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A thin superconducting film in an alternating electromagnetic field of frequency close to il is considered. It 
is shown that the density of states near the threshold f = il changes strongly. The resultant nonequilibrium 
electron energy distribution function, the variation of the order parameter, the dissipation current, and the 
tunneling characteristics are all considered. 

PACS numbers: 73.60.Ka 

In the interaction between coherent radiation of fre­
quency near the value of a forbidden band and a semi­
conductor, the spectrum of Single-particle excitations in 
the latter is strongly changed near the band bound­
ariesYJ There is a correspondence here with the prob­
lem of interaction of resonant radiation with a two-level 
system. 

The analogous problem can also be considered in 
superconductors, where the frequency of the quantity 
which plays the role of the field should be close to 2fl. 
We conSider a pure super conducting film, sufficiently 
thin that all the quantities are homogeneous over its 
thickness. Let the frequency of the radiation incident on 
the film be w = 2fl. Then, just as in the case of a semi­
conductor, the corrections to the Green's function con­
tain resonance singularities in the denominators: 

e+!; E-ro+~ E+~ 
G.A.G._.A_.G. = e'-A'-s' A. (e-ro)'-A'-~' A_. e'-A'-s' (1) 

at E - il « il and at correspondingly small ~. In the 
semiconductor, account of this type of interband inter­
action alone already gives a large effect even for com­
paratively low intensity of the electromagnetic field. 
However, the situation is different in the superconduc­
tor. Thanks to the speCific coherence factors of the type 
E( E - w) + fl2, which arise at vertices with a vector po­
tential, and which are small at E - fl « fl and w - 2fl 
« fl, one Singularity is cancelled out in the expression 
(1). Account of terms of the type GELwGE+wAwGE 
shows that another singularity cancels out in the Green's 
function that is quadratic in A. It can be shown that for 
any order of perturbation theory and for the Green's 
function of the pure super conducting film integrated 
with respect to ~ no accumulation of resonance Singu­
larities takes place with increase in the order of per­
turbation theory in terms of the vector potential. 

We consider the situation in which the frequency of 
the external field w = fl or is close to fl. Under these 
conditions, the correction to the order parameter is 
quadratic in the field, has a resonant singuiarityl2 J and, 
for flT » 1, is given by 

e '2A 'h K('/,) 
A2.=&_,.=-(-;;-vA.) (~) 3nA'';' ro<&. (2) 

The quantity fl2w is some external field in addition to 
Aw and because of the Singularity at these frequencies, 
its role can be important. In this case, graphs are 
formed which give the contribution to the diagonal in the 
energy Green's function: 

G"Af»G,-wA_wG,., GI6.2wG"-2wt!-'!.!DGe, 

G"A-wGHwA-wG&+2(IJ6.2wG", 

the order of magnitude of which (without external lines) 
is 
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For sufficiently high intensity (evAw! C)2 » fl2 
x [(fl- w)/ fl]1I2, graphs of the latter type predominate. 
It is important that for these radiation intenSities the . 
arising alternating current in the film is much smaller 
than the pair-breaking current. In addition, fl2w « fl 
always. 

Thus, to find the Green's function, it suffices to take 
into account the minimal degree of intensity of the field 
for each resonance Singularity: 

G.=G;') +:!:,-G.+~,+F,+. F.+=F:(O)+~.-F.++~.+G.. (3) 

Typical contributions to :61 and :62' are 

(4) 

and analogously to :6~ and :6;. If we introduce the nota­
tion 

A,. (e )' R,=e'-~'-6', 1.=-- -v A.A., £.=2&-2(0), 
~ c 

then the series for the Green's function can be repre­
sented schematically in the form 

1 I. ( I. )' ] G'-]f[ l+lfc, + If c,+ .... 

The quantities E - fl, fl- w, ~2/ fl, and V fl are of the 
same order of smallness. The part of the terms con­
taining additional resonance denominators R E- 2w 

(5) 

also necessarily contains added small quantity of the 
type fl(E - fl), ~2, or E(E - 2w) + fl2 in the numerator, so 
that the aggregate of the terms of the type (4) is of the 
same order of smallness. 

We have considered the case of a pure film flT » 1; 
therefore, the scattering must be taken into account 
only to the extent to which this leads to a correction to 
the order parameter (2) that is different from zero and 
is variable in time. In the summation in (3) one can set 
1/ T = O. We shall take G and F to mean retarded func­
tions; then Eqs. (3) are valid for any temperature. Ac­
count of all the graphs of the form (4) gives 

+ s'+2& (e-A) ±2A~ 
~1,2=- ~R£Rt-2.!M t 

and for the Green's function 

G,=F + = t1 1-2I.x'/R._,. 
• R, [l-4J.x'A (e....:t1)/R,R,_,.)[ 1 +21.x'~'/R.RH.l ' 

x~cos<l: (pA.). 
(6) 

We now find the density of states in such a supercon­
ducting film exposed to radiation (p is normalized to 
unity in the normal metal): 
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, 



l' -
p(e)=--;- S dx S ImG,d~. . -- (7) 

The introduction of the density of states turns out to be 
justified on the ground that the Green's functions that 
are nondiagonal in the energy, integrated over ~, are 
small in comparison with those that are diagonal. Actu­
ally, if the new vertex, which leads to the collapse of 
the frequency, does not bring about the appearance of 
new resonance denominators, then this is obvious, since 
an additional small quantity Aco or ~2w appears. The 
new resonance denominator is always accompanied by 
an equally small numerator. 

The density of states for Eo = 2~ - 2w > >/ ~ > 0 is 
(El = E - ~) 

S' ~Ax'le,1 { (r,+~e.)"'(Ue,+~e.+r,-2i.x') B(A) 
p(e,)= d:JJ +i.x' r (r +r 'x') A'" o rl-rz 2 1 2-1\. 

[r,+~(eo-Ax'/~) ]"'(2~e,+~e.+r,+i.x') B(B) } 
+ ) ~ . r, (r,+r,+i.x' • 

where 
A-[e,+'/.(e.-Ax'/ a) ]'-:-'/. (e.-Ax'/ ~)'. 

-
8 is the Heaviside function, 

r,=[ {~g.-Ax')'+4~'e, {e,+e.)]"'. 

r.=[ (~e.)·+4~'e, (e,+e.-Ax'/ a) ]"'. 

In the limiting cases we find the following: 

1) 0 < El « Eo; here 

p(e)=(~)'J'2(arCSinq'''- ~arctg(-q-)"'). q=~; 
2e, q'" 1'2 2-2q ~e. 

for q « 1, we have p( E) = (6/2El)l/2(1 - q2/40). 

(8) 

(9) 

2) E2 « El; the effect of the field turns out to be weak, 
the density of states is identical with its equilibrium 
value 

p{e) =(M2e,) "'. (10) 

3) El < 0, I Ell » Eo; we have 

p{e)=~A'/10{-2~e,)'/.. (11) 

4) El < -(Eo - >/ ~ ~ E2, (E2 - El) « Eo; here 

pee) =(e.-e,),/·/3E.[2e.{~e.-A)]",; (12) 

5) El < 0, (- Eo - El) « Eo; a discontinuity on the curve 
of density of states: 

'I~(-e.-e,) (1 arCSinVq) 
6p{e)= ------,,- B{-e.-e,). (13) 

2e. (i-q)'" q' 

The density of states is shown schematically in the 
figure, where the dashed line shows the unperturbed re­
lation. In fact, a certain redistribution of the states oc­
curs near the threshold in the energy scale Eo. Part of 
the states, which is proportional to the field intensity, 
goes over from the region behind the threshold E > ~ to 
the forbidden region, where the density of states falls 
off in power-law fashion. The value at the maximum is 
of the order of N' Eo (~Eo)1I2 . 

However, the role of the alternating field reduces 
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not only to a redistribution of states as a result of the 
resonant interaction with the bands. In addition to the 
retarded Green's function considered above, the 
anomalous functions which carry information on the 
change in the energy distribution function of the elec­
trons, are also different from zero.rs ] We shall be 
chiefly interested in the case of temperatures close 
to zero. Then the creation of new excitations by the 
field turns out to be ineffective, since its frequency is 
below the threshold which it would have in the equili­
brium state, and the "tail" of the density of states in the 
forbidden band of energies is proportional to the small 
quantity >..2/ ~4. The equilibrium distribution function 
under these conditions will change for another reason­
because of electron-electron interaction. Each excita-' 
tion with energy 3~ breaks up into three with energies 
~, each of which is again built up to an energy 3~, and 
the process repeats itself. Recombination with emis­
sion of a phonon prevents the avalanche-like growth of 
the number of excitations. The balance of these two pro­
cesses determines the normalization of the nonequili­
brium contribution to the distribution function, the shape 
of which is determined by the balance of the relatively 
more effective scattering and the pump field. The pump 
is proportional to the parameter 

which is large under our conditions; therefore the non­
equilibrium distribution function turns out to be smeared 
out over an energy scale 11 » ~ and is small in magni­
tude:[3] 

n'(e)=g, roD' ~j (~). 
.'18,.- '1 '1 (14) 

where f(x) is some universal function, which falls off at 
infinity, and gl is the ratio of the constants of electron­
electron and electron-phonon interactions. 

The quantity ~2w which enters into >.. must be de­
termined in self-consistent fashion, with account of the 
change in the density of states. The expression (2) is 
valid only under the condition of a small change in the 
density of states>.. « ~Eo; nevertheless, at >.. - ~Eo the 
singular dependence of ~2w on the frequency is pre­
served. In addition, it can be shown that so long as 
p(w) = 0, the quantity ~2w remains real, i.e., the ob­
tained systematics of the states is valid for Eo ~ 2N' ~. 
At high frequencies or high field intensities p(w) > 0 and 
an imaginary part ~2w appears, which leads to some 
smoothing of the spectrum. We shall not conSider this 
question in any further detail here. 

The change in the stationary order parameter ~ can 
be tentatively divided into two parts-a part connected 
with the change in the denSity of states, and a part con­
nected with the change in the distribution function. The 
self-consistent condition here is of the form 

1 "0 1-2n(e) °D e de S- ,de 
-=Sp(e)---de= S p(e)th---2 p(e)n (e)-. 
g. e • 2T e 0 e (15) 

For T = 0, the first part can be written in the form 

"0 de 00 de - p(e,)-p.(e,) SWO de 
S p(e)-=Sp.(e)-+S de,= p.(e)-
o e 4. e _00 ~ ..l. e 

(the levels are merely redistributed and their number 
remains unchanged). Therefore, the fundamental con­
tribution to the change in the order parameter is made 
by the nonequilibrium distribution function(3] 
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~o-~ WD' ~ '1 
---g,--ln-. 

~o ~eF '1 ~ (16) 

The considered effect of the change in the density of 
states under the action of an alternating field can be ob­
served experimentally by measuring the volt-ampere 
characteristic of a tunnel junction of an irradiated super­
conducting film and, for example, of a normal metal. 
The dependence of the tunnel current on the junction 
voltage[4] is of the form 

1 : t;' 
l=]l p(e)de[n(e)-n,-(e+V)]=R p(e)de 

_~ 0 

1 -+lfJ p(e)de[n,(e+V)-nx(e+V)]. (17) 

nN( 40) is the distribution function of the electrons in the 
normal metal. In writing (17), we have made use of the 
fact that the total number of particles . 

J p(e)n(e)de 

does not change upon deformation of the distribution 
function, and we can use nF(4O) for n(4O) in Eq. (17). 

The distribution function of the electrons in a normal 
metal differs generally speaking from a Fermi distri­
bution, since the radiation penetrates into the normal 
metal. However, in the case of a normal metal, the 
heating of the electrons in it is of little effect because 
of diffusion of the carriers into the bulk metal, and the 
nonlinear distribution function in it is small. BeSides, 
the change in the energy distribution function is a quan­
tity of order t:. or larger; therefore, the second term in 
(17) certainly makes small contribution to the differen­
tial characteristic. The scale of change of the first 
term V ~ 400 « t:.. For this reason, p(V) = RaIl av. 

Strictly speaking, the resultant state does not have 
an energy gap between the electrons and holes; however, 
since the density of states is small in a large part of 
the forbidden band and the distribution function (14) is 
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also small, the absorption at frequencies w < 2t:. is in­
Significant. The dissipation current can be expressed 
in terms of Green's functions integrated over ~:(5] 

. _ 3ne' i S', S· e(e-w) -;'1' 
]w---,--A. x dx 2 

2mw -r c 0 _00 ;'1 

x [n(e-w)-n(e)]['ii,v,_w(x)+v,(x)'ii,_.]de. (18) 

The prime denotes averaging over the angles: 

;'1 -
v.(x)=-- J ImG,(x, s)ds. 

1[B -(1) 

The contribution to the dissipative current from the 
change in the density of states (jI) and the distribution 
function (~2) can be represented (for the case w ~ 2t:.) 
in the form 

ne'i (1.)' ne' i w'~ 
l,.----A. AI ' j,.----A.g~-. 

mw-r c '-' mw-r c ,-,e, f} (19) 

The film considered above was pure in relation to its 
transport properties and had t:. T » 1. The effect does 
not disappear even in the opposite extremely dirty case 
t:.T « 1. 

I express my gratitude to G. M. Eliashberg for dis­
cussions. 
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