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We consider the Raman scattering in the general case of a medium which is displaced from its equilibrium 
state. We calculate the intensity of the Stokes and the anti-Stokes components of the spectrum for different 
scattering regimes (spontaneous RS, quasistatic and nonstationary SRS regimes). We apply the results to 
evaluate various schemes of active spectroscopy when the scattering of the probing pulse occurs in a 
medium which beforehand (or simultaneously) has been excited by coherent fields. In the second part of 
the paper we show that it is possible that there exists a self-induced transparency effect when short pulses 
undergo Raman interactions in a lossless equilibrium dispersive medium. We show that stationary self
transmission pulses (SRS solitons) have a Lorentzian shape. We establish that nonstationary incoming 
pulses of a well-defined form must break up into solitons as they propagate through the medium. We 
obtain similar results for the case of two-photon resonance absorption of pulses with unequal frequencies. 

P ACS numbers: 42.65.D 

Recently methods for studying the optical character
istics of substances (determination of radiative transi
tion constants, of transverse and longitudinal relaxation 
times, identification of transitions) by means of a coher
ent pulse action have been developed intensively. Apart 
from methods using absorption and emission processes 
(photon echo, self-induced transparency. nutation effect) 
the method of active Raman scattering spectroscopy 
has been developed in refs. 1 to 3 and other papers. Its 
idea is to scatter the probing pulse by the molecular or 
quasi-particle vibrations of the medium which are active 
in RS and which are amplified by exciting pulses. In this 
connection it is of interest to study various cases of the 
scattering of a laser pulse in a medium excited by co
herent fields. We give in the present paper:a calculation 
of the intensity of the scattered light in the general case 
of a medium displaced from its equilibrium state (Sec" 
2). The role of the excitation of the medium consists not 
only in a deviation of the level occupation from the 
equilibrium values. In those cases where this excitation 
leads to a non-vanishing spatial distribution of an off
diagonal element of the density matrix of the medium an 
additional coherent scattering appears with an intensity 
which exceeds the level of the usual scattering. both in 
the spontaneous and also in the amplified regimes. We 
find below formulae which are suitable for an analysis 
of the scattering when the medium is excited by various 
methods. In particular. they are applicable for evaluat
ing various schemes of active spectroscopy which use 
(for the excitation) resonance and scattered pulses 
(Sec. 3). 

We consider in Sec. 4 the excitation of a medium, 
which is initially in equilibrium, which is directly con
nected with an appreciable change in the populations 
when strong short scattering pulses propagate, We show 
the possibility of the existence of stationary pulses of 
stimulating and Stokes radiation (SRS solitons) which 
propagate through the medium without distortion of its 
shape. The presence of an effect similar to the self
induced transparency effect [4J is important both for de
termining the optical properties of a substance from the 
changes of self-transmission pulses (cf. [5J ) and also 
from the point of view of obtaining ultra-short pulses 
and of other applications. [6J 

1. BASIC EQUATIONS 

We shall consider the scattering in the case of an 
arbitrary ratio of the length Ti of the pumping pulse and 
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the transverse relaxation time T2. Such a discussion has 
been given in (7,SJ for an equilibrium medium. In that 
case the amplification of the intensity of the Stokes wave 
Is over a length z satisfies in the quasi-static regime 
the relation 

1.=I.(O)exp(r,z), (1) 

where ro is the static amplification coefficient. The 
amplification is appreciably smaller in the non-station
ary regime (Ti « T2): 

1.-exp[2(2r,r,T,-'z) '."]. (2) 

We now assume that initially the medium is displaced 
from its equilibrium state in such a way that its polar
ization is non-vanishing and is a function of z, and that 
there is some initial given distribution of the molecules 
over the levels which is a function of z. This means 
corresponding deviations from the equilibrium values of 
the off-diagonal and diagonal elements of the density 
matrix of the medium. We shall assume that the scat
tering occurs at one pair of levels of the scattering 
molecules. The Hamiltonian of the scattering by a 
separate molecule is of the form (for the sake of sim
plicity we consider a one-dimensional problem and the 
case of parallel polarizations) 

(3) 

where a 3 and a± are Pauli matrices, Wv the frequency of 
the molecular transition, i\ the scattering matrix ele
ment; the quasi-monochromatic fields for the pumping 
and of the Stokes wave are equal to 

E •.• = '/,(E,:+E,~) = '/,;S •.• (z, t)exp[i(ro, .• t-k, .• z-cp, .• (z) ]+c.c., 

6"i s(z, t) are slowly changing real amplitudes. The 
polarizations at the Stokes and the pumping frequencies 
are equal to 

NV is the density of molecules. In the envelope approxi
mation, with phenomenological account taken of the ir
reversible relaxation processes and of the dephasing due 
the inhomogeneous broadening, the Maxwell equations 
and the equations of motion for the mean values of the 
polarization give us an initial system that describes the 
forward scattering: 

du, u, dv v f.. 
-=-vi'1ro-- -=u,i'1ro--+-;S;S W+j(z t) 
dt T, 'dt T, h ,. " 

dW = _."!:...-;S;S ~_ W-W," 
dt h' • T,' 
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where 

u±iv=(a±)exp {=Fi[ (co.-co.) t- (k,-k.) z- (!pl-!P,) ]}, 

W = (a3 ), ~q is the equilibrium value of W(u~q = v~q 
= 0), 

(4) 

Ti the longitudinal relaxation time, 17i and 17 the refrac
tion coefficients, and JJ.o = 41T/C 2. In accorda~e with the 
statement of the problem we shall assume that initially 
the following quantities are given: 

ul,_,=u.(z), vl,_.=v.(z), WI,_.=W.(z). 

In deriving (4) we used the synchronism condition: 
ki,s = Wi,s/Ci,s' In the equations for the polarizations 
we introduced a random Ii-correlated force f(z, t): 

(/(z, t)/(z', t'»=g.N,(z)6(t-t')6(z-z'), 

where Nl(Z) is the density of molecules in the lower 
level. The source f(z, t) takes into account the priming 
spontaneous emission in those cases where the natural 
fluctuations of the medium (when there is no preliminary 
excitation of the medium and no external Stokes emis
sion) playa decisive role. In what follows we neglect the 
effects of group retardation, considering the scattering 
over a length l « Til1/ci -l/csl. We also neglect in (4) 
the motion of the populations W = Wo(z)-the case of not 
too strong fields (see the estimate in L8J and Sec. 4). In 
the approximation of a given stepped pumping field 
(6'i (t - Z/ci) == Ci at It - z/ci I :s Ti /2) we have at reson
ance (.:loW = 0) the following equation for the amplitude of 
the Stokes Signal 

a'B. aB. ,at 5 
-+~--a'B.---=O ( ) 

ax au au W,(u)' 

where 

~=1/T2' aZ=f..ztJ..c.IJ).~N2h, a=-J..Il.c.IJ).Nv~./2, 

z 
x=t--, 

c. 

. 
u=- JW,(z')dz', 

• 
1 

W,(z)=W.(z)Nv =-[N,(z)-N,(z)]. 
2 

The function W1(z) is half the difference between the 
densities of molecules in the upper and the lower levels 
(assumed in what follows to be of constant sign). 

2. SCATTERING REGIMES 

For a study of the different scattering regimes we 
solve first the general Cauchy problem for Eq. (5), 
putting the initial conditions in the form 

) I ~I ~ 1lf.1._.=G.(u , ~ • • _.=G.(x), G.(O) =G.(O), - = ---' . ou ._. W,(II) 

We use the Riemann method to look for the solution at 
the pOint x = ~, y = 11 in the xy-plane. [9J 

Making the substitution 

we get 
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~ 
6=';--' 

C. 

, 
Tj=-J W, (~')d~', 

• 

~. (~;,;) =G.(.r') +'/.G.(t)e-~'· -'/.G.(0)e-~'·I.[2aV,;'1jl(t) 1 
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(6) 

+aV1jl(t) {G.(,;, -t') ~~:;'", I, [2aVt'1(l(~) ]dt' + e;" J F.(z)I. (!p)dz 

• 
'1"' .ct) 

-a J e-~'dr J I,[2a(rs)"']W,41jlW-s]/(,;'-r,1jJW-s)ds, . . 
where (7) 
, t 

,;=,;-
. c. 

. 
,p(v) .,;,,-J W, (t')d~' !p=2a [( T - z:t) (1jl(~) -1jl(z» ] 'I. , 

10 and 11 are Bessel functions of an imaginary argument. 
Giving one or other form of the boundary functions (6) 
we get from (1) the value of the Stokes field t s for the 
appropriate scattering regime. We must then in (7) take 
for the variables ~ and T the coordinate and the time. 
According to (4) the function Fo(z) is determined in terms 
of the initial values of the polarization 

(8) 

Spontaneous RS. In that case Go(t) = Ga(z) = O. More
over, in (7) we must take the limit as a - 0 (no amplifi
cation). Then 

1 ' 
~.(~, T)= 2e-~" J F.(z)dz . (9) 

",' t(t) 

-aJ e-~'dr J /[T'-r,1jl(t)-slW,-'[1jl(t)-s]ds. . . 
The expression for!' s consists of a coherent part, caused 
by the excitation of the medium, and a noise term. 
Neglecting the noise part of the polarizability as com
pared to the regular part, we get 

(10) 

Le .. the intensity of the Stokes field is quadratic in the 
number of scattering particles, which is a consequence 
of the correlation coupling between the particles which 
occurs when the medium is coherently excited. For the 
sake of Simplicity we consider the case T2 = 00: 

1 ' <If.(~.,;) = ,1.~I,C.IJ).<lfiJ N,· [Wo'(z) +<:.' (z) F sin !jJ,(z)dz. ., . 
where 

sin !jJ.(z) =-11,/(Wo'+v,') "'. 

If the excitation of the medium by a field is realized 
from the e~ui1ibrium state (W = W~q), we have -w~q 
= (W~ + v~) /2. The intensity of the radiation Is = CS!,2 / 
= CS,f~/81TI'iW is hence equal to 

where 

( f..1l.c.lJ). )' IJ)'Tj, I. = e---4 -I,I Wo'ql'(Nv~)' sin'!p. 
w,ll· 

1 ' 
sin!p = - J sin !p.(z)dz 

t • 

is the average degree of excitation of the molecules. 
Equation (11) was obtained in [10] by different means. 
When Fo(z) == 0 we get from (9) 

(11) 

(12) 

Quasi-static SRS regime (Ti »T2). In that case the 
amplification of the Stokes wave is described by the 
formula 

, 
<1f. (~ •• ) =G.(T')exp { -a'T, J W, (~')d~' }. 

• 
(13) 
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which follows immediately from (4) if we assume that 
la/atl « 1/T2. We can also obtain it from the general 
solution (7), putting {hi »1 and neglecting noise, For 
an equilibrium medium (13) goes over into (1). 

Non-stationary SRS regime. In that case 

(14) 

The noise part of the scattering intensity is for large 
amplifications (a ~ 1) and arbitrary ratios of Ti and T2 
equal to 

I"" gN,(O)Nv' x [2a'1Jl(~)]{1+ID(~_ 1/21Jl(~»)} 
• 32lj.'(1t1)'''W,(0)c p ~ '( av ~ , 

where 

1=2~'(' when al'2~-'¢(~) ;;;.l'2~'(', 
1=2a'1j:(Wp when al'2~-'1Jl(~) ,.;;;l'2~'('. 

(15) 

In the substantially non-stationary state (Ti « T2) we 
have 

a'gc, {' -, -, -(-)} 
I. = 1281t'a'flol.{ '('1Jl(~) l'" exp .. ah 1Jl ~ . (16) 

When there is no excitation, Eq. (16) goes over into (2). 
An estimate shows that the coherent part of (7) for the 
case (14) equals 

F (O)e-'" --
.r.(~.'()"" 4(a'd1Jl{;)]'''{-W,(O)])''' cxp{2ah'¢(~)}. (17) 

In deriving (17) we used the conditions 

2a[p-'~'(~) r>T-~/c .. a>1. 

We note that the general solution (7) is valid also when 
the excitation of the medium leads to an inversion of the 
populations (WI > 0). However. in that case only Eqs. 
(9) to (12) for the spontaneous scattering and Eq. (13) 
for the regime of quasi -static absorption of the Stokes 
wave, if it is given for !: = 0, remain valid. 

A similar consideration is also applicable to the 
description of the anti-Stokes scattering, if we formally 
in (7) make the changes 

~.-.r,.. W.-W"" C.-C"., N. m -N,(~), N,(~) -N, (~) (18) 

(the functions W land l/! (I;) change sign). In the case of an 
inverted population (WI > 0) the results (9) to (17) then 
remain valid if we make the substitutions (18). Equations 
(9) to (12) are applicable to the case W 1 < 0 for the 
spontaneous anti-Stokes scattering, while (13) and (18) 
hold for the quasi -static absorption of the anti -Stokes 
incoming field regime. 

If the excitation of the medium is realized by fields 
with resultant wave vector kexc (the expression for kexc 
is determined by the actual scheme for the excitation
see below), which is not the same as the pumping field 
wave vector ki' the coherent scattering described by 
Eqs. (10), (13), and (17) can be observed only at an angle 
which is determined for the Stokes scattering by the re
lation 

k.=k,-kexc. 

and for the anti-Stokes scattering by the relation 

k,,=k.+kexc . 

3. ACTIVE SPECTROSCOPY SCHEMES 

(19a) 

(19b) 

We use the results of Sec" 2 for an evaluation of dif
ferent cases of exciting the medium. We shall consider 
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the following general scheme, Let the excitation of the 
medium be realized by one or several pulses. Simul
taneously with their action, or with a certain time delay, 
a probing pulse is incident on the material which is scat
tered by an excited transition, In what follows we shall 
consider the following two variants of the general 
scheme: A) the scattering of the probing pulse is regis
tered at the frequency of the excited transition, B) the 
scattered radiation is registered through another tran
sition which has a common level with the excited one. 
We turn to a discussion of several concrete examples 
of schemes A (subsections I to III) and B (subsection IV). 

I. Let the excitation of the medium be realized by a 
resonant coherent pulse of amplitude I[ res(!;' T), of 
length T res « T I and frequency Wv (we assume that 
there is no alternative forbiddenness-molecules without 
an inversion center). 

1. If T res « T2 (coherent inte!action). after the pulse 
has passed we have (see, e.g., [llJ) 

W,(~) =1f2(N,<-N,")Cos 8(~). v,(~) -Nvv(~) = lidN,"-N,") sin a(~). 

where N~q and N~q are the equilibrium values of the 
population densities, 

') +w 

O(~)= ~P) $re.(~. ndl'. . a(~) 8(0) (a,l;) 
Ig-=Ig-exp --

2 2 ~' 

P is the matrix element of the resonant transition, 
a l = 41TW~p2/l'icl1resT: is the absorption coefficient 
(T/res is the refractive index at. the frequency wv' T: the 
reversible transverse relaxation time). Here and hence
forth we shall assume that the delay time T D «T2. We 
consider the scattering intensity at an angle satisfying 
the synchronism condition: ks = ki - kres' kres = kexc 
is the wavevector of the resonance field. In the spon
taneous RS regime 

S; , { [( a (0) ) (a,z )]} x" Sin 2arctg tg T exp -T dz. 

Far from the self-transmission threshold (1:1 (0) « 21T) 
the intensity of the Stokes emission is for a weakly ab
sorbing medium (ai?; « 1) 

(20) 

which is quadratic in the total number of molecules (cL 
(11». When the condition ks = k i - kres is violated or 
when TD ~ T2 the scattering intensity is given by Eq. 
(12). By virtue of (18) a result, analogous to (20), occurs 
also for the anti-stokes scattering at an angle satisfying 
the condition kas = ki + kres ' We note that one can use 
the TD-dependence of a measurement of the damping of 
the coherent spontaneous scattering to determine the 
time T2 directly. 

We give in Fig. 1 the total scattering intensity I~ot as 
a function of the synchronism angle (curve 1). The quan
tity I~ot consists of the coherent part I~Oh, described by 
Eq. (20) (curve 2) and an incoherent isotropic part, des
cribed by Eq. (12) (curve 3). For comparison we have 
drawn as a dashed line the intensity of the noise scatter
ing I~oise when the medium is not excited (Eq" (12) with 
NI(z) == ~q). The curves given here correspond to the 
case of small 1:1(0) when sin 1:1(0) ~ 1:1(0). To get dimen
sionless quantities we used in Fig. 1 the quantities 

A,~Qe-2"'I,(Wo"')', A,=8gA,-'QI,T,[ 1-e-"']N," (e'~o) - n), 
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1 (. Nv 
n=- 1---'2 2N,.,) , 

A.c=QI.(Nv~) '(Wo") '8'(0). 

In the amplification regime the Stokes intensities are 
described by Eqs. (13) and (17), where 8 (0) « 21T 

. N,··-N,·· [ { (a ~ )}] "'(~)= 2 ci8(0)-ci 8(O)exp .-+ . (21) 

The total amplification in the quasi -static regime for 
Ill' « 1 is given in Fig. 2. For comparison we have in
dicated by dashed lines the amplification when there is 
no excitation which is given by Eqs. (1) and (13) with 
Wl (,) == ~ -~)/2. 

2. If T res »T2, after the resonance pulse has passed 
through Fo(') == 0 and 1/1(,) equals[12] 

N,"-N", S' { I\l(~)- 2 1+exp(-o(N .. ·-N,··)z)· 
• 

x [exp (2al. ( "rres - :. )) -1 n -, dz, 
(22) 

where (] = 41Tl1resT2wvp2/tx:. The spontaneous scattering 
will then be incoherent. According to (12), (18), and (22) 
we must then observe amplification of the incoherent 
spontaneous anti-Stokes signal las due to the growth of 
the population in the upper level as compared with its 
thermal occupation. The maximum signal must be ob
served when 10 » CNiq - ~q )l/27 res when a brightening 
effect occurs and the populations become equal 
(N2(l:) = Ny/2). This is shown in Fig. 3. For comparison 
we show by the dashed line the level of the thermal scat
tering lIs when the medium is not excited, which is 
given by Eqs. (12) and (18) with N2(l:) = N~q/2. One can 
use the damping of this signal as function of TD to meas
ure the time Tl directly. 

1 

O.Oq 
;;y:~u.--__ ==..,. 

: IL--_I~+---J:-.....J...-=~ 

-t.n<i!r;1h 

o~--~~--~----

Q.92 

0.9t 

r---... -=-:::-::----------

1 

FIG. 2 

FIG. I. The intensity of the spontaneous Stokes scattering as func
tion of (a) the length of the sample, (b) the cross section of the reso
nance pulse, and (c) the delay time (scheme with short exciting reso
nance pulse) I = lsi A,AiNVIi\U), I' = (I - n02(0n-'. 

FIG. 2. Stokes signal amplification as function (a) of the cross sec
tion of the resonance pulse and (b) of the sample length (scheme wi th 
short exciting resonance pulse). r, =a2T21/J(l)/rol, r2 = a2T21/JU). 
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~' '-'-'-:=';';' = ....... ---

1 -~---~--------
b L--I~I----------------I, 

FIG. 3 FIG. 4 

FIG. 3. The anti-Stokes spontaneous scattering intensity as func
tion of the exciting pulse intensity (scheme with resonance quasi-static 
exciting pulse. a = Ias/(fs, a' = Nv/2N~q, I, = (Nrq - N~q)112Tres' 

FIG. 4. The spontaneous Stokes scattering intensity as function of 
the sample length (scheme with simultaneous exciting resonance pulse), 
d = ulw&qll . 

d 

The Stokes amplification regime is described by Eqs. 
(13), (16), (17), and (22)-the forward scattering intenSity 
is down as compared to the case without excitation. 

3. We consider the case of the simultaneous action of 
a resonance pulse of length 7 res »T2 and initial inten
sity 10« {2CJ(T r s -llc )}-l and of a probing pulse. 1) 

Under those conaitions we can neglect the change in the 
populations. For the most interesting case AI: i I: s 
«2p,; res we easily get, using the results Of[12J, 

,.,' (0) 8:n:1i61.ljre, 
(!;Ires iIE 10• 

e 

In the spontaneous scattering regime the intensities of 
the Stokes radiation when ks = ki - kres and of the anti
Stokes radiation when kas = ki + kres are given by Eqs. 
(10). (11), and (18) with {3 = 0 and Va = v. For instance. 
we have for the Stokes intensity 

( I.PI!.w,c.T,), c.(o), • 
1.= 21i -.-1$;',(0) {1-exp(aWo"t)}. 

a c1w. 
(23) 

The scattering intensities are in that case independent of 
the ratio of 7 i and T 2 and, in view of the proportionality 
to the intensity of the resonance pulse, they can be much 
larger than the intensity of the usual spontaneous scat
tering. Curve 1 of Fig. 4 shows the spatial dependence 
of the total Stokes intensity conSisting of the coherent 
part (23) (curve 2) and the intenSity of the noise scatter
ing when there is no excitation (curve 3). We have used 
in Fig. 4 the parameters 

A, = 2p2w,'T'~:es(0) IWo"I' 
gli'w.'a[1-e "'J 

In the amplification regime the Stokes intensity at the 
synchronism angle is given by Eqs. (13) and (17) with 
I/I(l:) "" -NyW~t, 

''APJloc,ro, 
F,(O)=--ft-. -NvT'~re,(O)O', 

and may be much larger than the forward scattering in
tenSity (as Fa - ,f res (0)). 

II. Let the excitation of the medium be realized by 
an SRS pulse with frequency w~xc, amplitude I: ~xc , andc 

exc 1 1 
wavevector ki . We consider the case of a short 
(Texc « T2) exciting pulse guaranteeing a non-stationary 
excitation of the amplitude of the molecular vibrations 
(the case of a quaSi-static excitation pulse is of no inter
est). This mode of excitation has been applied experi-
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mentally. [3J We get analytical expressions for the 
spontaneous scattering intensity. After the exciting pulse 
has passed 

'Cexc 

v.(i;)= ~ f W.·q8~XC8~xC (tj)dtj, 

• 
(24) 

where 

f ds 
• 

The spontaneous Stokes scattering intensity of the prob
ing pulse t i at an angle satisfying the condition ks = ki 
- (krxc - k~xc) is according to (11) equal to 

- t 

I. =~exp[ -2p (-c - ~ )] Sf <Fo(z)F.(z') > dzdz', 
u __ :r.nws (~o) 

where Fo(z) follows from Eqs. (8) and (24)0 An estimate 
gives 

i.e., Is can steeply exceed the level of the spontaneous 
noise scattering (12) due to the exponential dependence 
on the intensity of the exciting pulse (t rXC )2. By virtue 
of (18) we have a result similar to (25) for the anti
Stokes scattering at an angle satisfying the condition 
k = k. + (k~xC - kexc ). In the amplification regime as 1 1 S 
Is(s, T) is given at ks = ki - (krxc _k~xc) by Eqs. (13), 
(15), and (17) with if!(s) = -NyW~qs. and exceeds the 
forward scattering intensity in the case of an unexcited 
medium. owing to the increase in the factor of the ex
ponential, according to (8) and (24). 

III. Let the excitation of the medium be realized by 
the simultaneous passage of L pulses with frequencies 
wz. I = 1. 2 .... , L. such that 

In that case the coherent Stokes and anti-Stokes scatter
ings are directed along the synchronism angle, satisfying 
conditions (19a) and (19b), where 

kexc = tk,- t k,. 

1. If the probing pulse is applied after the exciting 
pulses have passed, we have, neglecting the change in 
populations P'l is the interaction matrix element) 

Vo (~, t) = i" ~'o'" T8 1 (t 1')8, (~, t') . .. 8 L (~. t') exp[ -p (t-I') Jdt', 

T.,,=min{-c,} 

The intensities of the spontaneous radiation at the synch
ronism angles are given by Eqs. (10), (11), and (18), For 
instance. for the Stokes radiation 

8,(~.T)= ",Z~I.)C'~;,N,.Wo'q e-"'8,] T81(\;'.t')8z(\;',t') ... (~'r(~'.t')d~· dt'. 
i 1 0 " 

We can use a measurement of the damping of the spon
taneous coherent signal as function of TD' as in scheme 
n, [3J to determine directly T2 for the case of molecules 
with an inversion center (cf. Fig. lc). In the amplifica
tion regime the intensity of the coherent Stokes scatter
ing is given by means of (13) and (17) where if!(?;) 
= -W~qNv?;' and it exceeds the forward scattering inten-
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sity for tlie case of an unexcited medium. 

2. When quasi-static excitation pulses (TZ »T2) and 
the probing pulse act simultaneously we get for the spon
taneous scattering amplitude at the synchronism angle 

~l!: NW~q t 

8.(i;,-c)=- A j.L.c.~~ v • T,I 8$i(\;',-c)8.(i;','t) ... 8di;',~)di;'. . 
USing the substitution (18) we get a similar result for 
the anti-Stokes scattering . 

The case L = 2 (biharmonic pumping), &1(?;' r) 
= const. corresponds to the coherent active RS spectro
scopy scheme, treated theoretically and experimentally 
in [2J. 

IV. We studied in the cases I to ill scattering at the 
frequency of the excited transition (scheme A). We now 
consider scheme B: the scattered radiation is registered 
at another transition which has a common level with the 
excited one. Such a scheme can be used for a study of 
transitions referring to the high-energy part of the 
spectrum which do not appear in the usual experiments 
because of the weak occupation of the corresponding 
levels. This possibility crops up in those cases where 
the exciting pulses produce an effective occupation of 
these levels by which the probing pulse can then be 
strongly scattered. Depending on the frequency of the 
exciting pulses such a scheme enables us to study 
electron -vibrational, vibrational-rotational transitions, 
transitions between anharmonic levels in the range of 
one type of normal vibrations, and also transitions be
tween different kinds of normal vibrations. We do not 
give here the formulae for these cases, since one can 
easily obtain them through obvious modifications of the 
equations of Sec. 2 and subsections I to III. As the excit
ing pulses do not change the off-diagonal elements of the 
density matrix for the transition which is registered 
(Fo = 0), the role of the exciting fields is now reduced to 
a change in the population of one of those levels by 
which the probing pulse is scattered. All excitation 
schemes are thus described by Eqs. (12), (13), (15), and 
(18) where if! (n is calculated for the different cases 
from the formulae of subsections I to llI. We note fur
ther that the scattered radiation is now directed at the 
same synchronism angles as those at which it is ob
served when there is no excitation. 

4. THE SELF-INDUCED TRANSPARENCY EFFECT. 
SRS SOLITONS 

We considered in Secs. 1 to 3 the case, usually en
countered in experiments, of not too strong fields when 
one can neglect the change in the populations. Under 
those conditions the propagation of the pumping pulses 
and of the Stokes radiation through the medium leads to 
a growth in the Stokes radiation and to the depletion of 
the pumping. We shall show that under the conditions of 
a coherent interaction (pulse lengths « T 2) a stationary 
scattering regime is possible when the pulses are suffi
ciently strong (we give estimates below)-the self
induced transparency regime when their amplitudes do 
not change. This means that the energy absorbed by the 
molecules from the pulses is later transferred coher
ently to the field because of induced scattering. For this 
we find stationary solutions of the complete SRS set of 
equations (3) and (4) taking into account the excitation of 
the medium during the scattering (change of populations 
and change in polarization) and the changes in both 
fields. We shall look for the solution of (4) for Til = T21 
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= dW = 0 in the form 6' s = 6' S(T - t/V), 6"i = 6"i(T-t/V), while 
where V is the group velOcity of the pulses. One sees dQ(~) A'A +S- ,. [W,$,' w,;c/] 

--=- dt Sill)(. -----easily that only the equality of the group velocities 
guarantees the stationarity of the self-transmission 
pulses (solitons). Introducing the variable t' = T - t/V 
we have 

dW =-~~,$,v. 
dt' Ii (26) 

Solving (26) with the initial conditions 

ul,_-c=vl, __ c=O, WI,_-c=~vo" 

and substituting the expressions for u, v, and W into the 
Maxwell equations we get 

(~_...!..) ~," =_ Aoo, d~sin)(., 
c, V dt 1], dt . 

(~_~) ~,' = Aoo, ~sin)(. 
c, V dt' 1], de' ' 

(27) 
where 

A=lioo,cNvW,", )(.(t')= ~J~$,dtll 
is the angle over which the polarization vectors have 
rotated. Hence 

where 

~.'/2a.=~.'/2a,=sin' '/2)(., 

IAloo,c.V 
a,= 1].(V-c.) ' 

IAlw,c,V 
a,= 1].(-V+c,) . 

(28) 

The existence of stationary pulses is thus possible 
under the conditions ai' as > 0 or Cs < V < ci' which 
requires the satisfying of the condition Cs < ci' i.e., 
1]s < '1i' Neglecting the non-linear distortion of the dis
persion curves we find that the condition 1]s > '1i can, 
for instance, be satisfied in the anomalous dispersion 
region or if Wi and Ws lie on different wings of the dis
persion curve describing one or other linear absorption. 
When these conditions are satisfied by the solutions (27) 
and (28) the pulses have the Lorentz form 

~,,( T- ;) = 1+To ,~:~~!V), 
(29) 

To = fi/A(aiaS)1/2. One sees easily that 0 == X(oo) = 21T. 
The pulse energies equal . 

+- -

d~ 21i' _00 1], 1']. 

A +foo [1 fJ8. 1 fJ8, ] 
-- dt' -~,~, +-8,-, . 

Ii _00 c. fJt c, at (31) 

One shows easily that pulses with amplitudes propor
tional to 6" i (t, T)/6" s (to T) = const and to 0 (0) = 21Tm, 
m f. 1 satisfy Eqs. (30) and (31), while for arbitrary t 
we have 

Q(~)=2nm, dQ.(~)/d~=dQ,(~)/d~=O. 

i.e., 0i(t), 0s(1;), and O(t) do not change when the pulses 
propagate. By virtue of the uniqueness of the solution this 
means that pul.ses which have the properties 
tfi(O, T)/6' s(O, T)= const and 0(0) = 21Tm when entering 
the medium, must remain proportional. However, the 
consideration given above shows that only pulses with 
0= 21T are stationary. Hence, such incoming pulses 
must break up when propagating into m pairs of solitons 
which remain proportional as they break up. 

The formation of SRS solitons becomes impossible in 
a dispersionless medium when 1]i = '1s' It is clear from 
(27) that in that case there do not exist such values of V 
that for them these equations simultaneously' have a 
meaning for real 6' i and 6" s' We note that in [13J Eqso (4) 
were numerically integrated for the case 1]i = iJ s 
(Tl = T2 = 00, dW = 0) and it was shown that as the strong 
pulses propagate they break up into separate "spikeso" 

It had also been established earlier [13J by numerical 
integration that strong incoming pulses break up when 
there is two-photon absorption. In contrast to the Raman 
scattering, the virtual level for this process lies be
tween the levels of the operating transition of the mole
cules, i.e., Wi + Ws = wV ' Let us find the soliton solution 
in that case. One sees easily that one can obtain the 
description of the two-photon absorption by formally 
replacing Ws by -ws in (4). As before, the stationary 
solutions are here Lorentz-shape pulses (29) with V < Cs 
and V < ci (cf.[6J , Sec. 12); all symbols have the same 
meaning as before. The relation between the group 
velocity V and the pulse length To is given by the formula 

c,+c,+ l' (c,+c.) '+4c,c, (II'To'c,'c.'-t) 
V= . 

2 (II'To'c.'c.'-1) AS' 1/ a, 0,=- ~.'dt =2n V-' Ii __ a, 0, = .!:... r~" de' =2n V a, . Ii __ a, 
One shows easily that the inequalities V < ci and V < Cs 

The relation between the pulse velocity V and their dura- for which the solutions (29) exist are satisfied under the 
tion To is given by the expression conditions 

c,+c,±'" (c,+c,) '-4c,c. (1 +1I'To'c.'c, ') 
V= 2 (1+II'T.'c.'c.') 

where <5 = AJ.L oNVWJq~ (wiw s). Both values of V lie 
within the range Cs < V < ci (the problem of whether one 
or other value is realized can be elucidated only from 
the solution of the non-stationary problem). The condi
tion that V be real leads to a limit on the pulse lengths 
T~ < (ci -cs)2/4ciC~<52. 

We note that in the general case of non-stationary 
pulses the "energy theorem" (cf. [4J) follows from Eqs. 
(4) 

dQ.(~) AAw, . ,O(~) 
dr-=-~Sill -2-' 

dQ,(~) = "Aw, sin' O(~) 
cIt li1'], 2' 

(30) 

where 
A. +00 +"" 

O(~)=hI8,(~.t)8.(~.t)dt. Q,~.(~)= ~_~ ~,\(~.t)dt. 
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{ 2(c,+c,) 2(c,+c.) } 
To ~ max f/'cl'c,' ' fl'c/e,1 ' 

giving a lower bound on the pulse length. In contrast to 
the Raman interaction in the case of two-photon absorp
tion the solutions (29) for solitons exist in any region of 
the dispersion curve. When there is no dispersion the 
solitons can also exist. For proportional incoming 
pulses with 0(0) = 21Tm, as in the RS case, one can es
tablish the break-up into solitons. 

In conclusion we give numerical estimates for the 
threshold amplitudes for self-transmission. For typical 
substances A "'" 10-23 to 10-25 cm3 • According to the 
earlier given formulae, we get, putting To"'" TJ10, the 
following estimate: 

8,-8.;;" (23th/AT,)'··,.., (1O-100)/(T,) 'f, [V /cm]. 

In typical situations T2 ~ 10-11 s for fluids and T2 ~ 10-8 

to 10-9 s for gases. This gives for fluids (f i ~ If s ~ 107 

T. M. Makhviladze et al. 260 



to 108 V fcm and for gases f, i ~ t, s ~ 105 to 106 V fcm. 

The authors are grateful to M. M. Sushchinskir for 
his interest in the paper and also to S. A. Akhmanov and 
A. I. Rez for useful discussions. 

l)Here and further we neglect in the cases of simultaneous action of 
exciting and probing pulses the energy exchange between the scattered 
wave and the exciting pulses. 

IR. W. Terhune and P. D. Maker, Phys. Rev. 137, A 801 
(1965). 

2S. A. Akhmanov, V. G. Dmitriev, A. I. Kholodnykh, 
A. I. Kovrigin, and V. E. Agluzdin, Rep. on VITth 
Internat. Quant. Electron. Conf., Montreal, 1972, 
Digest of Tech, Papers, A13; S. A. Akhmanov and 
N. I. Koroteev, Zh. Eksp. Teor. Fiz. 67, 1306 (1974) 
[SOY. Phys.-JETP 40, 650 (1975)]. 

3 A. Laubereau, D. von der Linde, and W. Kaiser, Phys. 
Rev. Lett. 28, 1162 (1972); Opt. Commun. 7, 173 (1973); 
W. Kaiser, Kvant. elektr. 1, 2036 (1974) [SOY. J. Quant. 
Electr. 4. 1131 (1975)]. 

4S. L. McCall and E. L. Hahn, Physo Rev. 183, 457 
(1969). 

5S. S. Alimpiev and N. V. Karlov, Zh. Eksp. Teor. Fiz. 

261 Sov. Phys.-JETP, Vol. 42, No.2 

66, 542 (1974) [SOY. Phys.-JETP 39, 260 (1974)]. 
6 1. A. Polue'ktov, Yu. M. Popov, and V. S. Ro"itberg, Usp. 

Fiz. Nauk 114, 97 (1974) [SoY. Phys.-Uspekhi 17, 673-~
(1975)] . 

7S. A. Akhmanov, Mater. Res. Bull. 4, 455 (1969); S. A. 
Akhmanov, K. N. Drabovich, A. P. Sukhorukov, and 
A. S. Chirkin, Zh. Eksp. Teor. Fiz. 59, 485 (1970) [Sov. 
Phys.-JETP 32, 266 (1971)]. 

BC. S. Wang, Phys. Rev. 182, 482 (1969); R. L. Carman, 
F. Shimizu, C. S. Wang, and N. Bloembergen, Phys. 
Rev. A2, 60 (1970). 

9 T. M. Makhviladze, M. E. Sarychev, and L. A. Shelepin, 
Lebedev Inst. Preprint, No. 18, 1974. 

lOT. M. Makhviladze and L. A. Shelepin, Phys. Rev. A9, 
538 (1974). 

IIp. G. Kryukov and V. S. Letokhov, Usp. Fiz. Nauk 99, 
169 (1969) [SoY. Phys.-Uspekhi 12, 135 (1970)]. 

12W. E. Harziev, Physics 3, 129 (1967). 
131. A. Poluektov, Yu. M. Popov, and V. S. Ro"itberg, 

ZhETF Pis. Red. 20, 533 (1974) [JETP Lett. 20, 243 
(1974)] . 

Translated by D. ter Haar 
53 

T. M. Makhviladza at al. 261 


