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The behavior of a compressed Bose system with a condensate as the roton minimum A = E(Po) of the system 
is lowered on increase of the pressure up to the point of absolute instability of the homogeneous phase is 
·studied. The following differences between the exact solution of the problem and the solution in the 
Bogolyubov approximation are established: 1) at the point of onset of the roton instability the static 
susceptibility )((p- Po,O) to short-wavelength perturbations remains finite; 2) the roton instability is 
preceded by.a phonon instability to which it is retated. 

PACS numbers: 05.30.1 

1. lNTRODUCTION 

Solidification of the quantum liquids He4 and He' leads 
to the formation of crystals with strongly pronoWlced an­
harmonicity of the zero-point vibrations of the particles 
at the sites. There are reasons to suppose that the effect 
of tWlneling of particles between sites, leading to Viola­
tion of the correspondence "one particle per site" and to 
a whole series of properties connecting the state with . 
that of a quantum liquid{l, z1, plays a significant role in 
these crystals. The possibility of the formation of crys­
tals with nonlocalized particles and the properties of 
these crystals were investigated earlier1z1 with the aid 
of a model of a "compressed" system (the interaction 
energy of a pair of particles is small compared with 
the kinetic energy, while, by virtue of the compression, 
the mean potential energy per unit volume is of the or­
der of or greater than the kinetic energy). In the present 
paper the compressed model is used to analyze the be­
havior of a quantum liquid near the point of absolute 
instability of the homogeneous phase. 

We draw attention to the fact that the compressed 
model is particularly Simple and, at the same time, suf­
ficiently realistic. Even in the framework of the self­
consistent approximation (the Hartree-Fock approxima­
tion for a Fermi system and the Bogolyubov approxima­
tion for a Bose system), the compressed model permits 
an exact treatment of most of the problems; in the spe­
cial cases where this approximation is insufficient, it is 
possible to construct an adequate and simple generaliza­
tion of the self-consistent approximation (see beJow). At 
the same time, the compressed model is capable of re­
flecting qualitatively all the macroscopi.c quantum fea­
tures of real systems: superfluidity, Cooper pairing; 
quantum crystallization[2 ,features of the spectrum[31, 

the effects ariSing on mixing of quantum liquids[41, etc. 

In the framework of the self-consistent approximation, 
the terminus point of the homogeneous phase is charac­
terized by the fact that the collective pole E: = E:(po) of 
the retarded Green fWlction intersects, while passing 
through zero, the bOWldary of the l~pper half-plane (for­
bidden by the Lehmann re lations) of the frequency; the 
energy of the system then ceases to correspond to a 
local minimum, the homogeneous state is fOWld to be 
Wlstable to arbitrarily small short-wavelength (x ~ l/po) 
perturbations of the density, and the static susceptibility 
X(p = po,E: = 0) becomes infinite. For a Bose system (to 
the study of which we confine ourselves in the Eresent 
paper), the Bogolyubov roton minimum IlB = E (Po) van-
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ishes at the c.ritical point (see Fig. 1; the spectrum with 
I\B = 0 is depicted by the dashed line). ThiS prediction of 
the self-consistent approximation is in sharp disagree­
ment with the experimental Situation, well-studied for 
He4 , in which the roton minimum decreases only very 
slightly with increase of the pressure before crystalliza­
tion. 

The impossibility of making the roton minimum van­
ish can be explained using the example of a compressed 
system. A rigorous treatment of the compressed model 
shows that the self-consistent approximation turns out 
to be invalid near the critical point, and the exact pic­
ture of the appearance of the instability differs from tile 
Bogolyubov picture in two respects: 1) a Short-wavelength 
instability sets in at a nonzero value 6c f 0 of the roton 
minimum (i.e., the value 1\ = 0 is fOWld to be Wlattain­
able in principle), and as a result the Short-wavelength 
static susceptibility X(Po,O) remains finite at the critical 
point (contrary to what is stated by, e.g., Schneider and 
Enz[51); 2) the approach of Il_to Ilc leads to a long-wave­
length instability, which thus sets in earlier than the 
short-wavelength one. 

The reason for the inapplicability of the self-consis­
tent approximation near the critical point is well-known: 
the small factor in the correlation corrections is com­
pensated by the divergence associated with the Wllimited 
growth of the amplitude of the fluctuations (i.e., of the 
zero-point or thermal oscillations of the collective 
modes)1). We shall note the characteristics of our prob­
lem: 1) the fluctuations, by renormalizing the spectrum 
of the collective modes, can either hasten or delay the ap­
pearance of the instability (cf. the one-dimensional an­
alogs in Fig. 2; Xo characterizes the amplitude of the 
zero-point or thermal vibrations; case (a) corresponds 
to premature disruption of the stability and case (b) to 
delay in the onset of the instability); in our case the 
first possibility is realized; 2) the divergence of the 
short-wavelength fluctuations is removed in our prob­
lem when a certain extremely simple subsequence of 
diagrams is taken into account, such that, moreover, 
the diagrams not taken into accoWlt are finite and neg-
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ligibly small; in other words, the fluctuations are self­
consistent in the framework of a finite integral equation; 
the latter circumstance makes it possible to carry out a 
simple and rigorous treatment of the state of the system, 
right up to the point at which it is absolutely unstable. 

2. CHOICE OF DIAGRAMS. SELF·CONSISTENT 
EQUATION FOR THE ROTON MINIMUM 

We shall consider a condensed Bose system with a 
condensate: 

a-m/ V .. /Po<1. po<n\ m/ V •• /np.-';;'1 (1) 

(Vp is the Fourier transform of the pair potmtial and 
Po is the characteristic momentum of the interaction). 
The maximum contribution to ~ik is made by diagrams 
that to not contain integrations over intermediate mo­
menta (Fig. 3). They correspond to the Bogolyubov ap­
proximation: 

G '() e+e.'+noV. -noV. 
B p G (p) 

e'-e.B,+U\' B e'-eiJ;'+Ui 

e.B=[e.'(e.'+2n,V.)]"'. e.'=p'J2m. 
(2) 

Under extremely general assumptions about the inter­
action Vp the spectrum E~ has a nonmonotonic (phonon­
roton) form. With increase of the density n ~ no (or of 
the pressure) at a fixed temperature, the Bogolyubov 
roton minimum tends to zero: 

( n,B-n )',. 
6 B(n)=e • .' -;JI, (3) 

In the diagrams G supplementing the Bogolyubov ap­
proximation (2) it is natural to use GB (2) as the "un­
perturbed" Green functions. In their analytic expres­
sions all these diagrams contain integrations over inter­
mediate momenta, and each integration introduces the 
smallJfarameter a (1) and a factor that diverges as 
n - nc . In particular the diagrams of lowest order in 
a contain a single integration over the momentum trans­
fer and diverge like ~lnt.B and ~1/t.B' These diagrams 
include the diagrams analogous to the Hartree-Fock dia­
grams for a Fermi system (~lnt.B) and also those which 
describe the decay (virtual or real) of the initial excita­
tion into two others (~I/t.B)' 

Inasmuch as the reason for the divergence of the dia­
grams lies in the unrestricted decrease of t.B, in the 
case when the exact roton minimum t. does not tend to 
zero the divergence should disappear when the Bogolyu­
bov Green functions are simply replaced by the exact 
Green functions (i.e., when we go over to "skeleton" di­
agrams of a certain kind). The opposite possibility 
(t. _ 0) would imply the necessity of seeking other ways 
of effectively summing the diagrams to remove their 
divergence. We shall show that for our problem the first 
possibility is realized, it being sufficient, in the entire 
region of stability of the homogeneous phase, to take into 
account the simplest skeleton diagrams t.~(1) withasingle 
integration; the self-consistent equation for the Green 
function with &;(1) (Fig. 4) 

Gil (p) =G .. ° (p) +G'm ° (p) };m. (p) G •• (p). 

(4) 

G _(G'(p) G(P») 
,,(p)- G(p) G'( p) • 

G .. O(p)= (Goo(P) 0) 
G'(-p) 

gives everywhere a value t. 2: ~ > 0 such that all the 
disregarded skeleton diagrams t.~ - t.~(1) are negligibly 
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small. In other words, the perturbation theory series, 
rearranged as a result of going over in the diagrams 
from the Bogolyubov Green functions to the "exact" 
(self-consistent in the sense of Eq. (4» Green functions, 
is characterized by a new small parameter (a* 
= a(Ep)2/t.~) accompanying each integration over the in­
termediate momenta, and, since the new series does 
not have divergences, it is natural that an adequate ap­
proximation is given by taking into account the contribu­
tion of lowest order in a* to t.~. 

The skeleton diagrams with a single integration ef­
fectively sum an innumerable set of diagrams of the 
old perturbation-theory series with "insertions" in 
the intermediate particle lines (such diagrams arise 
in iterations of the right-hand side of Eq. (4); see 
Fig. 5). Diagrams with insertions are, naturally, omit­
ted when we go over to skeleton diagrams. It is pos­
sible to retain them, however, if we agree to associate 
the intermediate Green functions with the pole contribu­
tion only (G - 6, Fig. 6; Ecn is the threshold for decay 
into (n + 1) stable particles). The diagrams of Fig. 6 
give a clear picture of the characteristics of all the non­
pole singularities of the Green functions and give an ex­
pression for their contribution in terms of the exact val­
ues of the real pole frequencies. This approach corres­
ponds to representing 1m t.~ in the form of the sum of 
the probabilities of all real decays (a well-known conse­
quence of the unitarity of the S-matrix). 

We note that diagrams with insertions are distin­
guished from all other diagrams with multiple integra­
tion by the fact that their order in a * is not less than 
that of diagrams with a single integration, but the same 
(this is why they are taken into account in (4»; thus, in 
integrating the product of two Green functions in t.~(1) 
(4), besides the pole contribution it is also necessary to 
take into account the integral along the cut; for more de­
tail about this, see below. 

The essential point is that the corrections to ~Bm 
despite their fundamental role in the region n ~ nc , 
remain small everywhere (~~n ~ Ep » t.~(1) ~ a*~~n; 
see below). Therefore, in the exact equation for the spec­
tral curve[6, 7] 
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[e-A (p) ]'-[epo+S(p) -!l+~02(P)] [e,'+S(p)-!l-~02(P) ]=0 

they must be taken into account only in the expression 
[Ep + S(P) - J.1. - 1:02 (P)], where they appear in a sum with 
the smallest of the quantities used (Ep' + 2noV Il ~ A~ Ep) 
(which determines the order of magnItude of the correc­
tions); in the term with E ~ A the correction A(P) 
~ A~Ep must also be neglected. 

Corrections to the Bogolyubov spectrum are impor­
tant only in the region p "" Po, where 

epB'",!l.B'+lhcB(p-po)', 10;""/),.'+ 1/2C{P-po) '; 

inasmuch as ICB - cl « cB, we can neglect the correc­
tion in the coefficient c. Thus, 

In the calculation of A~~~, AJ.1. = t.l::f) (0)- AEM) (0), as 
the integrable Green functions in the diagrams we must 
take functions in which the numerator coincides with the 
Bogolyubov expression (2) while the corrections are 
taken into account in the denominator: 

G'( ,8)= e+e:+/loV. 
P e'-e /-i 1m £.'6~' I) (p, e) , 

G( ) -noV, 
p, e = 8'-e,,'-i Jill ep"Il:l:,I)(p, e) , 

(6) 

f,,= {p:[e/+2n"V,,+Rc 6r(p, e p ) D'''' 
6~,I)(p, r) ='/,[L'.r,;') (p,~l+!l.~::) (p, -e)j-!l.!l(l)+ !l.~:~) (p, e). 

Substituting (6) into the diagrams t.l:~ri gives a 
closed equation for the function In; (1I(p, d; the solution 
of this equation is substantially simplified if we take 
into account that, in the integration of G' and 6, inclu­
sion of oE(I)(p,E) is, in fact, important only in the region 
p O;:j Po, E ~ A, so that the matter reduces to the self­
consistent calculation of the constants 2 ) A (or 1)1: (l)(Po,A)) 
and 1m li1: (l) (Po,2 A) only. If we use the representation of 
Fig. 6, only A, as the sole constant requiring self-con­
sistent calculation, will appear illthe right-hand side of 
Eqs. (4). 

3. ESTIMATE OF THE INCLUDED AND DISCARDED 
DIAGRAMS. BEHAVIOR OF THE ROTON MINIMUM 

The principal contribution fo 01: (1) (6) is made by the 
diagrams t.Z;~ri with two intermediate Green functions 
(Le., by those which, in the old perturbation theory, di­
verge fastest: ~l/AB' AB _ 0). The correction AJ.1. (11 

also contains the diagrams with two Green functions, 
their divergence as AB - 0 being higher than in AE~h (P 
fa, E f 0) (~l/AB); however, when these diagrams are 
summed there appears in the numerator of the integrand 
an extra small factor ~ A2 , which lowers the divergence 
to a logarithmic one: the numerator 

(G(q) [G' (q) -C(q) 1+g(q) [g(-q) -g(q)]} 
=2[Ul'-8,'(e:+2noV,)], q=(q, Ul). 

Here we have used the notation: 

g(p)=G'(p)+G(p) (or G'(p)+G(p)), 

G(p)=G'(p)+G'(-p)+G(p)+G(p). 

In the integration over the 3-momenta in the diagrams 
A1:iA~ with two Green functions the divergent contribution 
is made by the region in which both intermediate 3-mo­
menta are close to po. ThUS, oE(l) includes a sum of 
terms of the form 
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J aID 
noVp.'i G,(±p+q)G,(q)Z; (p-Po), (7) 

integrated over d3q in the region 1 ± p + q] ~ Po, q ~~Po 
(here G1 and G2 are any functions from the set G', G, 
G, g). The Green functions Gi (6) can be represented in 
the form of a pole term (differing from the Bogolyubov 
function only by a shift in the pole frequency Ep -'Ep) 
and an integral along the cut: 

(we assume that decay into rotons appears before other 
decays, i.e., 1m Ii 1: (1) =lmo1:(1)e(E -2A)). 

The positivity of the coefficients A,B has been proved 
for the function G' in its general form (cf., e.g.,[eT); in 
the present case the same property is possessed by G 
and, consequently, by G and g. In fact, in our approxi­
mation (6), 

A.=B.=-n,V./Zeq>O (Vq~P'<O), 

A(q, E)=B(q, E)=-,c' ImG(q, ±E) 
n V 8 'Im 1l~(1) (9) , q, >0 

n[E'-e.' (e:+Zn,Vq+Re Il~'() 1'+(e,' Im Il!('», 

(Imll~'I)<O). 

Taking into account what has been said, it is not dif­
ficult to determine the sign and order of magnitude of 
/11:(1) (both characteristics are the same for all terms 
of oE(l) (8)). Substituting (8) into (7), we find 

V "SG (± -+- )G ( ) dID __ V ,{ AI(±PH)B" + BI(±.+q)A •• 
n{l /'.) liP q 1 q 23t - no Po £:=P+Q+£q+8-i6 e=p+Q+eq±e-i6 

_c S(~S)[ A,(±p+q,E)B,(q,E') + B.(±p+q,E)A,(q,E') ] dE dE'}. 
E+E'+e-ib E+E'±e-ill 

(::.~ ) 

(10) 

Near the roton minimum (P '" Po, E O;:j A) there are no 
real decays, so that the sign of the denominators of all 
the fractions in (10) is positive. Hence we find that 
00(1)(Po,A) <: O. 

The relations (9) give the following estimate for the 
coefficients near the minima of the denominators of the 
fractions in (10): 

A( E) B( E)- n,lVpol . q, ,q, tl' (11) 

Here it has been taken into account that 

It can be seen that both terms in the curly brackets in 
(10)-the pole contribution and the integral along the 
cut-are of the same order; qualitatively, this is ex­
plained by the fact that for small A the branch point 
(2A) turns out to be close to the pole. 

The main contribution to 00(1) when (10) is integrated 
over d3q is made by the region near the minima of the 
denominators, where Eq, E±p-+q ~ A: 

~ p' 
cB=-[epO(e,'+2n,V.) 1.-., -~. 

dp' m' 
(12) 

Using (10), (11) and (12), we find 

(13) 

Taking (5), (6) and (13) into account, we obtain an equa-
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tor n~/2IVpol, we find the following estimate for the con-
I. _ z.--~ ,...:..-__ tribution of the most divergent skeleton diagram with 2m 

vertices: 

3.---..-- I{.---
b 

FIG. 7 FIG. 8 

tion for the corrected value of the roton minimum A 
as a function of the density: 

,1'+czR(e .. '}'/,1=,1B'(n} , R-1, 

,1B= [e .. o (e .. o+2nV,.) ],"=e,,, ( n.:~n ) 'I. (14) 

(we have neglected terms -aEpo and -aEpoln(A/Epo) in 
02:(1), inasmuch as they are small compared with the 
leading correction -a (Ep/ /A - a 1l3 Epo; correspondingly, 
as before, we need not distinguish n and no in the expres­
sion for AB). 

It can be seen from (14) that the critical denSity value 
nc, above which the real solution of the equation for A 
vanishes, is reduced in comparison with that in the 
Bogolyubov approximation (cf. (3)): 

(15) 

Le., 

n,=n, B[ 1-3 (rzRI2) '1'1, 

and the lowest value of A is found to be nonzero: 

min,1 (n) =,1 (n,) "",1,= (rzR/2) 'I·ep.'. (16) 

Near the critical point, 

(17) 

For n < nc ' Eq. (14) has a further branch of solutions 
(below Ac; see the dashed line in Fig. 7); however, the 
corresponding state of the system cannot be realized, 
since, as will be shown, even the point A = Ac at which 
the short-wavelength instability arises is inaccessible 
because of a long-wavelength instability that arises be­
forehand (following the onset of the long-wavelength in­
stability, our treatment, which does not take into account 
the phonon region of the spectrum, ceases to be valid). 

We shall now prove that the discarded diagrams are 
small. An arbitrary skeleton diagram can be regarded 
as an assembly of 2m three-point vertices (Fig. 8a) 
linked by lines of four types (Fig. 8b); in total there are 
3m-l internal lines; the number of integrations over in­
dependent intermediate 4-momenta is (3m - 1) - (2m -1) 
= m (the 2m vertices introduce 2m - 1 independent 15-
functions). The maximum divergence of a diagram is at­
tained, obviously, in the case when all the internal lines 
contain the Green function for particles above the con­
densate, i.e., when they belong to types 1- 3 in Fig. 8b. 
All the 3m - 1 intermediate 3-momenta q can be made 
close in modulus to the momentum po of the roton mini­
mum (cB (q - PO)2 - A 2), since the m independent 3-mo­
menta contain 3m parameters; thus, the effective region 
of integration spans a volume po(A/C~2)3m-l. After inte­
gration over the m frequencies of m internal lines, a 
factor (noIVpol/A)m enters; the remainin~ (2m - 1) in­
ternallines produce a iactor (noIVpof/A2) m-l. Taking 
into account that, in the absence of lines of type 4 in 
the diagram, each three-point vertex introduces a fac-
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61:(") (,1 )'''-' ( nolV .. 1 ),. , -po CSI, --,1- X 

( n'~ .. 1 r"-' (no'hl V .. I} '''-,1 (an,'1 V ... I'/,1'}", 

i.e., taking into account that A - Ac - a 1/3 E Po' 
61:(m) _a.(m+S)llsPo o• 

Thus, the corrections o~(m>l) can be neglected in com­
parison with o~ (1). 

In conclusion, we shall convince ourselves that for 
diagrams with "insertions" (Figs. 5,6) the additional 
integrations do not introduce a small factor: the contri­
bution of two Green functions with an insertion 
(noIVpol/A2)205~(l) - (a1/3Ep r1 coincides with that of a 
single Green function (noIVpol/A2) - (a1/3Ep/1. This cir­
cumstance corresponds to the necessity of taking self­
consistent Green functions into account in the decay di­
agram for A~ (which has been done in Eq. (14)). 

4. LONG-WAVELENGTH INSTABILITY 

We shall show that the critical point A = Ac due to 
the "self-consistency of the rotons" (i.e., of the roton 
fluctuations) is, like AB = 0, unattainable in practice. 
To be precise, in the immediate vicinity of the point 
A = Ac the correction (associated with the diagrams for 
virtual decay into two rotons) in the concentration deri­
vative of the chemical potential is negative and diverges, 
leading to instability of the phonon part of the spectrum: 
for a certain A = A~ > Ac the sound velocity 

u=(~~)'I' 
m dr. 

vanishes (the compressibility is infinite)3). An important 
point is that the unattainability of the point A = Ac does 
not remove the necessity of taking into account the 
"self-consistency of the rotons": the phonon instability 
arises Significantly later than the point at which this 
self-conSistency becomes important. We find 

's d'q • w+e.'+2no V. 1'=1:" (0) -~02(0) =n Vo+' --I, .--,.......,.......".-=-'-=-:-
(2n)' w'-e.'-ie," 1m b~'" 

S d'q -2(w'-e S') +i --n V l q 

(2n)" 0 q (w'-eq'-ie: Im6~''')' 

=nvo-S-d'_q V [~(1 __ e~_' ) 
(2n)" '2 c,e,' (18) 

-'A dw - (w, +e °+211 V)e "1m 6~,'" ] d"q [ e B'+e ' + S - q 0 q q - f--n l' Z -' -'-

2n (w'-eo')'+(e,")' 1m 6~{I" .(2n)' 0, 28.' 

-'A dw 4 (W'-8,1),) eo'(w'-8.'} 1m 61:(1) 1 
- S 2n [(w'-e '}'+(8 0)' 1m 6~(')'l' . 

-Xl q q 

Near A = Ac the term (dJ-l./dA)(dA/dn) makes a diver­
gent contribution to dJ-l./dn (in fact, dA/dn 
::>l - EpJ 3(nc - n)ncr1/2 _ - 00; cf. (17)). The prinCipal 
contribution to the coefficient dJ-l./dA is associated with 
the last term of (18); this contribution is certainly posi­
tive (1m 05~(l) < 0), and corresponds to the estimate 

(the principal role in the integral over d3q is played by 
the region q ~ Po, where Eq = [A2 + 1/2cB(q-Po)2]'/2 ~ A). 
Thus, the sound velocity vanishes when n = n', where 
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:"----------------------~~ 

It can be seen that n' actually lies inside the region 
in which the self-consistency of the rotons is important, 
i.e., in which t:. - t:.c '" t:.c , (nc -n)/nc ~ a 2/3 (cf. (16), 
(17)). 

5. CONCLUSION 

We shall compare the exact picture of the behavior 
of the spectral curve near the point of onset of instability 
of the homogeneous phase with the Bogolyubov picture. 
In the Bogolyubov approximation the instability is asso­
ciated with the vanishing of the roton minimum, following 
which the pole of the Green function is found to be imag­
inary and forbidden by the Lehmann relations: 

eB(po, n<n,B)=±~B(n), L\B(n,B) =0, eB(po, n>n,B)=±ileBI. 

In the exact approach the roton minimum satisfies 
the self-consistent equation t:.2 +aR(Ep/lt:. = ~ (n), 
the real positive solutions of which vanish for t:. = t:.c 
1= 0 and n = nc < n~ (n~ - nc/n~ - a2/3, !:.c/Epg '" a I/3 ); 

at the point n = nc the pair of real roots of the equation 
(one of them is physical) merge together and are trans­
formed into the pair of complex roots E (po;n > nc 
= !:.c ± iy corresponding to the instability. By virtue of 
the inequality t:.c 1= 0, the static susceptibility X(Po,O) 
does not diverge at the critical point (unlike in the Bogo­
lyubov approximation). 

A still deeper difference between the exact picture 
of the instability and the Bogolyubov picture lies in the 
fact that the roton instability is preceded by a related 
phonon instability: as n - nc (t:. - 1::.c ) the roton region 
gives a negative divergent contribution to the elastiCity, 
so that at a certain point n = n' < nc (in the immediate 
vicinity of nc , nc - n' Inc ~ ( 4/3 ) the sound velocity van­
ishes. Thus, at the true terminus of the homogeneous 
phase the phonon pole frequencies pass through zero 
and become imaginary: E = up, 

u'=~~1 <0. 
m dn n>n' 

In contrast to the case Vo :0; f d3pVI>i2Ep, the phonon in­
stability here does not lead to the appearance of a new 
stable homogeneous (liquid) phase; the only local stable 
state in the region n> n' for a model with a « 1 is the 
coherent-crystal state[2J, which becomes energetically 
favorable long before the appearance of absolute insta­
bility of the homogeneous phase (at an appreciable dis­
tance from n = nc)' 

The analysis carried out above of the behavior of the 
spectrum near the terminus of the homogeneous phase 
is an exact solution of the problem in the case of a com­
pressed Bose system with the weak interaction (1). How­
ever, the results obtained-the impossibility of vanishing 
of the roton minimum and the connection between the 
roton and phonon instabilities-have a general character 
(they are valid for any Bose system, including super­
fluid He4 ). In fact, these effects are due to processes of 
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virtual decay into two rotons and can be obtained quali­
tatively without model limitations (by analyzing the decay 
self-energy diagrams that diverge as 1::. - 0). The prox­
imity of the short-wavelength instability to the critical 
point makes it possible to postulate that, in the general 
case, the stable phase in the supercritical region of 
densities (pressures) will be the crystalline state; the 
extent to which quantum anharmonicity is manifested 
in such crystals will be determined by the character of 
the interaction between the particles. 

!)In special cases the role of the fluctuations can be suppressed by the 
small size of their phase volume. 

2)We note that formal application of the method described in the region 
p, € .... 0 would lead to difficulties associated with the divergence (inte­
grals containing two phonon Green functions G(p/2 + q)G(p/2 - q) 
and the approximate value of the three-point vertex 'Y(p .... 0, q -+ 0) 
diverge). These difficulties arise in any model of a Bose system with a 
condensate: the divergences in the long-wavelength region neutralize 
the small parameter. Concerning the surmounting of these difficulties, 
see (8); the treatment carried out there justifies the use of convergent 
diagrams with the lowest power of the small parameter, so that, in 
lowest order in the small parameter, the Bogolyubov approximation is 
valid for the Green functions and spectrum in our problem for p, 
€ .... O. 

3)Unlike the case of the roton minimum, the vanishing of the sound 
velocity does not lead to the appearance of a new divergence (this is 
obvious from the form of the Green functions in the long-wavelength 
limit [6,8): G' = -6 = noffiu2/n(w2 - u2q2 + iii». Thus, the point at 
which the sound velocity goes to zero is attainable in practice. 
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