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We find an explicit solution of the kinetic equation for the electron distribution function in an inclined
magnetic field for an arbitrary coefficient for the reflection of electrons from the metal surface. We evaluate
the asymptotic value of the current density in the range of small angles of inclination. We obtain
asymptotically exact solutions of the problem of the anomalous skin effect and evaluate the surface

impedance in various limiting cases.

PACS numbers: 79.20.Kz, 72.30.+q

1. INTRODUCTION

Reuter and Sondheimer"? were the first, in 1948, to
solve the problem of the penetration of an electromag-
netic field into a metal under anomalous skin effect
conditions. They obtained exact formulae for the field
distribution and the surface impedance in two limiting
cases—specular and diffuse reflection of the electrons
from the metal surface. An asymptotic integral equation
was obtained in ®’ for the Fourier transform of the
electromagnetic field in the metal for arbitrary coeffi-
cients for the reflection of electrons from the boundary.
Subsequently Hartmann and Luttinger'®? used a Mellin
transform to solve this equation. Fal’kovskii'*! found
small corrections to the surface impedance of the metal,
necessitated by the scattering of electrons by a rough
boundary with smooth inhomogeneities. For the normal
skin effect these corrections turn out to be small be-
cause the mean free path [ is appreciably shorter than
the skin-layer thickness §. However, in the case of an
anomalous skin effect (63 <« 1) the main role is played
by glancing electrons for which the scattering by the
surface is practically specular.

Hartmann and Luttinger'®! found also an exact solu-
tion of the problem of the anomalous skin effect in a
magnetic field parallel to the metal surface for diffuse
scattering of the electrons. The corresponding asymp-
totic integral equation was obtained in *!. In *°! the in-
fluence was studied of the nature of the scattering of
the electrons by the surface of the sample on the
anomalous skin effect and the cyclotron resonance in a
parallel magnetic field. This study showed that in the
region of strong fields and close to cyclotron resonances
the nature of the scattering of the electrons by the sur-
face does not play an important role provided the re-
flection coefficient p is not close to unity. The case of
specular reflection p = 1 is a singular one as then there
is in the metal a group of so-called surface electrons
which are grazing along the surface of the sample due to
multiple collisions with the boundary. We must also note
the work of Azbel’ and Kaganov!*°! who found the surface
impedance of a metal in a normal magnetic field for p
=0 and p = 1. We emphasize that all these problems in-
volved essentially an exact solution of the kinetic equa-
tion for the electron distribution function for arbitrary
p.

In the case of an inclined magnetic field, apart from
the difficulties of solving the electrodynamic problem,
even finding the distribution function and calculating
the current density is an extraordinarily complex prob-
lem. These difficulties are caused by the fact that
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every collision of an electron with the surface changes
the form of the electron trajectory. This change con-
tinues until the electron moves sufficiently far into the
metal where it does not collide at all with the surface.
We consider the motion of an electron in an inclined
magnetic field. Figure 1 illustrates the motion of an
electron in velocity space, taking into account its scat-
tering by the boundary. Let the first collision with the
boundary occur at the point A, on the Fermi sphere. Af-
ter the collision the electron goes to the point A, which
is the mirror image of the point A, with respect to the
equatorial plane vy = 0 (the n axis is in the direction of
the normal to the boundary). In the new cross section
it rotates until it reaches the point As in which it collides
again with the metal surface. After this the electron
goes into the state A4, the mirror image of the point A;.
In the new orbit the electron collides for the third time
with the boundary at the point As and goes into the state
Ag. In that orbit the electron does no longer collide at
all with the boundary. If the number of collisions is
large the nature of such a migration of the electron
over the Fermi sphere turns out to be rather quaint and
its analytical description is difficult.

From a mathematical point of view the difficulties
of taking multiple collisions with the surface into ac-
count are caused by the non-conservation of the com-
ponent of the electron momentum py along the magnetic
field on reflection. In other words, the inclination of
the magnetic field reduces the symmetry of the problem
and as a consequence one of the integrals of motion
(pg) disappears. We note that for diffuse reflection it is
sufficient for the determination of the distribution func-
tion to know only the moment of the last collision with
the surface. For non-diffuse scattering the electron
‘“‘remembers’’ all collisions, and the distribution func-
tion must be determined from a very complicated func-
tional relation which takes this fact into account.

Azbel’ and Rakhmanov'''’ discussed the problem of
the effect of the nature of the reflection of the electrons

FIG. 1. Motion of an electron on
the Fermi sphere, taking into ac-
count multiple collisions with the
surface of the metal. The points A,
A;, and A; correspond to those
values of the electron momentum at
which it collides with the boundary.
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by the boundary on the skin effect in a metal in an in-
clined magnetic field. However, the authors of '**!
studied only the region of strong magnetic fields when

6 > R (6 is the skin layer thickness and R the cyclotron
radius). Shekter and we'*?! considered the anomalous
skin effect for 6 <« [ in an inclined magnetic field for
the case of a diffuse boundary. As far as we know the
effect of the reflection of the electrons on the anomalous
skin effect in an inclined magnetic field has not yet

been studied. It is probable that this is due to the diffi-
culties, mentioned above, of solving the kinetic problem.

In the present paper we find an exact solution of the
kinetic equation for the distribution function of the elec-
trons in a metal placed in a magnetic field oriented at
an arbitrary angle & to the boundary. The scattering
of the electrons by the boundary is characterized by a
specularity coefficient p, with arbitrary magnitude and
independent of the electron momentum p. Moreover,
we obtain an asymptotically exact solution of the prob-
lem of the anomalous skin effect for small angles . We
study the contribution to the surface impedance from
electrons from the vicinity of the central cross section
of the Fermi surface which drift along the boundary.

2. STATEMENT OF THE PROBLEM AND
SOLUTION OF THE KINETIC EQUATION

We consider a metal with a spherical Fermi sur-
face. The magnetic field H is oriented at an angle ¢
to the boundary. The £n¢ coordinate system is fixed
to the metal surface n = 0; the 7 axis is parallel to the
outward normal to the surface and the ¢ axis is directed
along the projection of the vector H on the 7 = 0 plane.

We write down the Maxwell equations in the metal
for the spatial Fourier components of the electrical
field

k&, (k) +2E, (0) =4nioc%,(k)
jn (k) =0.

(=%, 0), (2.1)

(2.2)

We continue the field strength E(n) and the current den-
sity j(n) into the region 7 < 0 outside the metal in even
fashion and introduce the following notation:

&) =2 [dncosknEu(n), Eu(n)=n~" [dkcoskn&u(k), (2.3)

w is the wave frequency, k the wavenumber, and the
prime on E indicates the derivative 8/an.

The fact that it is possible to continue the current
s 28 3
1(n)=—mjdl’\d(n. v)

as an even function is caused by the fact that §(n) is in
fact defined only antisymmetrically with respect to the
velocity part of the distribution function

W (n, v)={(n, v)—f(n, —¥).

It has been shown earlier™? that the kinetic equation
for the function ¥(7, v) is a second order differential
equation which is symmetric under the transformation
n — —1. Changing in that equation to the Fourier trans-
forms with respect to the n coordinate we find easily
(see [5,6])

(k,6,7)=2 [ dv’ exp1(x'~1) cos [ kRa(x', 7) ]{g(k. 8,7)

—ﬂ;“_(f);ﬂ[(1+p')\v(0.e.r')—zp\ffw.e,r'>1}. (2.4)
e af, _ v—i®
E(k, ev T)='§$u(k)vu(ey T) _0:'v = Q .
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Here R = v/Q is the cyclotron radius, @ = eH/mc the )
cyclotron frequency, m the mass, e the absolute magni-
tude of the conduction electron charge, v the Fermi
velocity, n = v/v the unit velocity vector, f,(€) the
equilibrium Fermi distribution function, and v the fre-
quency of the collisions between electrons and
scatterers.

The variables 6 and T are the polar and azimuthal
angles in momentum space with polar axis py:

n;=sin 0 cos 1, n,=cos 0 sin ®+sin 6 cos ® sin 7, (2.5)
ny=cos 0 cos ®—sin 0 sin @ sin T.
The ‘‘phase’ a(7’, 7) is given by the formula
a(t, 1:)=I d1"n, (0, 17). (2.6)

The value of the function ¥(0,v) on the surface 7 = 0 is
related to the Fourier-transform (k) through Eq. (2.3):

¥ (0) =n--j dkep(k). (2.7)

The tilde on the function ¥(0, v) indicates a change in
sign of the velocity component vy:

TP(O- Uz Uy v:)
=¥ (0, vy, —vy, v¢),

(2.8)

Hence, to find y(k) we must determine ¥(0), using (2.7).
If we integrate Eq. (2.4) over k, 5[Ra(7’, 7)] appears in
the integral over 7’. The argument of that 5-function
vanishes when 7’ = 7, A\, A, . . ., Where the A\p are the
roots of the equation

& (An, t)Ejdr'n,.(O,r')=0. (2.9)
The roots A, are numbered in order of decreasing value.
If Eq. (2.9) does not have solutions for some 6 and T the
corresponding root must be put equal to —=.

As an illustration we analyze the behavior of the
first root x(6, 7). In Fig. 2 we give the functions nn( T)
and N (7) for T, > 0 when the electron drifts in the di-
rection towards the metal surface. The points 7, 7,
71 — 27, and so on, are the zeroes of nn(‘r). In the hatched
regions i) — 27 ¢ T ¢ T) — 27n the root N (7) = —; the
point y, follows from the condition that the integral

g
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FIG. 2. The normal component ny and the first root \, as func-
tions of 7; fi, = cos 6 sin @ > 0. In the hatched regions A, = —ce.
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]:dtl ng(t")=0.

"

vanishes. In the other intervals ) (7) takes on finite

values, undergoing first-order discontinuities. This root

M (7) behaves similarly also when T, < 0. By virtue of
the definition (2.9) the roots have the following obvious
properties: _

A (6, As) =A4(0, An) =Ausi(6, 1),

An(8, T+2m) =A, (0, T) +2x.

The integral over 7’ is evaluated using 5[a(7’, 7)].
After this we obtain a functional equation to determine
¥(0, 7); on the right-hand side of this there occurs a
sum of terms containing ¥(0, ) with all roots ). We
note that the term corresponding to the zeroth root
7' = A = T is taken with a factor 1/2, since this root
coincides with the limit of the integral (2.4). We can
get rid of all roots in the sum if we replace 7 by A, in
the functional equation which we obtained. Subtracting
the two equations from one another we are led to the
following relation for the function ¥(0):

[¥(0,v)—p¥ (0, v) lem—p[ ¥ (0, A1) —p ¥ (0, M) Je™=(1—pY) o (x).

(2.11)

(2.10)

We have introduced here the notation

e 0f rd
u..(t)—-a-a—;;f dv'E[Ra (7', 1) ]v(8, 1) e™.

An important feature of Eq. (2.11), which enables us
to find its exact solution, is the following fact: if we re-
place 7 by A\; in the argument of the expressions which
occur in the first square brackets of (2.11) and then
perform the “‘tilde’’ operation, we get the expression
which occurs in the second square bracket.

(2.12)

We can solve Eq. (2.11) relatively easily if we write
it down for the values 7= Xy, X, . . ., AN, Where Ay is
the last root of Eq. (2.9). The last two equations of this
set for 7= \y_1 and 7 = Ay take the following form:

— [(1+p?) ¥ (0,0, 1) —20¥ (0,6, 7) ] =

the combination of functions \If—p\'f . Using Eq. (2.14)
we write the second term inside the braces in (2.4) in
the form

) vedfg 4
T Jo'dk xu(k', 0, 1) Eu(k'),

(2.16)

1—p?

Here

2,0, 0=(1—pd) Y prexp {1} (A ®I-R) ™} bl R,

S0 n=0

] (2.17)
w(t)= I dt’ e’ -9 cos[k’Ra(1’, 1) In(6, ).
Ay(v)
By ("Xl)(n) = Ah('xl)(n—l) we have denoted the following
quantity
) M=4,44... Auda=k(Ri(%s... (R1)) ..0).

Equation (2.16) gives an explicit solution for the Fourier
transform (2.4) of the distribution function for arbitrary

angles of inclination & and values of the specularity
parameter p.

We can thus finally write the current density in the
form

jn(k) =0, (k)& (k) ——n"’j dk’ Qu(k, k") &(K'), (2 .18)
where
O (k) =04 j d0'sin e@a: 1,(6, 7)
Xj dt’ e'*"-" ny(0, t)cos[kRa (', 1) ], (2.19)

Qu(k, k') =0,R _[ de sineqS dtn,(8, ) j dt’ e~ [n,(8, ') |

3 Ne
 cos[kRa (', 7) sl k', 6, T'), O = —— .

i (2.20)

[ (0, Aw-)—p¥ (0, Aw—s) 1€”w-—p[ W (0, Ax) —pW (0, Ax) Je™»=(1—p*)us-t, The tensor oy is the Fourier transform of the conduc-

[¥ (0, A) —p¥ (0, Ay) e =(1—p") y. (2.13)

From the second Eq. (2.13) we find easily the expression

occurring in the second square bracket of the preceding

tivity of a metal without boundaries, and the kernel Q,p
is caused by the presence of the dividing boundary.

equation. After that we find in the same way the combina- 3. ASYMPTOTIC BEHAVIOR OF THE
-tion ¥(0, qy— 1) — p¥(0, Ay 1) which is substituted in the CURRENT DENSITY

equation before that, and so on. As a result we get

. N
[¥(0,7)—p¥ (0, ) le™ = (1—p?) 2 p"i&,,ﬁh ...Buun, (2.14)

ne=0

where B N = T is the unit operator,

B,,=e™A4,,e~ ",

(2.15)

while the operator &)\ indicates the reflection (tilde)
operation for the poin{1 (6, Ap) of the Fermi surface with
respect to the equatorial plane vy = 0.

The physical meaning of the solution obtained con-
sists in that the looked-for combination ¥-pV¥ is ex-
pressed in terms of partial contributions from separate
sections of the electron trajectory between points of two
consecutive collisions with the boundary. Each suc-
cessive term of the sum differs from the preceding one
by a factor p and an operator B which takes into account
the change in py when the electron is scattered by the
metal surface.

It is rather obvious that the ‘‘surface’’ part of the
function ¥(k, 6, 7) in (2.4) can be expressed in terms of
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We study the anomalous skin effect region

kR>1. (3.1)

The mean free path [ = v/v is assumed to be sufficiently
large so that

1] =|v—ie|/Q<1. (3.2)

Finally, we restrict ourselves to the region of com-
paratively small angles of inclination ¢ of the vector H
with respect to the metal surface

(k)< @< (kR)™, | 71| (kR)™". (3.3)

We elucidate the physical meaning of these inequali-
ties. The left-hand inequality in (3.3) means that after a
mean flight time an electron moving on average along
the magnetic field leaves the skin layer. The condition
kR® << 1 corresponds to the fact that after a cyclotron
period the drift displacement R® of an electron along
the normal to the surface is small compared to the skin-
layer thickness k™. The inequality

w=|1|/® (kR)*>1 (3.4)
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expresses the requirement that the spread in orbit
diameters AD ~ R(kI®)™? for electrons which stay in the
skin layer during a mean free flight time is much larger
than k™.0%!

All these conditions enable us to simplify the ex-
pressions for Ouv and Qu,,. Thanks to the inequality
(3.1) the main contribution to the current comes from
the neighborhoods of those points on the electron tra-
jectories where the electron velocity is parallel to the
surface vy = 0. Close to the limiting points (0 < 6 < @,
m— & < 6 < ) the projection of the velocity vy £0.
Therefore, we restrict ourselves in the integration over
6 to the section ® = 6 = 71— ®.

The evaluation of the asymptotic behavior of o,y is
not difficult and has been done before:"%*!

oz (k) =2n0,/ (kR)*®. (3.5)

We study only the ¢ polarization as the remaining com-
ponents of the current are appreciably less.

The most laborious and complicated part of the cal-
culation of the asymptotic behavior of the current is the
evaluation of the kernel Q(k,k’). The asymptotic be-
havior of Q is determined by contributions from differ-
ent groups of electrons. First of all, we must take into
account electrons which either do not collide at all
with the surface and leave for the interior of the metal
or collide a small number of times with the surface.
The most important contribution to the current from
these electrons comes from the electrons which are
close to the central cross section pyy = 0 as they spend
appreciably longer time in the skin layer than electrons
with an appreciable drift velocity vy. The contribution
to the current from slowly drifting electrons is different
by the peculiar fact that in some regions of 6 and 7 the
root , becomes —«, as a result of which resonant de-
nominators of the type (y + ik’'R cos 8 sin®)™ occur in
the conductivity. For the sake of simplicity we shall call
such contributions anomalous, since there is no elec-
tron drift into the interior of the metal when & = 0.
Apart from this group there are electrons which collide
several times with the boundary before they leave for
the interior of the metal. Such electrons also spend a
prolonged time in the skin layer and play an important
role in producing the screening current in the skin
layer. We shall call the contribution from such elec-
trons the normal one.

It is convenient to write the kernel Q= Qgg in the
form

n-o
Q(k, k') =04 j 0 sin e%- (M (e, ')+ (—Fe, k) +M (, —k)
° (3.6)
+M(—k, —k')}.

We replaced the cosines containing kRa and k'Re in
(2.17) and (2.20) by half the sum of the appropriate ex-
ponentials

Mk, k', 0)= (ﬁdﬂnn(e, 1) |x£') (k’,8, t)exp[—ik, R cos 1]
X jd:t exp[—T'(k)z+ik, R cos (t+z) Iny (1+z), (3.7)

where x%e) differs from (2.17) in that we have exp (ik’'Ra)
in w; instead of cos (k'Ra),

k,=ksin®, T(k)=y+ikRo=y+ikR®D cos.
Moreover, we have changed the order of integration
over Tand 7’ = T— X.
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To evaluate the anomalous contribution to the inte-
gral (3.7) we split off the section , < 7 < 7, where
M(7) = — (@i, >0, see Fig. 2). After this the integrals
over the infinite interval can be folded, using the perio-
dicity (with period 27) of the integrands. As a result of
the folding there appears in the denominator the differ-
ence 1 — e 27T which we replaced by 27T by virtue of
the inequalities (3.2) and (3.3). We note that when -
evaluating the anomalous contributions we can in (2.17)
replace the operator AT by the unit operator up to terms
of order 2. Moreover, we integrate the remaining in-
tegral over 7
1—p

M anom(f;, k',0)= —————4nzr D) T(E)

j dtn,(0,7)exp[—i(k,—k, ")Rcost]

2

X I dz exp[ 1" (k)z + ik, R cos (v+z) Ins (v+z) J. dy exp[-T(k)y

—ik,'R cos (t—y) Iny (1—y), (3.7a)

by parts using the identity a(7, p1) = 21rﬁn. After that,
wherever possible we put the angle & and the quantity
y equal to zero. We then get for Manom(x k', 9)

7, (k,R)J,(kR)

. T )
anom k’ __ —p) D sin?
M (k, k', 0) 5 (1—p) @ sin® Bl cos 61 T

X exp[—i(k,—k.")Rsigncos 0]. (3.8)

If we now symmetrize M30OM(x k' 6) according to (3.6)
and use the well-known asymptotic properties of the
Bessel functions for large arguments we get for
Qanom(k k’) the following formula:

(1—p)ox
2(kk') "R
1 1
x [ YHikRD cos® y+ik' R cos 0
(1—p)or ¢, ln(k/k’) K
- (kk')"=R’(D( P ) ’
' L=2R®y'exp (—1—n/2).

We now turn to the calculation of the normal contri-
butions. To do this we estimate first of all the maxi-
mum number of roots of Eq. (2.9). For small & it has
the form

b
Qunom(k, k') =

isign cos® T )

a9 sin’ 0 (
J . =k ktk

(3.9)

® ctg 0 (T—A) =cos T—cos A. (3.10)

As we shall see in what follows, the main contribution
to the asymptotic behavior comes from the region of
6-values close to 0 ~ /2, where kI®| cos 8| ~ 1, i.e.,
&l cotbl ~ (ki)™ <« 1. The maximum number N of roots
An of Eq. (3.10) turns then out to be of the order
(®lcot8l)™* ~ kI, i.e., much larger than unity. For nor-
mal contributions the lower limit of integration in the
expression for wg(7) in (2.17) is a finite quantity (the
anomalous contri%utions have been taken into account!).
We can therefore in wz(T) put & = 0, because kR® « 1.
It is rather obvious that, independently of n, the differ-
ence (X)) — »[(%)(N)] does not exceed 4, i.e., the sum
over n in the argument of the exponential with y does
not increase faster than s. This means that the normal
contributions can essentially be calculated by the same
method as for the case of a parallel field (® = 0). In
other words, we must for the normal contributions re-
place the roots Ay by their values for & = 0:
0<i<m), M=2n—1 (O<T<2m).
In the case of a parallel field the action of the reflec-
tion operator A on a periodic function with period 27
is given by the formula

Af(r) =f(M)=f(—1).
What we said above enables us to obtain the following
formula:

M=—1
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2sin*0 ¥ £ sint . o
— | dz e—r‘(h)x d d h %
(k) -f f ‘—eu_pe-"{ weh[T (k") u]eos p

(3.11)

"M rom (f k' )=

- x{cos(t+z) cos[k_LR (cos (t+2z)—cos t) —k, 'R (cos p—cos 1) ]
—p cos(1—z)cos[k R (cos (1—z) —cos ) —k, 'R (cos p—cos T) 1}.

This formula differs from the similar expression for
the case™? & = 0 only in that in the integral over x there
occurs in the index of the exponential instead of the
quantity ¥, I'(k) = y + ikR'ﬁn which takes into account the
drift motion of the electrons into the interior of the
metal.

We find the asymptotic behavior of MROTM jp the
limiting case

1—-p>|y| (kR) " (3.12)

If inequality (3.12) is replaced by the opposite one we
come to a situation which is completely analogous to
the parallel magnetic field case. When 1 — p «
171 (kR)™’? we can neglect the anomalous contributions
and the main term in the asymptotic expression of (3.11)
is independent of ® and is the same as the formulae
given in '3,

The asymptotic behavior of (3.11) is determined by
the contribution from the neighborhoods of the stationary-
phase points x = 0, 7, 2m;, 7, u = 0, . Essentially sim-

ple, but cumbersome calculations lead to the following
formula:

o Tow [ 4 L Gk
owm ki) = ¢4 ] (3.13)
i+p In(k/k’) 1+p
+2 1_p\2+b),(kn_kw)R}, b=my

The first two terms are caused by the contribution from
electrons drifting into the interior of the metal; this is
shown by the factor (kR®)™ in front of the square brack-
ets. The last term is caused by electrons with small
values of the velocity component v,, which graze along
the surface due to multiple collisions with it. This

fact manifests itself in that that term contains a factor
(1 - p)™. The total kernel (2.20) of the Fourier trans-
form of the current density is the sum of the anomalous
and the normal contributions, Q = Q3N0M 4 QNOrmM _ Ag
the complete asymptotic formula for the current turns
out to be rather complicated we consider the following
limiting cases in the framework of (3.1) to (3.3) and
(3.12).

1. Let the reflection of the electrons from the bound-
ary be sufficiently far from specular so that we can
neglect the last terms in (3.13) from the grazing elec-
trons,

kRO <1—p. (3.14)
The formula for the current density then has the follow-
ing form:
oy mOk _ Ak ke In(k/E) < 1—p
itk = (kR)’tb{z(k) u;[ + (%) {(k )
(3.15)

+pkkT’k,]3(k')}v.

2. If the coefficient of reflection of the electrons
from the surface is close to unity and satisfies the con-
ditions

|Y|/TkR<|y|, 1—p<kR®, (3.16)

the grazing electrons play the main role in the current

318 Sov. Phys.-JETP, Vol. 42, No. 2

k/k
'ln_g(k').

— (3.17)

The relation between |yl and 1 — p can then be arbi-
trary.

4. SOLUTION OF THE MAXWELL EQUATIONS.
SURFACE IMPEDANCE

1. We turn to the solution of the Maxwell equation
(2.1) for the £ polarization in the limiting case (3.14).

We introduce dimensionless variables
g=kL, ¢'=k'L, &(k)=—2E'(0)L*F(q). (4.1)

The integral Eq. (2.1) together with (3.15) can in these
variables be written in the form

(- F)o @+ k2 (5) [ (s

In(g/q") i-p
99 lnq) n
q N
+Pw]5’(q)—1, (4.2)

p=L/8,'. 8,=(DR*c*/4n*wcy)"~ (8. RD)".

The quantity 5, is the effective penetration depth of the
electromagnetic wave into the metal in the case con-
sidered: &3 = (4¢®v/3mww?)'”, wo is the plasma frequency.
We note that part of the kernel—the second term within
the square brackets in (4.2)—is a degenerate kernel.

One can solve Eq. (4.2) exactly using a two-sided La-
place transformation. The method of solution is similar
to the one proposed by Hartmann and Luttinger®’. We

substitute in (4.2) the variables
g=expt, q¢'=exprT,

We get then instead of (4.2)

F(g)=zg(1).

(e"—ip) g (t) +ip j dt A(t—7) g (1) =e+Cte', (4.3)

where

(1—p)ze* " [
2azsh(x/2)  2mch(z/2) -
The constant C is determined by the integral of the re-
quired function:

Az)=

c=i51ﬂ;f'j dre2g(1). (4.4)
We shall look for the solution of (4.3) in the form
g(1) =g.(t) +Cg:(1). (4.5)

By virtue of the linearity of the original Eq. (4.3) the

equations for g, and g, are the same as (4.3) with that
difference that the right-hand side occur the functions
e2t and tet/ 2, respectively,

(e"'—i3) g, (t) +i J'dr At—1) g (1) =€ (4.6)

(et'—iB) g (1) +iB J-d'r_\(l‘—r)gg(t)=te"". (4.7

We introduce the Laplace transform

cpin

T(z)=j‘ dte=*'g(t), g(t)=?17 _[ dze'T(z), c=Rez. (4.8)

The constant ¢ is chosen inside the band where the
function T(z) is regular.

If we apply the Laplace transformation to the inte-
gral equation, there occurs, in general, an inhomogene-
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ous difference equation for the function T(z). We can
obtain instead of such an inhomogeneous equation a
homogeneous one, if we require that the function have an
isolated singularity such as a pole of the appropriate
order, such that the integral over z in (4.8) over a small
neighborhood around the pole is the same as the right-
hand side of the equation. The regularity band of the
function must be found from the condition that the inte-
gral over z in (4.8) must converge as z — +i~ and the
presence inside it of the required singularity; the width
of the band is determined by the behavior of the original
Eq.(4.3)as t — +« and t — —«, It is clear for both
Eqgs. (4.6) and (4.7) that the width of the band equals 4.
The singularity for T,(z) for Eq. (4.6) is a simple pole
at the point z = —2 with a residue equal to unity. For
Eq. (4.7) the function must have near z = —(7/ 2) a second
order pole of the kind (z + (7/2))2. For the Laplace
transform T,(z) of the function g;(t) we choose the
regularity band between 1 and —(7/2), viz.

S, ==/, +FA<Rez<'.+A, 0<A<Y,.

This band satisfies all conditions formulated above. For
the function T»(z) the regularity band is displaced to the
left by 1/2, i.e.,

S,=—4+A<Re:z<A,

The functions T 4(z) satisfy one and the same differ-
ence equation which we obtain easily from (4.6) and
4.7 (e =1,2),

1-p P

8(z)=1- cos*nz  cosdz |

To(z—4)=ip8(z) Ta(z), (4.9)

The differences between the functions T; and T, are
caused by the differences in the singularities and the
position of the bands S; and S.. It is clear that the gen-
eral solution of Eq. (4.9) contains an arbitrary periodic
function of period 4. The regularity conditions and the
requirement of the existence of the appropriate singu-
larities enable us to determine uniquely this arbitrary
periodic function.

We find the function T,;(z). We seek it in the form

nexp{ni(z+2)/8]

Tita)= Asina(z+2)/4

B-C , (2). (4.10)

The function u,(z) satisfies the equation
Hi(z—4) =0(z) u(2)

which is regular in the band S, and equal to unity in the
point z = —2. We put

. (2) = explD, (z) D, (~2) ] = exp { [az D.’(z,)] . (4.11)
The function Dj(z) satisfies the following difference
equation:

, , nz sinnz

D, (z—4)—D, (z)=n (2tg1u+ Ctgy—m) .

The general solution of this equation has the form

, nz ' nz sinnz
D@ =— 4_( 2Hgntotg 2 cos nz+1-—p

) V(). (4.12)
The periodic function (V,(z)) of period 4 must be chosen
such that there are no singularities of Di(z) in the band
S:. Moreover, the average value of the function V,(z)
must equal zero.

In the table we give the position of the poles and the
magnitude of the residues for the first term in (4.12):

319 Sov. Phys.-JETP, Vol. 42, No. 2

Position of the /s =y | =2 | —5/2| -2 -z | —z-2 | -2 I

singularities of

D'(z) in the

band §,.

Rea;;:'lue’I Yo | =Ya| =% | =% 13 [ a2 |_z-2 _a
& 4 4 4

The periodic function V,(z) which cancels all these
singularities in the band S; has the form

V,(z)=—1§[—cth(z—12)+ctg—(z+ )+3ctg (z-l--g—)

+5ctg i;—’(z+ %) —4 ctg-é—(z+2) —z,ctg -'Z(z+z.) (4.12")

—(34+2)ctg —Z(z+z.+2) +(z,—2)ctg —2(z—z,+2) +z, ctg —’Z(z——z,) ] .

Equations (4.10) to (4.12) give the explicit solution for
Tl(Z).

We turn to the solution of Eq. (4.9). In accordance
with the above-formulated conditions on T»(z) we seek
it in the form
n?exp[—mni(z+7/,)/8]

16 sin* n (z2+7/2) /4

T.(z)= Bt (z). (4.13)
The function p.(z) satisfies the same equation as u,(z),
but differs from p, in the regularity band and the con-

dition pa(—(7/2)) = 1. We introduce
p2(z)= exp [D,(z) —Dz —7/,) = exp[ _‘- dz’ Dy (z')] (4.14)

=2
The function D#(z) satisfies the same equation as Dj(z),
the general solution is the same as (4.12), differing
only in the periodic function V2(z). The difference in the
bands S, and S. leads to the fact that instead of the point
z = 1/2 there is in the band S, the point z = 7/2 with
residue — (7/ 4), and instead of z = z, there occurs z = z,
— 4 with residue 1 — z,/4 (z; = 1 — (1/7) arccos(1 — p))
so that we get for D3(z)

sinnz )
cos nz+1i—p

16 [ctg—(z+ 1)+3ch (z+?3)+50tgf—(z+-zi)

+7ctg vy (z+ —;—) —4etg —4—(z+2) —3z,ctg %(z+z.)

D, (z2) =— ﬁ(2t.gﬂz+ cté-:;—z—

(4.15)

- (z.+2)ctg—’Z‘-(z+z‘+2)+(z;—2)ctg %(z—z‘+2)+(z.—4)c§g—2—(z—z.)]-

From (4.4), (4.5), and (4.8) we get a linear equation
to find C, and solving it we get

T\ (%)

T R i(—p)p-Ta(71) " (4.16)

As the point z = 1/2 lies outside the regularity band S,
we must use Eq. (4.9) to obtain the value Tz(l/ 2), ex-
pressing Tz(]./ 2) in terms of Tz(—'(7/ 2)). As the functions
T2(z — 4) and 6(z) have second order poles asz— 1/ 2, we
have T»(1/2) = ir®/B(1 - p), i.e.,

o= 2U-0)

——T ().

We have thus obtained an explicit solution of the
Maxwell equations (2.1) in the limiting case (3.14). The
surface impedance is expressed by the following formu-
lae:

4io . 4n Vie® \ *
Z—_ o =y jdké’(k)——Bszc T(—1)—7(<1>E;Q—z) 2(p),
(4.17)
where
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VL f L () sina(tes
W(P)=_—k(72+l’p)"' e-inile _(1 p)?sin s (Y/.—2) /4 ] (4.18)
¥2n 1672 sin 3n/8 sin n (1+2,) /4

The function u(p) changes smoothly from the value'’
u(0) = 1.146(e— iy 0.0259) to u(1) = 1.496 ¢~ 3mi/8,

2. In the limiting case (3.16) when the reflection of
the electrons by the surface is nearly specular the
equation for the Fourier component £(k) takes the form

N 2% e ’
K& (k) +?’252—Jj ax’ 1:2"—/:,23 (k')=—2E (0);
v T .19
‘o 1=p 1+b IR A—pit+d 5 _( 4c*v ) W (419
' A+p 2+b 4nlone  A4p 2+b 3nood

This equation is a particular case of the analogous and
more general equation in the theory of the anomalous
skin effect.”*'*I'Equation (4.19) differs in that on its
left-hand side we do not have the term —i & (k)/ks}, which
is small compared to the integral term due to the con-
dition (3.16).

Indeed, (5/ 53‘)3 ~1—-p « kR® « 1. Denoting the
quantity &3 in that small term by d, we shall take the
solution of Eq. (4.19) as the limit as d — 0 of the solu-
tion of the more general equation. The quantity 5° is
then assumed to be finite. The necessity of such a
definition of the solution is caused also by the fact that
a straight application of the method described above
leads to an impossibility to regularize the Mellin trans-
form T(z) at infinity (z — +i=) inside the regularity
bands. This means that the behavior of T(z) as z — zi»
and d — 0 depends in an essential way on the order of
taking the limits.

Using the results of "*'*! we can easily write down
the final expression for the surface impedance:

_4n¥3 0b: _ 4ned. (3V31—p 1+by ¢
R e & ( 2 1+p 2+b) :
The surface impedance (4.20) changes smoothly with the
magnetic field in accord with the dependence of the
parameter b ~ 27(v — iw)/2(1 — p) on H. The numerical
coefficient in the first Eq. (4.20) is the same as the one
found by Meierovich.”®! The second Eq. (4.20) differs

(4.20)

from Melerovich’s results by the factor {(b+1)/(b+2)}*.

The imaginary part of Z has an appreciable magnitude
when compared to ReZ when |bl ~ 1 and w = v.

3. For completeness we also give the expression for
the impedance in the case of specular reflection, when

(4.21)

The asymptotic behavior of the current then turns out to
be the same as in the parallel magnetic field case, and
according to ™!
s s : 2
Zy=4.1 (ﬂ) exp(——s—n—'-'-) [ Ne

Qc'ot 10! T mv—ie)

1—p<|y| (kR) "< | 1] <kRO.

(4.22)

Here Z decreases with increasing field as H™/°.

4, We discuss briefly the results. First, we consider
the angular dependence of Z. In the region of very small
angles, & « |kI|~! (the quantity 5 = k™, 5 is the effec-
tive skin-layer depth in a parallel field) Z is independent
of &. The corresponding formulae for the impedance
when & = 0 are known in the case of non-specular re-
flection (1 — p > | y|)®%®, for reflection close to
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specular (1 — p <« |y1)® and for p = 1.1, In the range of
angles |kI|™ <& < (1 - p)|kR!™? the impedance increases
in proportion to &/ (see (4.17)). When the angle & in-
creases further in the region (3.16), the impedance
ceases to depend on the angle. Finally, in the range ®

2 |kR|™ the impedance grows in magnitude, independent
of the magnetic field, and is equal to the impedance for

H = 0 as far as order of magnitude is concerned.

The impedance as function of the reflection coeffici-
ent changes smoothly in accordance with (4.17) when p
changes from zeroup to 1 - p ~ |kR®|. In the region
1—p < |kR®| the impedance falls steeply ~(1 — p)*’* to
the values given by Eq. (4.22).

In conclusion we express our gratitude to N. M.
Makarov for discussions.

DWe use this occasion to rectify an earlier error [!?] in the solution of

the integral equation (4.8) for the case p = 0. In that paper we did
not take into account the fact that the kernel of the integral Eq.
(4.2) contains a degenerate part and that the solution must be
written as a sum of two functions that are regular in different bands.
As a result it tumed out that the solution for T(z) obtained in ['?],
first of all, contains non-regularized singularities of the kind zIn z
and, secondly, the impedance differs from (4.18) by the absence of
the second term inside the square brackets and an additional factor
25/4=238.
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