liquid phase were similar to those used in [3,U,12]. 
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