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Starting from the Fokker-Planck equation we obtain in the self-consistent field approximation the 
distribution function of the complex magnon amplitude for the stationary state of a system of 
parametrically excited magnons when ferromagnets are subject to parallel pumping. Knowledge of the 
distribution function enables us to study the fluctuations in the stationary state. It turned out to be 
convenient to change to the amplitudes and phases of standing spin waves as variables for a discussion of 
the physical meaning of the state obtained. 
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When an external uniform variable magnetic field, 
parallel to the static magnetization of the ferromagnetic, 
is applied to a ferrodielectric there arises the possi­
bility of parametric resonance, caused by the decay of a 
photon of the pumping field into two magnonsy,2) Non­
linear effects arising when spin waves (SW) are excited 
in this way in a ferromagnetic (it is called the parallel 
pumping method) has turned out to be the subject of a 
thorough theoretical analysis. Apart from the possibility 
to establish a self-oscillating regime in a system of 
parametrically excited magnons[3), the possibility was 
noted of the existence of a stationary regime, i.e., a 
regime in which the power absorbed by the system does 
not change with time. Gottlieb and Suhl[4) connected the 
realization of this possibility with the non-linear de­
pendence of the magnon damping on the total number of 
parametrically excited magnons (PEM).l) Zakharov, 
L'vov, and Starobinets[6] indicated the existence of 
another mechanism which also can lead to the establish­
ment of a stationary regime in a PEM system. This 
mechanism is connected with the non-linear renormali­
zation of the magnon frequency and of the pumping due to 
four-magnon interaction processes. A further discus­
sion of the different properties of such a stationary 
state of a PEM system was given in a large number of 
papers by the same authors (see the review[7)). The 
studies in· those papers made it possible to determine 
the range of parameters in which the stationary state 
is stable and outside which the PEM system is in a 
self-OSCillating regime; moreover, both the non-linear 
damping and the renormalization of the frequency and of 
the pumping were taken into account. 

Stationary states arising for parallel pumping and 
described in a number of papers[4-7) refer to the class 
of so-called "flux equilibrium states"[S) for which the 
energy flux "through" the system is characteristic: 
the energy entering the system from some external 
source later diSSipates into a thermal bath connected 
with the system. It is well known that the "dissipative 
structures" which appear can be of high order. 

A non-trivial example, which has been extensively 
studied recently, of a system in a "flux equilibrium 
state" is a continuously working laser. It has turned 
out to be most convenient for the analysis of the pro­
cesses which take place in a laser to use the Fokker­
Planck equation formalism which enables us to find the 
photon denSity matrix and to study the fluctuations in the 
laser emission (see [9,10)). The possibility of realizing a 
flux-less thermodynamic equilibrium state of a PEM 
system-a state in which the PEM system does not "re­
move" energy from the external pumping and hence does 
not dissipate energy-was studied in ell). 
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In the present paper we do not touch upon the prob­
lems connected with the existence and stability of the 
state proposed in lll) and we restrict ourselves to a 
study of the stationary flux state of a PEM system which 
is described in [6,7,12]. We use in what follows the 
Fokker-Planck equation to evaluate the distribution 
function and the fluctuations. 

1. HAMILTONIAN OF A PEM SYSTEM AND 
EQUATIONS OF MOTION· 

When there is no pumping the spin system is charac­
terized by the Hamiltonian 

7{(,<)= L Ii-(Jlkak +Uk+d'l'i,,/' 

• 
(1) 

where JI" int describes the magnon-magnon interaction. 
We shall only conSider the classical limit in which the 
average occupation number nk ~ (aftak> is large (nk » 
1).2) This enables us to neglect the fact that the magnon 
creation and annihilation operators (ait and ak) do not 
commute and to consider them to be c-numbers. 

If the magnetic pumping field varies as h(t) = 
h exp (- iWpt) the Hamiltonian of the interaction between 
the (parallel) pumping and the SW system in the ferro­
magnetic can be written in the form 

)'6'" ~ '\1 ~{2Ak exp( -i(Upt)ak +({k + ~B" exp( -i"'pt) .aka_k+c.c.}. 
~ h"'k 2 • 

where J.Lo is the Bohr magneton, Ak and Bk are the 
coefficients in the not-diagonalized spin Hamiltonian 
(see (13), p. 179). We emphasize that the Bk appear when 
the dipole-dipole interaction is taken into account. 

The first term in jf'(v), proportional to aiak' con­
serves the magnon number. We shall take into account 
in what follows only the second term 

J't§"'= : L (V"exp(-i"'pt)aka-k+C.c.), (2) 
k 

where tiVk = hJ.LoBWnwk' One can show that if the terms 
dropped are taken into account they lead to a correction 
(see [5]) of order h/Mo « 1 (Mo is the static magnetic 
moment of the ferromagnetic). 

The Hamiltonian (1), (2) corresponds to the following 
equations of motion for the c-numbers ak: 

. . "V. + (. ) i 6J't§'n' 
ak= - HUkak-t ka-k exp U.Jlpt - h 6a.k + • 

We shall assume that the magnon system is "immersed" 
in a thermostat. We do not really consider in the present 
paper those systems which may serve as a thermostat for 
PEM. We merely note two possibilities. Firstly, by 
virtue of the fact that, as we shall show below, the SW 
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excitation in parallel pumping proceeds in a narrow re­
gion of the wavevector space (wk ~ wP/2) one could re­
strict the !?ummation in the expression for the Hamil­
tonian Jf'(S} to solely that region of k- space in which 
certainly all PEM are concentrated while one considers 
the set of SW with wavevectors outside that region as 
the thermostat. Secondly, one can consider the system of 
non-magnon excitations of the ferromagnetic (i.e., the 
phonon system, and so on) as thermostat. Both in the 
first and in the second case one assumes, of course, 
that the absorbed power is not so large that the parame­
ters of the "thermostat" are changed. 

Following Zakharov and L'VOV{12] we shall take the 
thermostat into account purely phenomenologically by 
including additional "thermostat" terms in the equa­
tions of motion: 

, ( i 6dtf'nl· 
a.=- iCtl.+"(t) at-iV ta-t + exp (iCtl.t) - ---+ ft, 

Ii 6a.+ (3) 

We have introduced in this equation a term (-">1cak) de­
scribing the damping of the PEM due to the coupling with 
the thermostat, and a random Gaussian force fk(t) with 
correlators 

(f. (t) f.,· (t') )=at6t.,6 (t-t') , (/.(t) tt. (t'»=O, 

which enables us to take into account the "noise" action 
of the thermostat on the PEM system (see [14). The co­
efficients O!k and I'k are related (see below). 

It is necessary for us for what follows to give a 
definite form of Jf'int which enters in the equations 
of motion. A study of Eqs. (3) with the exact form of 
the Hamiltonian Jt"int is an extraordinarily complex 
problem. An approximate "S-theory" was constructed 
in [6,7] with a model Hamiltonian Jf'int: 

dtf,n,=.E 1i (T ... at+atat.+at' + TSt.,at+a_.+a •. a_ t ') . (4) ... 
The "S-theory" is a self-consistent field theory in 
which one assumes that the following equations hold: 

where nk = (aiCak> and Ok = (aka... k>. 
It is thus assumed that the relative fluctuations of 

the integral quantities 

are small and (neglecting in the estimates the wavevec­
tor dependence of T and S) that the inequalities 

< [.E (at +a.-nt) r> < O:>t)' , 
t • . 

I < [.E (ata_t-Ot) ]' > I < I.E 0·1' , 
k k 

(5) 

hold, or rewriting them in a more convenient form, 

(6) 

We emphasize that we do not require that fluctuations in 
quantities referring to k are small: such fluctuations can, 
in principle, be large. As will be seen below, it is im­
portant that fluctuations referring to different k are un-
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correlated: they have "random phases." This leads to 
the fact that after summation over all k we may get small 
corrections to the average values of the integral quan­
tities even when the fluctuations in the "individual" 
quantities are large. 

It is convenient to change in Eqs. (3) to a "rotating" 
system of coordinates through the transformation ak -
ak exp (-iwpt/2) after which the explicit time depend­
ence disappears in them. Finally we get in the "S­
theory" approximation the following equations of motion: 

(7) 

where 

iilt=Ctlt-'/,Ctlp+2.ETtt.n •. , 
.' 

(8) 

Pt=V.+.E S •• ·O". .' 
2. PEM DISTRIBUTION FUNCTION 

Any differential equation in variables Xi in which 
there occurs linearly a Gaussian random force fi(t), 

x,=Q,(x) +/.(t), 

corresponds to a Fokker-Planck equation for the dis­
tribution function of the quantities xi: 

aeD a a'eD 
-=--[Q,(x)eDJ+D"-a a ' 
at ax, x, Xi 

in which Dij can be found from the condition 

<f,(t) !;(t') =2Dji (t-t'). 

The distribution function q,(x) has the meaning of a 
probability density for finding the random quantities Xi 
in the range (Xi, Xi + dxi) such that 

JeD II dx,=1. 

The scheme for obtaining the Fokker-Planck equation is 
well known (see, e.g., [9]). This scheme can without 
changes be applied to the equation of motion (7) with a 
Gaussian force. As a result we can obtain for the dis­
tribution function q,k the following Fokker-Planck equa­
tion 

(9) 

in which the symmetry of the coefficients of the coeffi­
cients of wk, at, O!k, Vk, Skk', and Tkk' under inver­
sion, k - -k, is taken into account. 

The distribution function q,k(aiC, ak, a':'k, 3.-k) is a 
"pair" distribution function. Its normalization condi­
tion is: 

J eD.da. + da. da_. + da_. = 1. 

By the integral J ( ... )daiCdak we mean the integral . ,. 
J J ( .. . )dp.d¢k, a.=p~f' exp(i¢.). 

As the equations for the distribution functions q,k 
corresponding to different values of k do not intercon­
nect with one another, the complete distribution func­
tion q, decomposes into a product of "pair" functions3 ) 

A. S. Mikhallov 268 



. !Il({ak+,a.})= (IT !Il.) "'. 
k 

The square root is necessary as each "pair" distribu­
tion function 4>k is twice taken into account in the pro­
duct. 

We restrict ourselves to finding a stationary solution 
of the equation for 4>k a4>Wat = O. We shall look for its 
solution in the form 

_ ~. In !Il.=,x.(a.+a.+a_.+a_,,) +2 Re(y'a.a_k) , (10) 

where Xk and Yk are coefficients to be determined. 

Substituting expression (10) into Eq. (9) in the sta­
tionary case we find the values of the coefficients Xk and 
Yk and find the stationary distribution function: 

Zk is here a normalization constant, to be found below. 

When there is no pumping (when Vk = 0, and there­
fore Pk = 0) the distribution function 4>k must go over into 
the equilibrium Gibbs function: 

where a is the thermostat temperature. When there is 
no pumping the relation O!k = 2anJtlwk must thus be 
satisfied. We shall assume that this relation remains 
valid for all levels of pumping. We neglect thus in the 
given model the non-linear damping effects and the ef­
fects of the "natural" noise of the PEM system, a con­
sistent taking into account of which would require the 
application of a diagram technique (see the review (7 1). 

In many cases for not too strong pumping such effects 
are weak; the appropriate estimates are given in [121. 

We can write the distribution function 4>k in the form 

((',=Z,-','xp (-E./Id), 

E.=liw.[ (a.+a.+a_k+a_.) +2 1m (~aka._k)]. (11) 
-lh)k+lk. 

Notwithstanding the external similarity of distribution 
(11) and the Gibbs one, they are in an essential way dif­
ferent. The "energy" Ek in Eq. (11) is not a true energy 
of the magnon excitations (cf. the Hamiltonian (1), (2), 
(4»; the parameters of the integral of the collisions of 
the PEM and the particles of the thermostat- the relaxa­
tion frequencies }k-occur in Ek. The distribution (11) 
describes a system in a "flux equilibrium" state; this 
manifests itself in the fact that one can show that a PEM 
system in the state with the distribution function (11) 
absorbs the pumping power and dissipates it into the 
thermostat. 

The quantities Pk and wk in expression (11) must be 
determined from the self-consistency conditions (8). 

U Sing the normalization of the function 4>k we find 

1 ( 2nEJ )' IP.I' z.=- -- 1]k=1----. 
1]. liwk' Gi.'+"(.' 

It is convenient to find also the "single-particle" dis­
tribution function defined by the equation 

!Ilr' = S !Il.da-k + da_ •. 

We get the following expression for 4>r): 

II) IiOOk {IiOOk1]k } !Ilk =1]k 2nEJ exp --EJ-ak+ak . 

269 SOy. Phys.-JETP, Vol. 42, No.2 

We shall show below that in the region of k-space, in 
which PEM are excited, the relation 1 » 11k > 0 is satis­
fied when IVk l »'Yk' 

3. AVERAGE CHARACTERISTICS OF A 
PEM SYSTEM 

U Sing the fact that 
'I) • (t)" a «I) 11») a.+ak!ll. =-(lioo.1j.)- z. a(i/8) ZJi!ll. , 

where zft1) = 2ne/tlwk1Jk is the normalizatiOJp,onstant of 
the "Single-particle" distribution function 4>f}, we get 

(12) 

Similar ly, using 

aka-k!llk=-i~ (-iGi.+'(k)Zk- 1 ~pa . (Z.!Ilk), 
liwk U • 

we get 
iP. 

Ok=----nk. 
iw.+"(. (13) 

As the coefficients Pk and Wk depend on nk and Ok (see 
the definition (8) of these quantities) Eqs. (12) and (13) 
together with (8) are a set of.integral equations to find 
Pk, wk, nk, and Ok' This set was obtained (and solved) 
before by Zakharov and L'vov in (121 where they started 
directly from the equations for the correlators Uk and 
Ok (i.e., from the moment equations). They gave in the 
same paper an analysis of the solutions obtained. They 
showed, in particular, that the symmetry properties and 
the actual form of the coefficients Skk', Tkk', and Vk pri­
marily determine the geometriC character of the PEM 
distribution in k-space.4 ) 

We give the scheme of the solution and the results of 
the calculations for a simple model with constant coeffi­
cients: 

V.=V, S.k·=S, T ... =T, oo.=oo(lkll, ,,(.=,,(, 

where S and T are real. In this model Pk ,: P = V + SO', 
wk = wk - 1/2 wp + 2TN and 

(j = L, 0., N = L, nk, 

• • 
so that if follows from Eq. (13) that 

- 4niQpS-iW.+"( 'k'dk 
0--(2n)' Gi.'+v' n., (14) 

where v2 = y - I P 12 , nk = a/tlwk, n is the volume of the 
ferromagnetic, n - "", v2 > 0.5 ) Below we shall show that 
there exists a value k = ko ,; 0 such that wko = O. Bearing 
in mind that the main contribution to the integral (14) 
comes from a narrow region I wk I ~ v, v:S y, we find 
then that 

o=-iP(,,(/v)S., (15) 

where 

Using Eq. (15) and the definition of P (P = V + Sa) we get 
the following equation for v2 : 

"'+v'[ I VI '+"('(~"S) '-"('l-"('(~oS)2=o. (16) 

According to the estimates in [121 ~oS ~ a(ako)3/nwp « 1, 
where a is the lattice constant.6 ) 

As a result of solving Eq. (16) we find the amplitude 
I P I of the renormalized pumping as function of the am­
plitude of the external pumping IV I (I PI 2 = Y - v2 ) as 
shown in Fig. 1. In the limiting cases the following rela­
tions are valid: 
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a) v''''y'-IVI', p",v when IVI<y, 

b) (V/Y)"'(s,S) (y/IVIl, P"'-iy(VIIVI), when IVJ~l. 

The total number of PEM turns out to equal (see 
Fig. 2) 

N-N,='6,(y'-v') lv, N, = 1: no', 
o 

where No is the total number of thermal magnons. In 
the limiting cases we get: 

a) N-N."'(ys,){JVl/y)' when 1 vl<y, 
b) N-N.""IV/SI., when IVI>y; 

ko is determined from the equation (;;ko = 1/2 "'p - 2TN. 
It is necessary to note that this equation has a solution, 
when T > 0, only provided the inequality 1/2",p - "'0 > 
2T lVI/I S I ("'0 = ",(k=O» is satisfied, i.e., when half the 
pumping frequency does not lie too close to the "bottom" 
of the magnon spectrum. If the above-mentioned in­
equality is violated, the existence of a stationary regime 
will nevertheless be possible, but the PEM distribution 
in k-space is then concentrated near k = 0 and we must 
take into account the discreteness of the k-values (Wal­
ker modes). We do not study this case in the present 
paper. 

When I V I < y the SW distribution will thus differ 
little from thermal equilibrium: 

We note that also when I V I < y there is a non-vanishing 
anomalous correlator: 

After passing through the threshold I V I = y the number 
of SW increases steeply in a narrow region of width II 

« y in the viCinity of the sphere of radius ko in k-space 

where 112 = I - I P 12 and I PI - y as I v I - 00. 

These results remain qualitatively valid also in the 
general case for any wavevector dependence of the co­
efficients Vk, Skk', and Tkk' and of the quantities "'k 
and Yk' In particular, for those k where the PEM distri­
bution is concentrated, I Pk I - Yk as h - 00, where h 
is the amplitude of the variable external pumping mag­
netic field. 

IPI 

IVI 

FIG. I 

II 
FIG,2 
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4. FLUCTUATIONS IN THE PEM SYSTEM 

We determine the quaternary correlators «aitak)2), 
(laka_kI2), and «ak~k)2) in the stationary state with 
the distribution function (11). To do this we use the 
identities 

,il). • i')-' f)' ii' ~I') 
(a.+a.)~. =(116)'1]')- z. m/S)' (Z.~. , 

e ' fJ' la.a_.I'~. = (ti6),) (iii.'+y.')Z.-' f)P.f)P' (Z.~.), 

(a.a_.)·~.=-( 11:. )' (iiii.-y.)'Z.-' (f)~')' (z.~.). 
After some simple calculations we get the following 
exact expreSSions for the relative fluctuations: 

[«a. +a.)')-n.'l"'n. -1=1, [«a.a_.) ')-0.')"'0. -1=1, 
[< 1 a.a_.1 ')-1 0.1 'J"'n. -1=1. 

The relative fluctuations in the quantities aka-k and atclL- k 
are thus large in the "S-theory." 

We now determine the fluctuations in the integral 
quantities (5): 

1: «a.+a.a,·+a,·)-ntn.·) = 1: (n.'+lo.I'), 
kk' k 

1: «a.a_.a,·a_t')-OtO.') = 1: Ot'. 

kk' k 

(We used the fact that fluctuations with different k and 
k' (k J -k') are uncorrelated.) 

In order that the condition for the applicability of 
the "S-theory" is fulfilled it is thus necessary that 

where nk and Ok are given by Eqs. Q2), (13) and the 
self-consistency condition (11). As 6nk is proportional 
to the volume 51, and (6nk)2 a: 51 2 , we have 

and it tends to zero as 51 - 00. The same considerations 
are valid for (60"k)1/2!6Ok' We give the exact expression 
for the model with constant coefficients considered in 
Sec. 3 (the notation is explained there also): 

12m'" 

Q "k,' 

The relative fluctuations of the integral quantities de­
creases with increasing volume of the ferromagnetic as 
51-1/2 and, hence, the assumption (5) that these quantities 
are small, which is the baSis of the "S-theory," is valid 
in the case of an infinite ferromagnet (51 - 00) considered 
by us. 

5. DISTRIBUTION FUNCTION IN TERMS OF 
AMPLITUDE AND PHASE VARIABLES 

We change to new variables Ji'k' Ilk, >Irk, and ott: 
9".=I/2 (p.+p_t), Pt=pt-P-t, 
'l't=9I.+9I_., 6t =¢.-9I_., 

where Pk and <Pk are determined by the relations 

a.=p."· exp (i<P.), a_.=p~'. exp U<P- k ), 

We elucidate the physical meaning of the variables in­
troduced here. 
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Let a pair of SW with wavevectors k and - k be ex­
cited. In that case we have for the component of the 
magnetization vector which is perpendicular to the 
static magnetization vector of the ferromagnetic (see 
[12], p. 185) 

m.(r, t) = (2J.l,M,),/ Re [a. exp (-i( ffi.t-kr» 
+a_. + exp (i( ffiot+kr» j. 

After some transformations we get in terms of the 
variables P and cf> 

m.(r, t) = (2J.l,M,) '''(p:'' +p':~) cos[kr+'/2 (4)'-'7>-.) ] 

x cos! cu.t-'/,( 4>0+4>_.) ] + (21',M.) '1. (p;' -P~') 
Xsin[kr+'/,(¢o-4>_o) ]sin{cukt-'/,(<p.+<p_.)]. 

Thus, lItk = cf>k + cf>-k is the temporal phase of the mag­
netic moment oscillations while Ok = cf>k - cf>-k is the 
spatial phase of the standing spin wave. 

In the new variables one can write the distribution 
function in the form 

fll.=Z.-t exp (-Eo/e) , 
E.=2ncu.9". {1- (1-p. 'I 49".') 'I,X. cos ('1'.- 'If .')}. (17) 

where 

The normalization constant Zk stays as before as the 
Jacobian for the transformation from ai, ~, a~k, a-k 
to .i'k' Pk' lItk' Ok equals unity. It is clear from Eqs. (17) 
that the distribution function is independent of the mag­
nitude of the spatial phase Ok so that all its values have 
the same probability. 

We consider now the way the "energy" Ek depends 
on the variables 9', p, and lit. First of all, it follows 
from the consideration in Sec. 3 that 0 :S Kk < 1. More­
over, as Y'k = 1/2(Pk + P-k), Pk = Pk - P-k' Pk' P-k ~ 0, 
we have I Pkl :S 29'k' Therefore Ek ~ 0 for any values 
of the variables 9'k, Pk' and lItk' For fixed 9'k and Pk 
the minimum of the function Ek is reached for the values 
>Irk = >Irk' 

When there is no pumping all values of the phase >Irk 
are equally probable and the "energy" Ek is independent 
of >Irk so that Ek as function Yk and lItk describes the 
surface of a circular cone. When the amplitude IVklof 
the pumping increases the surface Ek(..~k, lItk) loses its 
symmetry: there appears a "dip" (or a "beak") in the 
direction lItk = lItk . If we would neglect non-linear ef­
fects, when we go through threshold the depth of the 
"dip" would become such that in it we would have Ek 
< 0 and Ek - -00 as 9'k - 00. This would mean that 
there would not be a stationary distribution as the cor­
responding distribution function would be unnormaliza­
ble. Taking non-linear effects into account leads to a 
limitation of the depth of the "dip" such that for all 9' 
and lit, Ek ~ 0 (see Fig. 3). 

b 

FIG. 3. The surface Ek = Ek (Y\. '11k). Pk = 0 drawn in cylindrical 
coordinates p =g'k. <P = '11k; a) pumping amplitude well below threshold, 
b) pumping amplitude above the threshold. 
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Integrating the "pair" distribution function cPk over 
the variables Ok, Pk' and 9I'k we get the distribution 
function cPk(lItk) 

fl. [ ( n ) (' 1-''1' ) 'I, ] [ + (1.' )'" ]-' fll.('¥.)=- 1+ -+~. '10 . -flo sin uo , 
2n 2 '1' + tg'6.. 

where 

i3.=arc sin (Vi-fl' cos 6..), 6..='¥.- '¥ .'. 

As 1Vk I - 0, '11k - 1, and therefore cPk(lItk) - 1/21T, Le., 
all values of the phase lItk are equally probable. Above 
threshold the function cPk(lItk) has a sharp maximum when 
lItk = >Irk: 

(fl. ('¥.) "" ('1,/2) (flk+6.,')-'''. (18) 

We bear in mind that for PEM 11k - 0 as I Vkl - "". 

Using Eq. (18) we determine the fluctuations in the 
phase lItk above threshold: 

< I '¥.-'l' .'1 )""Y'1'. 

U sing the expressions for the quaternary correlators 
which we obtained earlier we easily determine also the 
fluctuations in the quantities 9'k and Pk: 

«9", ')_(9".)') 'h=(9"k? «P. '» '1'= (2'1') '''<9''.>. 
<9".)=n.=8Incu.'1', <P.>=o. 

Above threshold the fluctuations in the phase lItk are 
thus small, but the fluctuations in the amplitude 9'k are 
large. 

CONCLUSIONS 

In the stationary regime above threshold external 
pumping stabilizes the temporal phase lit of the excited 
pair of magnons. Non-linear effects lead to the appear­
ance of an "additional" pumping which in phase and 
magnitude correlates in such a way with the external 
pumping that it nearly completely compensates it. The 
power entering the PEM system due to the incomplete 
compensation of the external pumping is exactly equal 
to the power which can be dissipated by the PEM sys­
tem due to existing relaxation mechanisms. The tem­
poral phase of the PEM is "coupled" to the pumping 
phase. 

We can represent the PEM distribution as a set of 
standing waves7 ) while the spatial phase 0 determines 
the pOSition of the nodes of these standing waves. If 
(like lit) the phase ° were stabilized the position of the 
standing wave nodes would remain constant with time 
so that the PEM system would be a set of coherent 
standing waves. However, we have shown above that the 
phase 0 remains random (this is physically connected 
with the spatial inhomogeneity of the external pumping) 
for parallel pumping. The position of the nodes of the 
standing waves thus changes randomly in time and in­
dependently for waves with different periods (i.e., with 
different k). This manifests itself in the noise character 
of the PEM distribution (for details see [15]). 

The presence of fluctuations in §"k, lItk' and Pk and 
the randomness of Ok must lead to the appearance of a 
finite spectral width of the steady SW generation process 
for parallel pumping. We note that for a study of the 
spectral characteristics one must evaluate the many­
time correlators. 

In the above we have shown the internal consistency 
of the "S-theory." The large fluctuations in the am­
plitude 9' above threshold must be blamed on the short-
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comings of the "S-theory." This is clearly connected 
with the fact that, as in other self-consistent field 
schemes (see, e.g., the molecular field approximation in 
magnetic phase transitions) the "S-theory" does not 
enable us to take into account the short-range order 
which is established beyond the "exact phase transi­
tion"-above threshold. The PEM distribution obtained 
is a "gas" of standing SW which do not directly interact 
with one another but only through the self-consistent 
field which is determined collectively by all PEM. 
Therefore, however close the wavevectors k and k' are 
to one another, magnons with those wavevectors are not 
correlated with one another, i.e., there is no short-range 
order. At the same time the temporal phase 'IT of all PEM 
pairs follows the phase of the external pumping. This 
leads to the appearance of ~he anomalous correlators 
<>}C. 

It is a pleasure to me to thank M. I. Kaganov and 
I. M. Lifshitz for their interest in this paper, many dis­
CUSSions, and useful advice. 

1) A detailed survey of studies in that direction was given in [51. 
2)Here and henceforth <. .. ) denotes averaging over the PEM ensemble. 
3)Yibrations with wavevectors k, k' (k *- -k') are thus uncorrelated. 

Magnon pairs (k, -k) interact with one another only through the self­
consistent field. 

4)PEM may be concentrated near surfaces, lines, or isolated points in 
k-space. 

5)Negative v2 1ead to the occurrence of k-values for which nk < O. 
6)The coefficients Sand T are defined such that S cc lin, T cc lin so 

that ~oS is independent of the volume of the ferromagnetic. 
7)To avoid confusion we emphasize that we considered the limit of an 

infinite ferromagnetic (volume n -? 00) so that the appearance of 
standing waves in the description is connected with the PEM creation 
process and not wi th boundary conditions. 
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